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Abstract. Recently, an active research topic in software verification is apply-
ing model checkers to programs, such as multi-threaded Java code. However, a
program typically consists of more behaviors, such as operations on complicated
data structures or implementation details which are typically made for some cri-
teria like performance. A brute-force model extraction may produce a poor model
for analysis engine. In this paper, we give examples to show how subtle changes
in implementation may result in considerable differences in analysis, particularly
to compositional analysis. Unfortunately, these implementation choices are made
by programmers – people who typically do not possess the knowledge of veri-
fication. To mitigate such sensitivity, we advocate that verification tools should
recognize and support abstract data types and, in the meantime, prohibit or sup-
press the use of array. Programming process behaviors with abstract data types
can hide and converge the implementation choices. More importantly, abstract
data types are informative. They provide essential information for tool automa-
tion to select a best implementation for analysis. In this paper, we describe the
design and implementation of such a prototype tool which can parse systems
written in Promela syntax.

1 Introduction

Automatic verification techniques such as model checking have been viewed as a promis-
ing method to ensure the quality of complicated systems. Many hard-to-detect errors,
such as deadlocks, can be manifested by these techniques. In past decades, consid-
erable progress has been made in these techniques. Several prototype tools, such as
SPIN[15][16], SMV[20], have been built and applied to many software or hardware
systems. In this paper, we focus on software verification.

Software typically has more states than hardware. The wide variety of software
designs make software verification a more difficult task than hardware. For example,
famous Ordered Binary Decision Diagram (OBDD) [3] which is widely used in hard-
ware verification has no obvious merits in software verification (see Corbett’s work in
[10]). Besides, modeling a software system requires much more efforts, experiences,
and human wisdom. In that work [10], Corbett also found subtle modeling differences
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for the same system may produce obvious differences in the results of analysis in dif-
ferent tools. However, the objective of Corbett’s work is to compare performance of
various verification tools, so, finding and eliminating these differences to have a fair
comparison of verification tools are his first priority.

Generally, most verification tools share the similar technology in exploring reach-
able states. They can be used for either software verification or hardware verification.
Nevertheless, software verification researchers often prefer one tool over another for its
capability of modeling software. For example, Spin [15] provides a model description
language (MDL) called Promela, which has syntax close to a high-level programming
language. Although it is originally designed for modeling communication protocols,
many researchers have chosen it to verify concurrent programs written in Ada, Java and
C. However, verifying systems written in these programming languages using Spin can
be subtle. The abstraction of programs into Promela models requires human wisdom
and experiences and is error-prone. In [17], Holzmann argued that a blindly derived
model (for example, either by a naive automatic/manual extraction) is unlikely to work
for verification in most cases. In other words, constructing an efficient and correct model
requires human wisdom from experienced personals.

Several years ago, some works rose to the challenge. Research tools such as Bandera
[11] and Pathfinder[13] have been developed to automatically extract models from Java
source code. Their goal is to model-check Java source code by smartly extracting a
model from Java code for analysis engines like SPIN. Bandera also introduces slicing
techniques to abstract away the program behaviors that do not concern the interested
properties (particularly liveness properties) so that the state explosion problem can be
alleviated. In our opinions, these progresses mark an important milestone for automatic
software verification.

Despite the progress described above, the fundamental barriers of software veri-
fication, however, still remain. Verification tools which analyze all processes at once
are inevitably limited by the PSPACE lower bound in worst case; that is, the number
of reachable states grows exponentially as the number of processes increases. In other
words, any attempt to alleviate the state explosion is bound to fail in general but may
work for some cases. For example, Bandera uses property to guide the program slicer to
slice away the behaviors that are not concerned by the property, particular the liveness
properties defined in linear-time temporal logic (LTL) formula. Such approach does not
work for property like freedom of deadlocks. Reachable deadlocks must be manifested
from all the possible behaviors.

To tackle the state explosion problem, a more promising approach is composi-
tional analysis[7, 6, 8, 9, 12]. Compositional analysis avoids state explosion by dividing
a whole system into many subsystems. Then, the techniques described above are used to
analyze these subsystems. Ideally, the analysis of each subsystem would produce man-
ageable and smaller state space and then each subsystem can be replaced by a simple
interface process. The process is continued by combining the analysis of subsystems
into a larger subsystems in a hierarchical fashion until the whole system is analyzed.
Unfortunately, this ideal scenario seldom happens in practical cases. Compositional
analysis is architecture sensitive. In many systems, no feasible hierarchies exist in their
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as-built architecture; that is, The power of divide-and-conquer is often limited by the
system architecture.

