

An RFID Tag Anti-Collision Protocol Using Parallel Splitting and Merging

Ming-Kuei Yeh

Department of Information

Management

National Taipei College of

Business

jamesyeh@webmail.ntcb.edu.tw

Shing-Tsaan Huang

Department of Computer

Science and Information

Engineering

National Central University

sthuang@csie.ncu.edu.tw

Jehn-Ruey Jiang

Department of Computer

Science and Information

Engineering

National Central University

jrjiang@csie.ncu.edu.tw

Abstract
In the RFID system, tag signal collisions occur when

multiple tags respond their IDs to the reader

simultaneously. In such case, no tag can be identified by

the reader successful and the performance of tag

identification degraded. How to reduce tag collisions to

speed up the identification is thus important. There are

several anti-collision protocols proposed for reducing

tag collisions. They can be categorized into two classes:

ALOHA-based protocols and tree-based protocols; the

latter can be further classified into deterministic

tree-based and probabilistic counter-based subclasses of

protocols. In this paper, we propose a probabilistic

counter-based anti-collision protocol, called PSM, to

simply split and merge tag groups in parallel to reduce

tag collisions for shortening the identification delay. We

also conduct simulation experiments for the proposed

protocol and compare it with related ones, such as the

QT, FS-ALOHA and ISO18000-6B protocols in terms of

the number of iterations and system efficiency. To the

best of our knowledge, the PSM protocol has the highest

system efficiency among the plain protocols that use no

special techniques, such as bit-tracking, tag population

estimation, and re-identification.

1. Introduction

Recently, the RFID (Radio Frequency

IDentification) technique [1] has been applied to many

applications due to its contactless, automatic

identification capability. The front end of an RFID

system is composed of readers and tags. When a tag and

a reader can communicate with each other, we say that

the tag is in the interrogation zone of the reader. Because

the reader does not know which tags are in its

interrogation zone, it initiates an interrogation procedure

(or identification procedure) to request tags to send back

their IDs. In cases where multiple tags respond to the

reader’s request simultaneously, tag collisions occur and

the reader cannot successful identify any tags. How to

reduce tag collisions and speed up the identification

procedure is thus important. There are several

anti-collision protocols proposed for reducing tag

collisions. They can be categorized into two classes [2]:

ALOHA-based and tree-based protocols; the latter can be

further classified into deterministic tree-based and

probabilistic counter-based subclasses of protocols.

In ALOHA-based protocols, a tag responds to the

reader’s request by transmitting its ID in an arbitrarily

selected time slot. For example, in the frame slotted

ALOHA (FS-ALOHA) protocol [3], the period of an

interrogation procedure is divided into several frames,

each of which is composed of the same number of time

slots. On receiving the reader’s request command, a tag

randomly chooses a time slot to transmit its ID to the

reader. If only one tag responds in a slot, it can be

identified successfully. A tag not identified successfully

will re-select a time slot in the next frame to retransmit

its ID. When no tag responds in a frame, all tags are

identified successfully and the identification procedure

stops. One problem with the protocol is that its

performance degrades when the number of slots does not

properly match the number of tags. Dynamic frame

slotted ALOHA protocols solve this problem by

dynamically adjusting the frame size. However, they

need to accurately estimate the number of tags, which is

not an easy task.

The basic idea of the tree-based [2, 4-9] protocols is

to repeatedly split tags that encounter collisions into

subgroups until there is only one tag in each subgroup to

be identified successfully. The major difference between

the deterministic tree-based and probabilistic

counter-based protocols is that the former splits the

colliding tags according to their static IDs, and the latter,

according to dynamically changing counters.

In this paper, we propose a probabilistic

counter-based anti-collision protocol, called PSM

(parallel splitting and merging), to simply split and

merge tag groups in parallel to reduce tag collisions for

shortening the identification delay. We also conduct

simulation experiments for the proposed protocol and

compare it with related ones, such as the QT,

FS-ALOHA and ISO18000-6B protocols in terms of the

number of iterations and system efficiency. To the best

of our knowledge, the PSM protocol has the highest

system efficiency among the plain protocols that use no

special techniques, such as bit-tracking, which needs

accurate and flexible bit collision detection, and tag

population estimation, which incurs complex

computation, and re-identification, which is just suitable

for some cases where the reader needs to repeatedly

identify similar sets of tags.

