
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE 

Solving NP-hard Problems with Quantum 

Annealing 
 

Jehn-Ruey Jiang  

Dept. of Computer Science and Information Engineering,  

Naitonal Central University 

Taoyuan  City, Taiwan 

jrjiang@csie.ncu.edu.tw 

Chun-Wei Chu 

Dept. of Computer Science and Information Engineering, 

Naitonal Central University 

Taoyuan  City, Taiwan 

109522138@cc.ncu.edu.tw

Abstract—Quadratic unconstrained binary optimization 

(QUBO) formulas of quantum annealing (QA) algorithms are 

classified into four categories. QA algorithms using different 

QUBO formulas solve specific NP-hard problems as examples 

of the classification. The NP-hard problems solved are the 

subset sum, the vertex cover, the graph coloring, and the 

traveling salesperson problems. The QA algorithms are 

compared with their classical counterparts in terms of the 

quality of the solution and the time to the solution. Based on the 

comparison results, observations and suggestions are given for 

each QUBO formula category, so that proper actions can be 

adopted to improve the performance of QA algorithms. 

Compared with classical algorithms, QA algorithms are 

competitive in the current noisy intermediate-scale quantum 

(NISQ) era and beyond. 

Keywords—noisy intermediate-scale quantum, NP-hard 

problem, smart manufacturing, quantum annealing, quantum 

computer, quadratic unconstrained binary optimization  

I. INTRODUCTION 

Smart manufacturing is a hot research topic recently. 
Many complex problems, such as NP-hard problems, need to 
be solved in smart manufacturing applications. Studies 
advocate using quantum computers, instead of traditional 
classical computers, to solve NP-hard problems. It is expected 
that emerging quantum computers can soon solve large-scale 
and complex problems that traditional classical computers 
cannot solve within a feasible time, which in turn achieves 
quantum supremacy [1].  

This paper focuses on solving NP-hard problems with 
quantum annealing (QA) algorithms running on a special 
quantum computer, the D-Wave quantum annealer [2] 
consisting of thousands of quantum bits (qubits). Each qubit 
is made of a tiny superconducting metal ring. At extra-low 
temperatures, these metal rings become superconductors in 
which the electric current flows in both clockwise and 
counterclockwise directions. The superconducting metal ring 
can be considered to be in a quantum superposition state of 0 
and 1 at the same time. In addition, two metal rings can be 
connected by a coupler. The metal rings and couplers, as well 
as the control circuit managing the magnetic field biases (bias), 
make up the programmable quantum processor. The latest D-
Wave processor of the D-Wave Advantage system has more 
than 5,000 qubits and 35,000 couplers [2]. 

The quantum annealing algorithm formulates a problem as 
an objective function of a quadratic unconstrained binary 
optimization (QUBO) formula of binary variables [3]. The 
minimum value of the objective function corresponds to the 
optimal solution to the problem. Through the QUBO formula, 
the problem is embedded into a quantum processor for 
quantum annealing. The sampling procedure is employed to 

read the low-energy state that corresponds to the optimal 
solution to the problem.  

We classified QUBO formulas of QA algorithms into four 
categories. QA algorithms utilizing different QUBO formulas 
for solving specific NP-hard problems are used as examples 
of classification. The QA algorithms are compared with 
classical algorithms running on classical computers in terms 
of performance metrics like the quality of the solution and the 
time to the solution. From the comparison results, 
observations and suggestions are given so that proper actions 
can be adopted to improve the performance of QA algorithms. 
The comparison results show that solving NP-hard problems 
with quantum annealing algorithms using QUBO formulas is 
competitive in terms of the time to the solution and the quality 
of the solution. 

The rest of this paper is organized as follows. Section II 
introduces some preliminaries. Four QA algorithms using 
QUBO formulas are elaborated in Section III. The QUBO 
formula classification is described in Section IV.  QA 
algorithms using QUBO formulas for solving specific 
problems are compared with their classical counterparts in 
terms of different performance metrics in Section V. Finally, 
some concluding remarks are drawn in Section VI. 