In this paper, we describe the design and implementation of a Promela front-end.
This front-end is part of a compositional analysis tool suite which is under develop-
ing. The major feature of this front-end includes the new statements for refactoring1 a
process behaviors to overcome the problem of architecture sensitivity of compositional
analysis. Another new feature of this front-end is the support of abstract data types.
From our past experiences, we discovered a program (either written in Java, C, or Ada)
may be written in a way that is poor2 for analysis engine, particularly when abstract
data types are implemented by array. We show two functionally equivalent process be-
haviors with two implementation choices can produce significant differences in analy-
sis, particularly to compositional analysis with refactoring. To address the problem, we
propose an extension of Promela. In this extension, we add abstract data types such as
queue and set to its syntax. We show that encouraging the use of abstract data types and
prohibiting the use of array can limit the wild implementation choices a programmer
may make, therefore, mitigating the sensitivity of analysis. Furthermore, abstract data
types are informative, providing essential information for tools to determine the best
implementation for analysis without the need of code analysis.

Note that Spin is a sophisticated piece of software. Our objective is not to rework
its features. Our long term goal is the construction of a software verification tool suite
which is compositional-oriented. We select Promela as one of our input language be-
cause of its syntax simplicity and its popularity. This paper is organized as follows. In
section 2, we give an overview of compositional analysis and our refactoring technique.
In section 3, we give examples to explain why analysis is sensitive to implementation
choices. Section 4 describes our design and implementation of a prototype tool. Finally,
we end the paper with discussion, related work, and conclusions in section 5 and 6.

2 An overview of compositonal
analysis and refactoring

In this section, we give an overview of two techniques, compositional analysis and
model refactoring, so that readers can have a brief idea on the problem we want to
address in this paper.

2.1 Compositional analysis

In a compositional analysis, we often have to group a set of processes into a subsystem
(or a module). There are two basic criteria of a “good” subsystem. First, the processes
inside the subsystem must not generate excessive state space. Second, the subsystem’s
state space must be able to be replaced by a much simpler interface process to repre-
sent the subsystem’s state space. An interface process can be computed automatically

1 This technique will be explained later.
2 Note that a program may be written in a way that is poor for analysis but is good for perfor-

mance or other measuring criteria.
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by hiding internal interactions, minimizing the state space, and exporting the state and
transitions (a.k.a interfaces) that will be used by its environment. Note that exporting
state and transitions as interfaces can aggregate the state explosion problem if the inter-
faces are not simple (see [12]). So, simple interface is the key to a “good” subsystem.
In other words, an effective subsystem should be loosely coupled to its environment so
that the chance of having a simple interface process to replace it in compositional anal-
ysis is higher. At last, “good” subsystems and processes must produce another larger
“good” subsystem in the composition hierarchy until the whole system is analyzed. Un-
fortunately, this ideal scenario seldom occurs in the compositional analysis of large and
complicated systems.

2.2 Model refactoring

In Fig. 1 and Fig. 2, we show the state graphs of three example processes X,Y, and S
in CCS semantics [21] (where synchronization actions are matched in pairs) and their
synchronization structure. Such kind of structure, a star-shape structure, appears very
often in practice, for example, a stateful server which communicates with clients via
separate (or private) channels. Many systems can even have structures of multiple stars.

We say S is tightly coupled to its environment (which consists of X and Y) because
it has complicated interfaces to its environment. Suppose S is a server and X,Y are
clients. Image the number of clients is increased to a larger number. Any attempt to
include S as a subsystem is bound to fail because of the complicated interfaces to its
environment. That is, no feasible subsystems and composing hierarchies exist in this
structure, particularly when client number is large.

x?a

w!b

x?c

x?d

y?a
z!b

y?c

y?d

S

x!a

x!d
x!c

y!a

y!cy!d

X

Y

Fig. 1. A simple example with 3 processes X, Y, and S.

