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Abstract. This paper presents a simple method of protection against
fault analysis when the underpinning cryptosystem uses modular arith-
metic. The proposed method applies whatever the modular function
to be evaluated and the used algorithms. Moreover, it only requires a
very little overhead of extra computations, especially when the modu-
lus is represented in diminished-radix form or when at least one factor
of the modulus is known.

Indexing terms: Fault analysis, modular reduction, diminished-radix
representation

1 Introduction

In September 1996, newspaper publications cited a Bellcore press release
New Threat Model Breaks Crypto Codes: a new ‘Potential Serious Problem’
was reported. This launched a new type of cryptanalysis, the so-called Fault
Analysis 1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 19, 25]: the presence of faults may
leak some secret information.

This paper presents a simple method of protection against fault analysis
when the underpinning cryptosystem uses modular arithmetic. This method
thus applies to almost all public-key systems (RSA [22], EIGamal [9], etc. . .)
and also to some private-key systems (e.g., XMX [17]).

For some moduli M having a special form, computations modulo M can
be speeded up (e.g., when M = 2% £+ p) [14, §4.3.2]. Furthermore, if a given
modulus M can be transformed into M’ = 25 4 y' = rM for some (small)
integer 7, then f(z) mod M can be derived from f(z) mod M’ by Chinese
remaindering. This was exploited by Quisquater [20, 21] and Walter [24] (see
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also [18]). In such algorithms are used, checking modular functions for faults
is almost free. The same conclusion holds when the (partial) factorization
of the modulus is known [23].

Previous solutions suggested to do calculations twice. Such solutions are
not satisfactory because they do not detect permanent faults. Other solu-
tions proposed to verify the correctness by comparing the “inverse” result
with the input (e.g., the RSA signature S on a message M can be verified
by comparing whether S* = M (mod n), where v is the public verification
exponent and n is the RSA-modulus). This is also not satisfactory because
this is time-consuming and the inverse map (when it exists) is not always
known. The main advantage of the proposed method is its very general na-
ture, it remains applicable whatever the modular function to be evaluated
and the used modular algorithms. Moreover, this method is very less time-
consuming than previous ones, and allows to parameterize the probability
that an error goes undetected.

The next section explains how to securely evaluate a modular function.
Then, in Section 3, some short-cuts are pointed out when modular reductions
are performed with diminished-radix moduli, and when some factors of the
modulus are known. Finally, Section 4 concludes the paper.

2 General overview

Suppose that y = f(xz) mod M has to be evaluated. Instead of directly
computing y, a (small) random number r is first chosen and y, = f(z) mod r
is evaluated. Also, the value of z = f(z) mod rM is evaluated. Then, if
z Z 1y, (mod r), an error has occurred; otherwise the computations are
supposed correct and y = z mod M. Schematically, we have:

z = f(z) mod rM yr = f(x) mod r

~ 7

”
zmod r = y, no

~ ERROR

yes

l

y =z mod M

Figure 1: Secure evaluation of y = f(x) mod M.

The probability that an error is undetected is equal to 1/r. If r is a
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20-bit integer, this probability is already smaller than 107%; r can thus be
considered as a security parameter.

3 Special cases

The evaluation of modular functions can be simplified if the modulus has a
special form M’ = rM. In that case, the computation of z = f(z) mod rM
is implicitly done, resulting in a gain of speed in the verification process (see
Fig. 1). We will illustrate this topic for algorithms based on diminished-radix
transformation, but it can also be generalized to augmented-radix moduli
algorithms.

Furthermore, when the (partial) factorization of the modulus is known,
the computation of y, = f(z) mod r (see Fig. 1) can be optimized. A similar
method was pointed out by Shamir [23] to prevent the leakage of the RSA
secret factors from faulty Chinese remaindering based RSA signatures [6, 11].

3.1 Diminished-radix transformation

Let M = 35" m; 2" and M’ = Ef’:_ol m/; 2 be the binary expansions of M
and M', respectively. The modulus M’ is called a diminished-radix (DR)
modulus if it has the special form

M =rM =2 —y, (1)

where r,u < 2°. Moreover, given an arbitrary modulus M, it is always
possible to transform M into a DR modulus M’. A valid choice for the
normalization factor r is [2% /M|, and p = 2* mod M.

Proof. Obviously, M’ =25 — p =25 — (28 mod M) = |2° /M |M = rM.
O

Note that the full division by M is not required to evaluate r [8]. Once
M has been transformed into its DR form M’ =rM, z = f(z) mod M' can
be computed with only shifts, additions and single-precision multiplications
[14, pp. 268-275] (see also [20, 21, 24, 18]).

In conclusion, to compute y = f(z) mod M, the modulus M is first
transformed to a DR modulus M’ = rM = 2¥ — . Then, z = f(z) mod M’
and y, = f(z) mod r are evaluated. If z =y, (mod r), then y = z mod M.
Note that since computations modulo M’ are faster, z mod M can efficiently
be computed as (rz mod M')/r.

Proof. Straightforward since rz mod rM =rz — | 2% | rM = r (z mod M).
O
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3.2 Chinese remaindering

Let M = [['_, p¢ be the prime factorization of M; y = f(z) mod M can
then be computed from f(z) modp;* (i = 1,...,t) via Chinese remain-
dering. More generally, we will assume that the modulus M is given by
M = T1i_, fi with ged(fi, fj) = 1 for i # j. In that case, the verification
process can also be speeded up. We will give the method for M = fif
with ged(f1, f2) = 1, but it readily extend to 3 or more coprime factors f;.
Since M = f1f2, y = f(z) mod M can be computed from y; = f(z) mod f;
and yo = f(z) mod fy. As depicted in Fig. 1, y; (: = 1,2) is computed
by independently evaluating z; = f(z) mod r;f; and y,; = f(z) mod r; for
some (small) random number r;; then if z; = y,; (mod ), the algorithm
outputs y; = z mod f;. If the same value r is chosen for 71 and ro (i.e.,
r1 = rg = r), then the computation of y,; and y, 2 can be avoided; the al-
gorithm now checking whether z; = 2o (mod 7). If this equivalence holds,
then y1 = z1 mod f; and ys = 22 mod fo.

4 Conclusions

A general and inexpensive method for checking modular functions was pro-
posed. When the modular algorithm uses diminished-radix moduli (or
augmented-radix moduli) or when at least one factor of the modulus is
known, this verification is almost free. Note, however, that in the general
case the extra overhead is negligible: only 20 additional bits are needed to
offer an error-free result with probability at least (1 — 1075).
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