The rest of the paper is organized as follows. We

describe some representative plain tree based protocols

in Section 2.The proposed protocol is elaborated in

Section 3, and its performance is evaluated by simulation

and is compared with those of related ones in Section 4.

Finally, Section 5 concludes the paper.

2. Related Works

The Query Tree (QT) protocol is a well-known

deterministic tree-based protocol. In this protocol, the

reader first broadcasts a request string (or an ID prefix) S

to tags, and a tag whose ID prefix matches S will send

back its remainder ID to the reader. If only one tag

responds, the tag is identified successfully. But if

multiple tags respond simultaneously, their responses

collide to prevent them from being identified

successfully. Then, the reader generates two new

prefixes by appending 0 and 1, respectively, to S and

broadcasts them in order. In this way, the colliding tags

are divided into two subgroups ready to respond. The

splitting procedure repeats until no tag responds. The

reader initially broadcasts two prefixes: 0 and 1, and

broadcasts all prefixes generated so that all tags can be

identified successfully. The length and the distribution of

tag IDs affect the QT protocol’s identification delay. For

example, if tag IDs are contiguous, the request string

grows longer and longer, and the delay then increases

significantly.

The anti-collision protocol of the ISO/IEC 18000-6B

standard (later named the ISO18000-6B protocol for

short) [7] is a famous probabilistic counter-based

protocol. In this protocol, each tag maintains a counter

initially set to 0. Only a tag with a counter value of 0 can

return its ID to the interrogation request. When a

collision occurs, the reader will notify all of the tags

about this. And the unidentified tags with counter values

larger than 0 will increase their counters by 1, while the

colliding tags (i.e., the unidentified tags with a counter

value of 0) will add 0 or 1 randomly to their counters. By

this rule, the colliding tags are split into two subgroups.

The splitting will continue until no or one response

occurs. In the one-response case, the responding tag can

be identified successfully. And, in both cases, the reader

sends a command to inform all unidentified tags to

decrease their counters by 1. The reader keeps track of

the largest counter value. When this value reaches 0, all

tags are identified successfully and the identification

procedure stops.

A simple example is given here, in order to observe

the identification procedure of the ISO18000-6B

anti-collision protocol. We suppose there are 6 tags with

tag ID as 0101, 0110, 0111, 1000, 1101 and 1110, in the

interrogation zone of reader. The procedure and

identification tree are shown in Table 1.

Table 1. The identification procedure of the
ISO18000-6B protocol and its identification tree (the

tag is identified if tag ID is marked with *)