In [4, 5], we proposed an approach called model refactoring to enable compositional
analysis for systems which are originally prohibited by their as-built architecture. The
refactoring consists a set of transformations. Each transformation maintains the behav-
ioral equivalence (weak bisimulation) of the model. By applying a sequence of transfor-
mations, a model P is gradually transformed into a model P ′ with new structure which
is more amenable to compositional analysis. It consists in building a sequence of equiv-
alent models, each obtained by the preceding ones by means of the application of a rule.
The rules are aimed for restructuring the as-built structures which are not suitable for
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X YS

x.a

z!b

x.c

x.d

y.a

w!b

y.c

y.d

Fig. 2. The structure of the example.

compositional techniques. The goal is to obtain a transformed model whose structure
contains loosely coupled components, where processes in each component do not yield
state explosion.

The key transformations are to decompose centralized, complicated behaviors of a
process into several small new processes while behavioral equivalence is preserved. In
[5], we described the basic tool support3 for refactoring and showed that a refactored
elevator system can be analyzed up to hundreds of elevators but global analysis and
compositional analysis (without refactoring) can only analyze up to 4 elevators.

For instance, we show the refactored X,Y, and S in Fig. 3 and the new synchroniza-
tion structure in Fig. 4. In Fig. 3, the behaviors related to channel x (or to process X) is
removed and wrapped into a new process Sx. Similarly, the behaviors related to channel
y is removed and wrapped into a new process Sy. So, the rendezvous of x!a, x!c, and x!d
are now redirected to Sx. However, Sx and Sy are now two individual processes which
can execute concurrently, but their original joint behaviors in S can not. So, extra syn-
chronizations (e!lock and e!release) are inserted to maintain behavioral equivalence;
that is, before invoking x!a and y!a, X and Y are forced to invoke e!lock first. Then, at
the end of Sx and Sy, e!release is used to free S.

The idea of refactoring equivalence is easy to explain. Let’s image the modified
processes (X,Y, and S) are contained in a black box. Image you are an external observer
of the black box. The external behaviors of the black box are defined by z!b and w!b.
In Fig. 2, the black box (which we call it B1) is implemented by 3 processes. The
black box (we call it B2) in Fig. 4, on the other hand, is implemented by 5 processes.
The external behaviors are also defined by x!b and y!b. Our refactoring must ensure
the external behaviors are equivalent before and after a transformation. Intuitively, B1’s
external behaviors can be viewed as an specification. Then, we choose to implement
the specification with 5 processes. Since we use 5 processes to do the same work which
was originally done by 3 processes, extra communications for process coordination are
inevitable. As long as the extra synchronizations are restricted inside the black box, the
two black boxes behave equivalently to an external observer.

2.3 Tool support

From the above example, it may looks like identifying the behaviors and decomposing
them can be done at the finite-state representation. In practice, automatic refactoring

3 The tool support can successfully refactor many systems in an automated fashion, particularly
the behavioral patterns which do not involve complicated data structures.
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e!lock

x!d

x!c

y!a

y!c
y!d

X

Y
e!lock

Sx

e!release

y?a
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e!release

e?locke?release

Fig. 3. The refactored example system.

X Y

S

z!b w!b

Sx Sy

x.a x.dx.c y.a y.dy..c

e.lock

e.release

Fig. 4. The refactored structure of the example system.

does not work at this level of representation. Some important information needed by
refactoring engine is lost at this level. The refactoring automation must be made when
a CCS state graph is created. So, a refactoring statement is added to Promela’s syntax.
We chose a subset of Promela syntax and built a parser to translate Promela code into
CCS [21] state graph. For example, S in Fig. 1 can be written in Promela as follows:

mtype = { a,b,c,d } ;
chan x = [0] of mtype ; chan y = [0] of mtype ;
chan z = [0] of mtype ; chan w = [0] of mtype ;
proctype S() {

do (0)

refactorby x, y {
:: x?a (1) ->

z!b (2); x?c (3); x?d (4);
:: y?a (5) ->

w!b (6); y?c (7); y?d (8);
}
od

}

Note that in the example, we mark a statement with “(addr)” as the address of each
statement. To translate a Promela code into a CCS state graph is trivial. First, we collect
the values of local variables and the address of current statement to make a tuple like
(v1, v2, ..vn, addr), where vi are values of local variables and addr is the current state-
ment address. In process S, there are no local variables, so the only element in the tuple
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is statement address (addr). Since the process starts at statement address 0, so we use
(0) as initial state. We begin parsing the abstract syntax tree (AST) of the code. When
we parse a channel statement which sends or receives a message, we create a new out-
going transition to a new state. The new state has its addr updated to next statement
address and the outgoing transition has label in the form of “ch?msg” or “ch!msg.” The
traversal is continued until no more new states are explored.