II. PRELIMINARIES 

A. NP-hard Problem 

We first introduce the concepts of deterministic algorithms 
[4] and nondeterministic algorithms [5]. The deterministic 
algorithm is the normal algorithm that runs on current (or 
classical) general-purpose computers to find solutions to 
problems. On the contrary, the nondeterministic algorithm 
cannot run on any current computers. It is only for theoretical 
discussions. A nondeterministic algorithm to solve a given 
problem has two phases: choosing and checking. The 
choosing phase is nondeterministic. It selects an option out of 
given options for subsequent checks. The checking phase is 
deterministic, though. It checks if the select option leads to a 
correct solution to the problem or not. If so, it returns 
“success”. Otherwise, it returns “unsuccess”. Note that if there 
exist proper options leading to correct solutions, then the 
choosing phase is assumed to always select one of the proper 
options. 

On the one hand, problems that can be solved by the 
deterministic algorithm with polynomial time complexity are 
called P problems. All P problems form a set (class) called P. 
On the other hand, problems that can be solved by the 
nondeterministic algorithm with polynomial time complexity 
are called NP problems. All NP problems form a set (class) 
called NP. It is believed that P is a subset of NP. 

Cook proved that every NP problem can be polynomially 
reducible to the satisfiability (SAT) problem [6]. According to 



Cook’s proof, if the SAT problem belongs to P, then all NP 
problems also belong to P. A problem is called an NP-hard 
problem if every NP problem is polynomially reducible to it. 
Therefore, the SAT problem is an NP-hard problem. Many 
problems are NP-hard problems. For example, Karp [7] 
introduced 21 NP-hard problems, such as the maximum cut, 
Hamiltonian cycle, vertex cover, and 0/1 knapsack problems. 
None of the NP-hard problems has been solved by the 
deterministic algorithm with polynomial time complexity. It 
is likely that there is no such algorithm to solve the NP-hard 
problem. Therefore, NP-hard problems are regarded as very 
hard or intractable problems. 

B. Quantum Annealing 

Quantum superposition and entanglement are the two most 
well-known properties in quantum mechanics. The two 
properties have been leveraged to compute for solving 
problems. With the two properties and the quantum tunneling 
property, quantum annealing is performed for solving 
optimization problems. Quantum tunneling [8] is a quantum 
mechanics phenomenon. When a quantum particle encounters 
an energy barrier, it may pass through the barrier even if its 
momentum is less than the barrier potential.  Quantum 
annealing [9] is a meta-heuristic that requires the use of a 
dedicated quantum annealer like the D-Wave quantum 
computer to solve problems that optimize objective functions. 
It goes through the whole solution space to find the global 
optimal solution. Due to the quantum tunneling property, the 
found solution is not stuck in local optimization, but reaches 
the global optimization, as shown in Fig. 1.  

 

Fig. 1. Illustration of quantum annealing with quantum tunneling. 

The quantum annealing algorithm formulates a problem as 
an objective function of a quadratic unconstrained binary 
optimization (QUBO) formula f of binary variables, as 
described below.  

𝑓(𝑥) = ∑𝑖 𝑄𝑖,𝑖𝑥𝑖 + ∑𝑖<𝑗 𝑄𝑖.𝑗𝑥𝑖 𝑥𝑗 ,             (1) 

where Q is a symmetric matrix with real-number coefficients, 
and x is a vector of binary variables. The minimum value of 
the objective function corresponds to the optimal solution to 
the problem.  

Figure 2 shows the five major steps to designing a 
quantum annealing algorithm for solving an optimization 
problem and realizing the algorithm on a quantum annealer 
like a D-Wave quantum computer. The five steps are as 
follows.  

 

Step 1. Problem formulation 

 The optimization problem is formulated as the QUBO 
formula as a part of a quantum annealing algorithm. Note that 
some research also formulates the problem as the Ising model 
[10]. For example, Ref. [11] formulates 21 NP-hard problems 
as the Ising model. Reference [3] shows that the QUBO 
formula and the Ising model are equivalent, and they can be 
transformed into each other easily. Since we focus on the 
QUBO formula, the optimization problem is assumed to be 
formulated as a QUBO formula. The formula is in turn 
transformed into a graph in which a node stands for a binary 
variable, and each edge between two nodes represents the 
interaction between the two variables corresponding to the 
two nodes. 