It
e

ra
ti
o

n

R
e

a
d

e
r

c
o

m
m

a
n
d

N
o

 o
f

ta
g

C
o

u
n

te
r

v
a
lu

e

C
h

o
o

s
e

 0
 o

r
1

ra
n

d
o
m

ly

N
e

w
 c

o
u
n

te
r

v
a

lu
e

T
a

g
 I

D

re
s
p

o
n

d
e
d

1 initial

request

1 -- 0 0101

2 -- 0 0110

3 -- 0 0111

4 -- 0 1000

5 -- 0 1101

6 -- 0 1110

0101

0110

0111

1000

1101

1110

0

2 collision 1 0 1 1

2 0 0 0 0110

3 0 1 1

4 0 1 1

5 0 0 0 1101

6 0 0 0 1110

0

0110

1101

1110

0101

0111

1000

1

3 successful

identification

1 1 -- 2

2 0 1 1

3 1 -- 2

4 1 -- 2

5 0 1 1

6 0 0 0 1110

0

1110
0110

1101

2

1

0101

0111

1000

4 collision 1 2 -- 1

2 1 -- 0 0110

3 2 -- 1

4 2 -- 1

5 1 -- 0 1101

6 0 -- --

*

1110

0110

1101

1

0

0101

0111

1000

5 successful

identification

1 1 2

2 0 1 1

3 1 2

4 1 2

5 0 0 0 1101

6 -- -- --

*

1110

2

0

0101

0111

1000

1101 0110

1

6 successful

identification

0 2 1

1 1 0 0110

0 2 1

4 2 1

5 -- -- --

6 -- -- --

*

1110

1

0101

0111

1000

*

1101
0110

0

7 1 1 0 0101

2 0 -- --

3 1 0 0111

4 1 0 1000

5 -- -- --

6 -- -- --

*

1110

0

0101

0111

1000

*

1101

*

0110

8 collision 1 0 1 1

2 -- -- --

3 0 0 0 0111

4 0 0 0 1000

5 -- -- --

6 -- -- --

*

1110

*

1101

*

0110

0111

1000
0101

0 1

9 successful

identification

1 1 -- 2

2 -- -- --

3 0 1 1

4 0 0 0 1000

5 -- -- --

6 -- -- --

*

1110

*

1101

*

0110

0101

0

2

1000 0111

1

10
successful

identification

1 2 1

2 -- -- --

3 1 0 0111

4 -- -- --

5 -- -- --

6 -- -- --

*

1110

*

1101

*

0110

0101

1

*

1000
0111

0

10
successful

identification

1 2 1

2 -- -- --

3 1 0 0111

4 -- -- --

5 -- -- --

6 -- -- --

*

1110

*

1101

*

0110

0101

1

*

1000
0111

0

11 successful

identification

1 1 0 0101

2 -- -- --

3 -- -- --

4 -- -- --

5 -- -- --

6 -- -- --

*

1110

*

1101

*

0110

0101

0

*

1000

*

0111

12 finish 1 0 -- --

2 -- -- --

3 -- -- --

4 -- -- --

5 -- -- --

6 -- -- --

*

1110

*

1101

*

0110

*

0101

*

1000

*

0111

Some researches proposed mechanisms, such as

Schoute’s method [10], Vogt’s method [3],

Floerkemeier’s protocol [11, 12], Popovski’s algorithm

[13], the Q algorithm [1], Lai’s protocol [14], the ASAP

protocol [8], and the PS protocol [15], to improve tag

identification performance by using tag population

estimation [16]. For example, the PS (Parallel Splitting)

protocol [15] tries to improve the ISO18000-6B protocol

by reducing the number of iterations with two schemes:

the parallel splitting and the adaptive identification-tree

height adjustment, where an iteration is for a reader to

send a command and for tags to perform corresponding

actions, and an identification tree is the tree

corresponding to an intermediate state of the

identification procedure. The first scheme instructs all

remaining unidentified tags to left-shift one bit on their

counters and then to add 0 or 1 randomly to the counters

when collisions occurred. In this way, all unidentified

tags are split into subgroups in parallel to speed up tag

splitting. After the first tag is identified, the tags are then

identified one by one according to the normal

identification procedure of the ISO18000-6B protocol.

The second scheme tries to fine-tune the effect of

parallel splitting by adaptively adjusting the

identification tree height to approach a condition where

each leaf node contains one tag, keeping as small as

possible the number of iterations needed to identify all

tags. In the second scheme, the reader keeps track of

variables N0, N1, and Nm to adjust the identification tree

height by following rules R1 and R2, where N0, N1 and

Nm are respectively the accumulated numbers of leaf

nodes with zero, one and multiple (i.e., two or more) tags

during the interrogation procedure.

R1: If (N0 > 2 N1 and (7/24) N1 > Nm) Then

Command all unidentified tags to right-shift their

counters one bit.

R2: If (2 N0 < N1 and (5/3) N1 < Nm) Then
Command all unidentified tags to left-shift their
counters one bit, and subsequently add zero or
one randomly to the counters.