To activate refactoring, tool users can add keyword refactorby to enclose a block of
statements they want to refactor. For example, to obtain the result in Fig. 3 and Fig. 4,
we use refactorby to notify refactoring to separate the behaviors by channel name. In
general, process behaviors can be distinguished by channel name, variable’s values, etc.

When refactoring mode is activated, we translate Promela code into segments of
behaviors. For example, the sequence of transitions beginning from x?a and ending
with x?d is called a segment. These segments are grouped according to group options,
the parameters behind keyword refactorby. Next, segments are wrapped into a new
process such as Sx in Fig. 3 by a unified transformation.

Note that, in principle, it is impossible for our transformation to decompose any pro-
cess behaviors and make compositional analysis work in general, otherwise, we would
have solved the notorious state explosion problem. So, it is easy for a malicious tool
user to write a peculiar process behaviors which makes refactoring fail. However, un-
der normal circumstances, most process behaviors are written in common patterns. Our
ultimate goal is to make refactoring work for most behavioral patterns.

3 Sensitivity of (compositional) analysis

In the past, we have successfully refactored several systems. Most of them appear as
examples in literatures, such as elevator system[22], furnace system[23], alternating
bit protocol[2], etc. The tool support described in the previous section is sufficient for
many systems whose process behaviors either have no presence of data values or only
have simple data values to enrich its behavioral patterns. On the other hand, we began
to encounter systems with behaviors complicated by array. When process behaviors are
complicated by array, segmented behaviors may be interwined and tangled and refac-
toring transformations are no longer feasible. We described some of the behaviors as
follows.

3.1 Chiron user interface system

The first example is called Chiron user interface [18]. It has been analyzed by [1, 24].
Chiron user interface system is originally written in Ada. Chiron’s design philosophy is
to separate application code from user interface code. So, there are user interface agents
called artists attached to selected data4 belonging to the applications. At runtime, each
artist can register events of interests to dispatcher. Whenever there is an operation call

4 You can consider the data as an object and the object’s values (or attributes) is linked to a
visualization tool called artists. In other words, an artist can be viewed as a graphic drawing
unit for the data.



8

on the data, the dispatcher intercepts the call and notifies each of the artists associated
with that data with the event.

Its Promela model is manually extracted from its Ada source code. The most com-
plicated process in Chiron is a task called dispatcher. Dispatcher is responsible for
accepting requests to register or unregister an event from an artist. The dispatcher use
an array e1_list

mtype e1_list[no_of_artists];

to keep track the artists which have registered on event e1. When an artist registers an
event e1 to dispatcher, the following code fragment is executed in dispatcher.

dispatcher_chan? register_event, artist_id, event ->
if
:: (event == e1) ->

i = 1 ;
do
:: if

:: (i> e1_size) ->
e1_size ++ ;
e1_list[i-1] = artist_id ;
break ;

:: else
fi;
if
:: (e1_list[i-1] == artist_id) ->

break ;
:: else
fi;
i++ ;

od

The code first receives a command and two parameters from the channel. Two parame-
ters are artist_id and event. Next, it checks if the artist_id is already in the array, using
a loop index i. If not, the artist_id is appended to the tail of the array.

On the other hand, to unregister event e1 from dispatcher by an artist, the following
code is executed.

dispatcher_chan? unregister_event, artist_id, event ->
if
:: (event == e1) ->

if
:: (e1_size == 0) -> skip
:: else ->

i = 1 ;
do
:: (i> e1_size) -> break ;
:: else ->

if
:: (e1_list[i-1] == artist_id ) ->

do
:: (i>= e1_size) -> break ;
:: else ->

e1_list[i-1] = e1_list[i] ;
i++ ;

od
e1_size -- ;

:: else
fi ;
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i++ ;
od;
e1_size[e1_size] = 0 ;

fi;
fi;

The code first search the array to check if the artist_id is in the array. If yes, the el-
ement (pointed by i) is deleted and all the elements behind e1_list[i] is copied to fill
the deleted space. In other words, the elements in e1_list are shifted. To anyone who
know programming, such implementation is only one of many choices. Typically, if we
prefer such kind of implementation, we want to maintain the order of artists by their
registration time. That is, an artist which registers e1 earlier is stored in the front of
array. However, in dispatcher task, we found no clues where such order is concerned.

3.2 Implementation alternative

Since the order of registration is not a concern to dispatcher, a better implementation
choice is using a bit array.

bit e1_list[no_of_artists];

In this implementation, if e1_list[i] = 0, it means artist ai does not register on event e1.
If e1_list[i] = 1, it means artist aihas registered on event e1.

3.3 Analysis of implementation choices

In programming, we are accustomed to make implementation choices for some rea-
sons, perhaps for performance or maintenance. Similarly, the above two implementa-
tion choices produce two functionally equivalent models but unfortunately, result in
great difference in analysis. Let the length of array e1_list be n, the number of artists.
We call the array of original dispatcher as queue array. The original dispatcher’s behav-
iors can produce states which have growing rate proportional to

1 +

n
∑

i=1

(

n

i

)

i!.

On the other hand, using bit array has a growing rate proportional to 2n. Although the
two scales are both exponential, the first growing rate is much worse than the second
one for global analysis.

To compositional analysis, the implementation with queue array produce interwined
and tangled behaviors which cannot be refactored effectively. It can be only analyzed up
to 2 artists. On the other hand, the behaviors with bit array can be refactored effectively
into loosely coupled components. Its refactored structure can fully take the advantage of
divide-and-conquer. It can be analyzed up to 14 artists. Note that, in Chiron, increasing
an artist means adding a new process to the system.

In Fig. 5(a), we show the tangled behaviors of the queue array implementation with
two artists. In the figure, a registration event is abbreviated into “?Rx” where x is the
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type of event. An unregistration event is abbreviated into “?Ux.” Beside each state, we
print the contents of array e1_lst[]. On the other hand, Fig. 5(b) shows the behaviors
using bit array, which presents some form of symmetry. This behavior can be effectively
transformed by refactoring (It uses value processes to model value change for each array
element e1_lst[i]. Readers who are interested in these technical details, please refer to
[5]).

?R1 ?R2

?R2 ?R1

?U1 ?U2

?U1

?U2

?U2

?U1

?R1 ?R2

?R2 ?R1

?U1 ?U2

?U2
?U1

(0,0)

(1,0) (0,1)

(1,1)

(nil,nil)

(1,nil) (2,nil)

(1,2) (2,1)

(a) (b)

Fig. 5. The behavioral patterns of two implementations.

This observation agrees with Holzmann’s statement [17] that naively translated or
blindly derived models are unlikely to work for analysis in most cases. The key points
of our observation are:

– Programmers often make implementation choices for performance or other
criteria, but not for analysis. A model which is directly extracted from a pro-
gram inherits the program’s implementation choices, which can be “poor” for
analysis but makes no significant difference in runtime execution.

– Subtle changes in implementation may produce significant differences in (com-
positional) analysis. Analysis tends to magnify small and slight implementa-
tion changes.

So, with these observations and the state explosion problem, we believe model checking
programs is just a beginning. We should be cautious and conservative on the the general
applicability and practicability of these tools.

3.4 Gas station system

To convince that Chiron’s case is not unique, we give another example from a gas
station system. Gas station example was originally proposed by Helmbold and Lockham
[14](see Fig. 6).5 Since then, the system has become one of the standard examples for
software verification. The example models an automated gas-station with an operator,
a pump, two customers, and a queue holding customer’s requests. In principle, this
example can be extended to arbitrary number of customers and pumps.

5 The figure is borrowed from Cheung and Krammer [8].
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In Fig. 7, we show the state graphs6 of gas station system in CCS semantics, where
edge labels are matched in pair. In a typical run, a customer can contact the operator to
prepay some money. Once prepaid, the operator activates the pump. After the pump is
activated, the customer can start filling the gasoline. Next, when the customer finishes
the pump, the pump counts the volume of pumped gasoline and charges the customer
an amount of money by notifying the operator. Operator receives the charged total and
returns the changes (if there is any) to the customer.

Fig. 6. A gas station system.

In this version of gas station (see state graphs in Fig. 7), the following scenario
could happen: Customer1 prepays the money and has the pump activated. Under normal
circumstances, customer1 is supposed to start pumping the gas. However, suppose he
goes to restroom. In the meantime, customer2 enters the station, prepays the money,
and starts pumping (already activated) the gas immediately. After customer2 finishes,
the pump charges customer1 for the volume of gas pumped by customer2. So, although
there is a process called queue in this version, it does not actually enqueue the customer
id to serialize the order of service.