Tag population estimation usually involves complex

computation and extra memory, causing some overheads.

Furthermore, it is hard to estimate the tag population

accurately in some cases (e.g., when the identification

procedure just starts up), which makes the identification

performance unstable.

The FQT (Fast Query Tree) protocol [17] is proposed

to improve the identification performance by reducing

the data transmitted between reader and tag. FQT is a

variant of QT, while in some manner, it also behaviors

like counter based protocol. At the beginning of

identification procedure, tag sets its counter SC and

pointer PT as 0, and reader sets the length of position PO

for request bit as 1. During the identification procedure,

the reader firstly broadcasts PO and request bit to the

tags in the interrogation zone and tags set PO-1 as PT.

Only the tag with SC=0 and the bit of tag ID that pointed

by PT is equal to the reader’s request bit can respond the

reminder tag ID to the reader, while other unidentified

tags will increase their SC by 1. When the reader

receives the response from tags, it can be no tag, only

one tag and multiple tags responses. In the first two

cases, except the only one tag is identified successfully,

while other unidentified tags decrease their SC by one.

In the last case, collision occurred and no tag can be

identified successfully. Because the transmitted data is

encoded in Manchester code, the reader can find out the

collision bits after receiving the post response tag IDs.

Therefore, the reader can detect the first collision bit and

record the position of this bit as PO for next

identification request command.

The FQT protocol can improve the identification

performance significantly. But it is hard to detect the

collision at each separate bit correctly, because timing

synchronization among tiny tags is very challenging

[18].

ABS (Adaptive Binary Splitting) protocol [19] is

proposed to improve ISO/IEC 18000 6B anti-collision

protocol. In ABS protocol, a tag maintains two counters,

Progressed Slot Counter (PSC) and Allocated Slot

Counter (ASC). With PSC and ASC, a tag can decide if

it can respond its ID to a reader request.

PSC is initialized to 0 and increased by 1 when a tag

is successfully identified, and it represents the number of

identified tags. Tags with ASC equal to PSC can

transmit their tag IDs. When no tag responds, all tags

with ASC larger than PSC decrease ASC by one. When

tag collisions occurred, the reader notifies the collision

result to all tags. In such collision case, the tags with

ASC larger than PSC increase their ASC by 1, while the

tags with ASC equal to PSC randomly add 0 or 1 to their

ASC. Otherwise, tags with ASC less than PSC do not

increase their ASC because they have already been

identified and do not transmit their IDs until the tag

interrogation round finishes. After all tags are identified,

tags in the interrogation zone have unique and successive

ASC values. These values of ASC can be kept for use in

the next tag interrogation round to speed up the

identification procedure. If there are tags joining or

leaving after the last interrogation round, the following

actions are taken to adjust the unique and successive

ASC values.

 Tags joining:

When a new coming tag receives the reader’s initial

command to start a new interrogation round, it sets its

PSC to 0 and sets its ASC to a random value between

0 and R which provided by the reader. The new tag’s

response will collide with that of the old tag with same

ASC value R. The processes of ABS protocol

mentioned above in the first interrogation round can

deal with the collision properly by adjust all tags’

ASC counters.

 Tags leaving:

If no tag responds to a reader request, the reader

knows that a tag was left. All tags with ASC larger

than PSC will decrease ASC by one to deal with the

case.

As shown in [19], the performance of ISO18000-6B

tag anti-collision protocol is improved significantly by

the ABS protocol. But when the tag population changes

greatly in consecutive interrogation rounds, the

identification performance of ABS is reduced

dramatically.

3. Proposed Protocol

The design of RFID tag anti-collision protocol should

be as simple as possible, since RFID tag is a tiny device

with limited resources. In this paper, we proposes a plain

probabilistic counter-based anti-collision protocol, called

parallel splitting and merging (PSM), to reduce the tag

identification delay without using special techniques,

such as bit-tracking (used by FQT protocol, for example),

tag population estimation (used by PS, for example) and

re-identification (used by ABS, for example).