In an attempt to remedy this problem, we modify the pump to use a queue to store
the customer id. The queue-enabled pump accepts a customer id from the operator.
Before the pump can be started, the customer id must be verified. Image that in real
scenario, after prepay, the operator gives customers an id to enter to computer at the
pump station. A customer must enter a correct id (which should be the same as the
front id in the queue) to start pumping the gas. In a first attempt, we modified the pump
to make it queue-enabled using a circular queue. The queue-enabled process is called
pumpq1.

#define QLEN 3
6 The state graphs are borrowed from Cheung and Krammer [8] but we rename its edge labels

into pairwise notations.
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?prepay1,
?prepay2

!pump_occupied

!pump_avail
!activate

!cust_wait

!cust_none

?charge1,
?charge2

!change1,
!change2

Operator

?pump_avail

?cust_none

?pump_occupied

?cust_wait

Queue

?activate

?start1,
?start2

?finish1,
?finish2

!charge1,
!charge2

Pump ! prepay1

!start1

!finish1

?change1

! prepay2

!start2

!finish2

?change2

cust1 cust2

Fig. 7. The state graphs of gas station system

enum client_t = {NIL,c1,c2} ;
proctype pumpq1() {

client_t buf[QLEN] ;
byte head = 0 ;
byte tail = 0 ;
client_t cid ;
do
:: op?add,cid ->

/* accept id from operator */

buf[tail] = cid ;
tail = (tail+1)% QLEN ;
/* insert id to queue */

::(head != tail && buf[head] == c1)->
cust?remove,c1 ;
/* accept id validation from customer */

buf[head] = NIL ;
/* remove id from queue */
head = (head+1)% QLEN ;
cust? start1 ;
cust? finish1 ;
op! charge,c1;

:: (head != tail && buf[head] == c2) ->
cust?remove,c2 ;
/* accept id validation from customer */

buf[head] = NIL ;
/* remove id from queue */
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head = (head+1)% QLEN;
cust? start2 ;
cust? finish2 ;

od
}

In the example, pumpq1 receives a customer id, cid, from operator via channel op and
stores in array buf when an operator receives a prepay from customer cid and enters
it to pump’s computer. Later, only the customer who has id same as the id in the front
of the queue can start pumping the gas. Other customer who does not have the correct
id will block on his call to cust! remove, ci. Note that array buf has length 3 to avoid
checking the boundary conditions.

We had rc-Promela translator to parse the code, but immediately found the modeling
choice produces redundant states, which aggregate the state explosion problem. We
fixed the code into the following pumpq2.

#define QLEN 2
enum client_t = {NIL,c1,c2} ;
proctype pumpq2() {

client_t buf[QLEN] ;
byte i ;
byte size = 0 ;
client_t cid ;
do
:: op?add,cid ->

/* accept id from operator */
/* insert id to queue */
buf[size] = cid ; size++ ;

::(size != 0 && buf[0] == c1)->
cust?remove,c1 ;
/* accept id validation from customer */
/* remove id from queue */

i = 1 ;
do
:: (i >= size) ->

buf[i] = NIL ; break ;
:: else ->

buf[i-1] = buf[i] ;
i++ ;

od;
size -- ;
cust? start1 ;
cust? finish1 ;
op! charge,c1;

:: (head != tail && buf[head] == c2) ->
cust?remove,c2 ;
/* accept id validation from customer */
/* remove id from queue */
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i = 1 ;
do
:: (i >= size) -> buf[i] = NIL;break;
:: else ->

buf[i-1] = buf[i] ;
i++ ;

od;
size -- ;
cust? start2 ;
cust? finish2 ;

op! charge,c2 ;
od

}

Just like the original dispatcher’s behaviors in Chiron, this solution copies values behind
the first elements to fill the empty space when the first element of the array is removed.
Most programmers would agree that this solution is an inferior implementation com-
pared to the pumpq1 – low performance when queue length is large but surprisingly,
pumpq2 is a more effective model than pumpq1 for the verification.