The basic concept of the proposed PSM protocol is to

split and merge in parallel the groups of all unidentified

tags. To split tags is through left-shifting tag counters by

u bits and adding 0, 1, …, or 2
u
1 randomly to the

counters, while to merge tags is through right-shifting

tag counters by v bits, where u and v are pre-specified

system parameters and may not be identical.

The commands sent from the reader to tags are: start,

minus-one, split, and merge. After receiving and

processing a command, the tags with the counter value 0

will respond their IDs to the reader. The reader sends out

“start” command to start a new round of the

interrogation procedure and to inform all tags to reset

their counters to 0. When multiple tags respond

simultaneously, collisions occur and the reader sends out

“split” command to make all unidentified tags split.

When no tag responds, the reader make unidentified tags

merge by sending out “merge” command. When only

one tag responds, the reader sends out “minus-one”

command to make all tags decrease their counters by 1.

In this case, the responding tag can be identified

successfully; on receiving the “minus-one” command, its

counter will be decreased to be -1, and it will go to sleep

and keep silent until the next new round.

The intuition of the PSM protocol is as follows.

When the first tag is identified, we may expect each leaf

node of the identification tree to contain nearly one tag

under the condition that adding 0, 1, …, or 2
u
1 to the

counters is truly random. However, a leaf node may

contain 0 or more tags in practice. When no tag responds

at an iteration, we may assume that the leaf nodes

outnumber tags, which in turns implies the identification

tree is too high. The reader therefore commands tags to

merge themselves. Similarly, when multiple tags respond

at an iteration, the reader should command tags to split

themselves to increase the tree height and the number of

leaf nodes. Figures 1(a) and (b) show the pseudo-code of

the reader and tag actions in PSM, respectively. The

reader maintains an integer variable N to record the

iterations needed to finish the interrogation procedure,

while a tag maintains an integer variable C as a counter.

Pseudo code for the reader

// u and v are system parameters
01 Set N=1
02 Send “start” to tags
03 While N > 0
04 Read IDs from tags
05 Switch (number of responses)
06 Case 0: //no response
07 If N==1 Then Set N=0
08 Else
09 Send “merge” to tags
10 Set N=N / 2

v

11 Case 1: //one response
12 Send “minus-one” to tags
13 Set N=N-1
14 Case 2

+
: //2 or more responses

15 Send “split” to tags
16 Set N=N * 2

u

(a)

Pseudo code for the tag

// u and v are system parameters
01 While true
02 Receive a command from the reader
03 Switch (type of the command)
04 Case: “start”:
05 Set C= 0
06 Case: “minus-one”:
07 Set C=C-1
08 If C== -1 Then Sleep
09 Case: “split”:
10 Left-shift C by u bits
11 Add 0,1,..,or 2

u
-1 to C randomly

12 Case: “merge”:
13 Right-shift C by v bits
14 If C== 0 Then Respond Tag ID

(b)

Figure 1. Pseudo code of the PSM protocol for (a)
the reader and (b) the tag

In order to observe the identification procedure

of the PSM anti-collision protocol, the example for the

ISO18000-6B protocol in section 2 is given again. The

procedure and identification tree are shown in Table 2.

Table 2. The identification procedure of the PSM
protocol and its identification tree (if a tag is

identified successfully, its tag ID is marked with *)

It
e

ra
ti
o

n

R
e

a
d

e
r

c
o

m
m

a
n
d

N
o

 o
f

ta
g

C
o

u
n

te
r

V
a
lu

e

C
h

o
o

s
e

 0
 o

r
1

ra
n

d
o
m

ly

N
e

w
 c

o
u
n

te
r

v
a

lu
e

T
a

g
 I

D

re
s
p

o
n

d
e
d

1 initial

request

1 -- 0 0101

2 -- 0 0110

3 -- 0 0111

4 -- 0 1000

5 -- 0 1101

6 -- 0 1110

0101

0110

0111

1000

1101

1110

0

2 collision 1 0 1 1

2 0 0 0 0110

3 0 1 1

4 0 1 1

5 0 0 0 1101

6 0 0 0 1110

0

0110

1101

1110

0101

0111

1000

1

3 successful

identification

1 1 1 3

2 0 1 1

3 1 0 2

4 1 0 2

5 0 1 1

6 0 0 0 1110

0

1110
0110

1101

32

0111

1000
0101

1

4 collision 1 3 2

2 1 0 0110

3 2 1

4 2 1

5 1 0 1101

6 0 -- --

*
1110

0110

1101

21

0111

1000
0101

0

5 successful

identification

1 2 1 5

2 0 0 0 0110

3 1 1 3

4 1 0 2

5 0 1 1

6 -- -- --

**
1110

0

0110 1101 1000 0111 0101

1 2 3 4 5

6 successful

identification

0 5 4

1 -- -- --

0 3 2

4 2 1

5 1 0 1101

6 -- -- --

*
1110

*

0110
1101 1000 0111 0101

0 1 2 3 4

7 successful

identification

1 4 3

2 -- -- --

3 2 1

4 1 0 1000

5 0 -- --

6 -- -- --

*

1110

*

0110

*

1101
1000 0111 0101

0 1 2 3

8 successful

identification

1 3 2

2 -- -- --

3 1 0 0111

4 0 --

5 -- -- --

6 -- -- --

*

1110

*

0110

*

1101

*

1000
0111 0101

0 1 2

9 no tag

response

1 2 1

2 -- -- --

3 0 --

4 -- -- --

5 -- -- --

6 -- -- --

*

1110

*

0110

*

1101

*

1000

*

0111
0101

0 1

10
successful

identification

1 1 0 0101

2 -- -- --

3 -- -- -- -

4 -- -- --

5 -- -- --

6 -- -- --

*

1110
0101

*

0110

*

1101

*

1000

*

0111

0

11 finish 1 0 -- --

2 -- -- --

3 -- -- --

4 -- -- --

5 -- -- --

6 -- -- --

*

1110

*

0101

*

0110

*

1101

*

1000

*

0111

4. Simulation and Comparison

In this section, we show the simulation results of the

PSM protocol and compare them with those of the

FS-ALOHA, QT, and ISO18000-6B protocols in terms

of the number of iterations needed to identify all tags and

the system efficiency. The FS-ALOHA, QT, and

ISO18000-6B protocols are typical plain ALOHA-based,

deterministic tree-based and probabilistic counter-based

protocols using no tag population estimation,

bit-tracking, and re-identification techniques.

As mentioned earlier, an iteration is for a reader to

send a command and for tags to perform corresponding

actions like adjusting counter values and responding tag

IDs. For the FS-ALOHA protocol, a time slot is

equivalent to an iteration. The simulations are performed

for 512, 612, …, 2012 tags in the interrogation zone.

We assume a frame in the FS-ALOHA protocol has

initially t time slots for a t-tag simulation case. We

also assume tag IDs are 64-bit long and are

uniformly distributed for simulating the QT protocol.

First, PSM is simulated for 2
u
-way splitting/2

v
-way

merging cases (denoted by 2
u
/2

v
), where 1u4 and

1vu+2. Table 3 shows parts of the simulation results,

by which we can observe that PSM has better

performance by taking v as 1 (i.e., 2-way merging) for

u=1,…,4, and the 2/2 case needs the fewest number of

iterations. Therefore, it is suggested to set u=v=1 for

PSM to achieve better performance.