For pumpq1, rc-Promela translator selects (buf[0],buf[1],buf[3], head, tail, addr) as
the tuple for traversing AST to produce state graph. So, if an id c1 is in the queue, that
state could be one of

(c1,nil,nil,0,1,addr),
(nil,c1,nil,1,2,addr),
(nil,nil,c1,2,0,addr),

depending on the values of head and tail. On the other hand, for pumpq2, rc-Promela
translator selects (buf[0], buf[1], size, addr) as the tuple to traverse the code. The state
can only be represented by (c1, nil, 1, addr). In other words, If the queue length is n,
pumpq1 will generate a state graph with size n + 1 times than pumpq2 – a considerable
impact to analysis.

4 Using abstract data types to mitigate sensitivity of analysis

The problems described in the previous section can be the tip of the iceberg. Analysis
tools have always been geared towards being adopted by industry to assure high soft-
ware quality. However, if an analysis tool must depend on the virtue of the code or limit
itself to trained experts, the fruit of software verification research will always be limited
in research community.

To address the problem, the first approach we tried is attempting to analyze the array
usage in the code and gather useful informations for refactoring automation. Suppose
we can analyze and understand the semantics of Chiron’s dispatcher task mechanically,
we can replace it with bit array to produce best analysis results. Unfortunately, that is
hard and impractical. We re-analyze the essence of the problem and have three obser-
vations, which are:
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1. Array is the very basic blocks for constructing abstract data types (ADTs). Most
process behaviors with array operations can be summed up to some kinds of ADT
operations.

2. An ADT may have several implementation choices. However, these implementa-
tion choices can be hidden by ADT interfaces.

3. The process of using an ADT for a task encourages precise and high-level thinking.

These observations are the basis of this work. Image an extreme scenario where analy-
sis tools are integrated into a programming environment. A programmer is responsible
for a critical task which requires concurrent programming. Under this condition, array
is prohibited by the environment because the code must be analyzable. A programmer
would be forced to select appropriate ADTs to complete his work. In the case of Chi-
ron’s dispatcher, he would select set as the most appropriate ADT for the job.

In the scenario, the usage of set provides explicit directives for tool automation. Se-
lecting best implementation (i.e., bit array in this case) becomes straightforward. There
is no need to incorporate other static analysis techniques for program comprehension.
Consequently, sensitivity to implementation choices is controlled and mitigated. In this
paper, we implement two frequently used ADTs into Promela to demonstrate our idea.
They are:

QUEUE

DECLARATION SYNTAX:

queue qname = [n] of {enumtype}
METHODS:

void push(enumtype val); // to add a value val to the queue
enumtype pop(); // return and remove the frist element of queue
enumtype front(); // return the value of first element

SET

DECLARATION SYNTAX:

set sname = [n] of {enumtype};
METHODS:

insert(enumtype val); // add val to a set
erase(enumtype val); // remove val from a set
int find(enumtype val); // return the index of the value

Where enumtype is a type defined by enum keyword, another new function we add to
Promela to extend mtype of Promela. A user can use

enum clien_type = {c1, c2, c3};

to define an enumeration type in Promela. Both the ADTs are exclusive; that is, values
in these containers can not be duplicated. The implementation of containers which allow
duplicated elements can be quite different from the exclusive ones. Currently, exclusive
ones can satisfy our need.

Using the new ADTs, the dispatcher can be rewritten into
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enum artist_type = {a1,a2};
set e1_lst = [2] of {artist_type};
.....
dispatcher_chan? register_event, artist_id, event ->
if
:: (event == e1) -> e1_lst.insert(artist_id);
:: (event == e2) -> e2_lst.insert(artist_id);
fi
.....

In this example, not only the process behaviors are concise and easy to understand,
but also process behaviors are forced to “converge” on this one. Our tool automatically
select the best implementation choice for (compositional) analysis, which is transparent
to tool users. With the prevalence of object-oriented programming languages nowadays,
the constraint (to prohibit or suppress the use of array) may not be strong as it looks but
the merits are manifold.

4.1 Object-oriented tool design and implementation

Crafting the experimental parser described in this paper requires a lot of works. This
pilot prototype7 has been worked towards to a new framework illustrated in Fig. 8. In the
figure, boxes colored in grey are tools which have been developed or under developing.
White boxes are tools which can be developed by other parties or will be developed
by us in the future. Finally, boxes decorated with grey stripes are tools constructed by
others. DOT is graph visualization tool from AT&T. Fc2tool [19] is a tool suite from
INRIA, France, which consists of tools to enumerate and minimize CCS state graphs.