Table3. The simulation results of the PSM protocol
for different splitting/merging ways

The
number of

identification
iterations

splitting / merging

2/2 4/2 4/4 4/8 4/16

100 272 292 349 368 404

200 541 581 700 739 821

300 808 871 1049 1106 1227

400 1078 1158 1388 1478 1630

500 1346 1451 1729 1847 2037

600 1615 1736 2083 2216 2457

700 1884 2023 2449 2584 2883

800 2150 2315 1796 2953 3300

900 2422 2604 3253 3320 3705

1000 2689 2892 3502 3688 4116

The
number of

identification
iterations

splitting / merging

8/2 8/4 8/8 8/16 8/32

100 333 314 496 486 508

200 668 625 1063 981 1023

300 996 937 1609 1469 1530

400 1331 1250 2099 1948 2044

500 1665 1562 2574 2444 2556

600 1997 1876 3019 2937 3067

700 2328 2188 3460 3432 3583

800 2661 2498 3916 3920 4090

900 2993 2817 4431 4402 4612

1000 3324 3127 5007 4898 5115

By Figure 2, we can observe that the PSM protocol

has the smallest number of iterations among these plain

protocols using no special techniques. The FS-ALOHA

protocol has the largest number of iterations needed to

identify all tags, and the ISO18000-6B and QT protocols

have nearly the same number of iterations.

By Figure 3, we can see that the PSM protocol has

the highest system efficiency among all four plain

protocols. The FS-ALOHA protocol has the lowest

system efficiency due to its fixed size of frames. The

system efficiency is defined in [20] as the ratio of the

number of total number of tags to the total number of

slots or iterations required to identify all tags. The

ISO18000-6B and QT protocols have the similar system

efficiency.

0

2000

4000

6000

8000

10000

12000

51
2

61
2

71
2

81
2

91
2

1,
01
2

1,
11
2

1,
21
2

1,
31
2

1,
41
2

1,
51
2

1,
61
2

1,
71
2

1,
81
2

1,
91
2

2,
01
2

Th
e

nu
m

be
r o

f i
te

ra
tio

ns

The number of tags

FS-ALOHA ISO18000 PSM QT

Figure 2. The comparison of plain anti-collision
protocols in terms of the number of iterations
needed to identify all tags

0.15

0.2

0.25

0.3

0.35

0.4

0.45

5
1
2

6
1
2

7
1
2

8
1
2

9
1
2

1
,0
1
2

1
,1
1
2

1
,2
1
2

1
,3
1
2

1
,4
1
2

1
,5
1
2

1
,6
1
2

1
,7
1
2

1
,8
1
2

1
,9
1
2

2
,0
1
2

Sy
st

e
m

 e
ff

ic
ie

n
cy

The number of tags

FS-ALOHA ISO18000 PSM QT

Figure 3. The comparison of plain anti-collision
protocols in terms of the system efficiency

5. Conclusion

This paper proposes a probabilistic counter-based tag

anti-collision protocol, called PSM, to reduce tag

collisions for speeding up RFID tag identification by

simply splitting and merging groups of tags in parallel.

The PSM protocol is simple, since it uses no tag

population estimation, which incurs complex

computation. It does not use bit-tracking, which needs

accurate bit collision detection, and does not use

re-identification, which is just suitable for some cases

where the reader needs to repeatedly identify similar sets

of tags. As shown by the simulation results, PSM can

significantly reduce the number of iterations (i.e.,

identification delay) needed to identify all tags. It has a

smaller number of iterations than the FS-ALOHA, QT,

and ISO18000-6B protocols that are typical

ALOHA-based, deterministic tree-based, and

probabilistic counter-based protocols, respectively. To

the best of our knowledge, the PSM protocol has the

highest system efficiency among the plain protocols that

use no special techniques, such as bit-tracking, tag

population estimation, and re-identification.

REFERENCES

[1] Finkenzeller, K., RFID Handbook: Fundamentals and

Applications in Contactless Smart Cards and Identification,

John Wiley & Sons, 2003.

[2] Yeh, M. K., Jiang, J. R., and Huang, S. T., “Adaptive

Splitting and Pre-signaling for RFID Tag Anti-collision,”

Computer Communications, vol. 32, issue 17,

pp.1862-1870, 2009.

[3] Vogt, H., “Efficient Object Identification with Passive

RFID Tags,” in Proc. of Pervasive Computing, pp.98-113,

2002.

[4] Capetanakis, J. I., “Tree Algorithms for Packet Broadcast

Channels,” IEEE Trans. Inf. Theory, vol. 25, pp.505-515,

1979.

[5] Hayes, J. F., “An Adaptive Technique for Local

Distribution,” IEEE Trans. Communication, vol. 26, pp.

1178-1186, 1978.

[6] Tsybakov, B. S., and Mikhailov, V. A., “Free synchronous

packet access in broadcast channel with feedback,” Probl.

Pereda. Inf., vol. 14, no. 4, pp. 32-59, 1978.

[7] ISO/IEC, “Information Technology Automatic

Identification and Data Capture Techniques – Radio

Frequency Identification for Item Management Air

Interface - Part 6: Parameters for Air Interface

Communications at 860-960 MHz,” Final Draft

International Standard ISO 18000-6, 2003.

[8] Khandelwal, G., Yener, A., Lee, K., and Serbetli, S.,

“ASAP: A MAC Protocol for Dense and Time Constrained

RFID Systems,” in Proc. of ICC, pp. 4028-4033, 2006.

[9] Myung, J., Lee, W., Srivastava, J., Timothy, K., and Shih,

J., “Tag-Splitting: Adaptive Collision Arbitration

Protocols for RFID Tag Identification,” IEEE Trans.

Parallel and Distributed Systems, vol. 18, no. 6, 2007.

[10] Schoute, F. C., “Dynamic Frame Length ALOHA,” IEEE

Trans. Communication, vol. 31, issue 4, pp. 565-68, Apr.

1983.

[11] Floerkemeier, C., “Transmission Control Scheme for

RFID Object Identification,” in Proc. of IEEE Int’l. Conf.

on Pervasive Computing and Communications Workshops,

2006.

[12] Floerkemeier, C., “Bayesian Transmission Strategy for

Framed ALOHA Based RFID Protocols,” in Proc. of IEEE

Int’l. Conf. of RFID, 2007.

[13] Popovski, P., Fitzek, F. H. P., and Prasad, R., “Batch

Conflict Resolution Algorithm with Progressively

Accurate Multiplicity Estimation,” in Proc. of ACM

DIALM-POMC, 2004.

[14] Lai, Y. C., and Lin, C. C., “Two Couple-Resolution

Blocking Protocols on Adaptive Query Splitting for RFID

Tag Identification,” IEEE Trans. Mobile Computing, vol.

11, issue 10, pp. 1450-1463, 2012.

[15] Yeh, M. K., and Jiang, J. R., “Parallel Splitting for RFID

Tag Anti-Collision,” International Journal of Ad Hoc and

Ubiquitous Computing, vol. 8, issue 4, pp. 249-260, 2011.

[16] Zhu, L., and Yum, T. S. P., “A Critical Survey and

Analysis of RFID Anti-collision Mechanisms,” IEEE

Communications Magazine, vol. 59, no. 5, pp. 214-221,

2011.

[17] Wang, G., Peng, Y., and Zhu, Z., “Anti-collision

algorithm for RFID tag identification using fast query

tree,” in Proc. of 2011 International Symposium on IT in

Medicine and Education (ITME), Volume 1, pp.396-399,

2011.

[18] Mathys, P., and Flajolet, P., “Q-ary collision resolution

algorithms in random-access systems with free or blocked

channel access, ” IEEE Trans. Inform. Theory, vol. 31, no.

4, pp. 217-243, March 1985.

[19] Myung, J., and Lee, W., “Adaptive splitting protocols for

RFID tag collision arbitration,” in Proc. of MobiHoc 2006,

pp. 202-213, 2006.

[20] Bonuccelli, M. A., Lonetti, F., and Martelli, F., “Tree

Slotted Aloha: a New Protocol for Tag Identification in

RFID Networks,” in Proc. of the 4th IEEE International

Workshop on Mobile Distributed Computing (MDC'06),

2006.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6120119
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6120119
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Myung:Jihoon.html
http://www.informatik.uni-trier.de/~ley/db/conf/mobihoc/mobihoc2006.html#MyungL06