In the framework, our ADT-promela parser reads a Promela file and produces sev-
eral cfg (control flow state graph) files and a symbol table8, where each process has a
cfg file. A control flow state graph is like Fig.9. Each state can be interpreted as the
address of a statement in the program. Each edge is then attributed by a statement. The
statement is stored in the form AST (abstract syntax tree) which can be evaluated by a
postfix traversal algorithm. The cfg file format uses tags which can be parsed and read
easily. It can be modified to XML syntax if necessary.

The spirit of our design is to use files to communicate among tools. This design
avoids building a monolithic tool which can be harder to modify or evolve. The frame-
work also encourages cooperative work. Tools with a language front-end typically do
not use flow graph of a program for data exchange because it is language dependent.
However, we found that control flow state graph is where many tools start with. For
instance, our state graph translator traverses it to generate communicating finite state
machines (such as CCS or CSP state graphs). Simulation tools can use it to exercise
traces. Other tools such as program slicers can work on this representation as well.
These reasons make us to design it into a format which can be shared by language
front-ends and analysis back-ends.

To deal with control flow state graph, we design a set of object-oriented CFG classes
(shown in Fig. 10), which can parse a cfg file to construct a control flow state graph.

7 The old prototype (without ADT) described in [5] has been torn apart and restructured towards
the structure in Fig. 8.

8 Spin is capable of outputting control flow state graphs and symbol tables. However, that output
is not designed for the purpose like ours.
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Fig. 8. The framework of tool implementation.

We introduce an inheritance hierarchy to separate what is language dependent from
what is language independent. A language front-end can implement their own AST
to store a statement. Next, it should implement an overidden eval() method (see class
CFG_edge_promela). Other tools, such as a simulation engine, will only invoke eval()
to evaluate the AST of a statement and update variable values in the symbol table. The
details of AST (which is language dependent) are transparent to other tools. By this
design, we can implement a language-independent state graph translator or a simulation
engine.

s.insert(val)

IF
val= =0else

val = val + 1s.erase()

Fig. 9. A control flow state graph.

The implementation of an ADT method is actually done in the overridden eval()
of class CFG_edge_promela. For example, when a set is defined, we create a bit array
in the symbol table. Later, when a statement s.insert(i) is evaluated, eval() sets the ith
element in the bit array. In our state graph translator, bit array will be included as a tuple
(see section 2.3) to traverse the control flow state graph to generate CCS state graphs.
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Fig. 10. The inheritance structure of CFG objects.

The tools described in this paper will be gradually released at URL link
http://www.ice.ntnu.edu.tw/~ypc/ArCats.htm.

5 Related works and discussion

From the best of our knowledge, Java model extractor Pathfinder has not supported
abstract data types from Java standard library. In other words, it assumes the behavior
of a Java thread does not involve ADTs. Bandera can process code which uses vector.
However, vector is just another safe-to-use array. Supporting ADTs requires a great
amount of efforts and works. The reasons they do not support ADTs from standard
library are simply an issue of cost [13]. They do not address the sensitivity problem we
described in this work. Besides, they focus on global analysis, whereas compositional
analysis and refactoring are our major concerns.

Supporting abstract data types in Promela can be done in another way. For example,
we can use CPP’s macros to implement ADTs. This approach may be easier to maintain
and implement. There is no need to modify Promela’s grammar. However, it is more
difficult to cope with object-oriented syntax nowadays. For example, many ADT objects
may have methods all named add(). Solving naming conflicts in macro programming is
more difficult. It is also more difficult to cope with our design framework in previous
section.

6 Conlusions

In this paper, we describe a special phenomenon of software verification – analysis
(particularly compositional analysis) is sensitive to implementation choices when array
is used to implement complicated data structures. We give examples to show that an
implementation choice which is the definite choice in the view of programming may be
a poor choice for analysis. On the other hand, a poor implementation choice from the
view of programming can be a good choice for analysis. We show that such sensitivity
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can be mitigated if ADTs are supported and the usage of array are suppressed or prohib-
ited. Two ADTs SET and QUEUE are implemented in a prototype tool. Models rewritten
with ADTs have obvious advantages. First, using ADTs forces process behaviors to
converge. Programmers have less room to make their own implementation choices to
endanger analysis. Second, the ADTs provide useful automation information. Select-
ing the best implementations for ADTs behaviors becomes straightforward. There is no
need to incorporate any static analysis or program comprehension techniques.
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