Step 2. Minor embedding 

 The graph corresponding to the QUBO formula is 
embedded in the quantum processor or quantum processing 
unit (QPU) of the quantum annealer, with qubits representing 
nodes in the graph. Ideally, a qubit must be connected to 
(coupled with) other qubits. However, due to hardware 
constraints, a qubit is only connected to a certain number of 
qubits. To maintain the connectivity of nodes in the graph, 
multiple qubits are used to represent a node, and the strong 
chain strength between these bits is set so that these bits can 
maintain the same value.  

When the required number of qubits exceeds the upper 
limit of the device, the graph corresponding to the original 
problem needs to be decomposed into subgraphs to be 
embedded into QPU properly. Currently known graph 
decomposition (or problem decomposition) methods include 
the iterative centrality halo method [12], which prioritizes 
nodes that have significant impacts on the global solution, and 
the DBK (Decomposition, Bounds, K-core) method, which 
recursively decomposes a graph into specific-sized subgraphs 
[13]. Certainly, the performance of quantum annealing is 
affected by graph decomposition methods [12,13]. 

Step 3. Compilation 

 This step sets the final Hamiltonian and the initial 
Hamiltonian, together forming the Hamiltonian of the entire 
system. In physics, the Hamiltonian is used to represent the 
total energy of a system. For a particular state of the system,  
the Hamiltonian returns the total energy of the system in that 
state. The system Hamiltonian of a quantum annealer can be 
expressed as follows. 

   

(2) 

In the equation, 𝜎𝑥
(𝑖)

 represents the force of qubit i in the x 

direction, 𝜎𝑧
(𝑖)

represents the force of qubit i in the z direction, 

 ℎ𝑖 is the bias of qubit i, and 𝐽𝑖,𝑗 is the strength of the coupler 

between qubit i and qubit j. The bias can be used to control the 
magnitude of the external magnetic field of a qubit, so that the 
qubit tends to be in state 1 or 0. The coupler strength is used 
to control the magnitude of the interaction force between two 
qubits so that the two qubits tend to be of the same state or 
different states. A(t) and B(t) are energy scaling functions that 
evolve with the annealing time t. 



Note that the final Hamiltonian is set according to the 
QUBO formula so that the minimum final Hamiltonian 
corresponds to the optimal solution to the problem. On the 
other hand, the initial Hamiltonian is set to make every qubit 
stay in a superposition state for the minimum initial 
Hamiltonian. 

Step 4. Annealing 

 In this step, the annealing procedure is performed to obtain 
the optimal (or minimum) value of the objective function. The 
system starts from the lowest initial Hamiltonian, and every 
qubit is in a superposition state. Then during annealing, the 
initial Hamiltonian decreases gradually, whereas the final 
Hamiltonian increases.  Finally, at the end of the annealing, 
the effect of the initial Hamiltonian drops to zero, and the 
system is in the lowest energy state of the final Hamiltonian 
associated with the QUBO of the objective function. Each 
qubit collapses from the superposition state to the state of 0 or 
1, which corresponds to the binary variable value achieving 
the final global optimal objective function value. 

The lower right part of Fig. 2 [9] shows the changing of 
the energy scaling functions A(t) and B(t) in Equation (2). 
During the annealing process, the energy scaling function A(t) 
goes smaller, whereas B(t) goes larger with time t gradually. 
Consequently, the influence of the initial Hamiltonian 
becomes more significant, whereas the influence of the final 
Hamiltonian becomes less significant. At the end of annealing, 
the system Hamiltonian is mostly affected by the final 
Hamiltonian. 

Step 5. Reading 

 After the annealing process, the value of the qubit (0 or 1) 
is read and stored. According to the corresponding 
relationship between the qubit and the graph node, the solution 
to the original problem can be derived. If the values of qubits 
representing the same node are inconsistent, it can be solved 
by post-processing mechanisms, such as the majority vote, to 
determine what the value of the node is. 

 

Fig. 2. Workflow of the QA algorithm (adapted from Ref. [9]). 

III. QA ALGORITHMS SOLVING NP-HARD PROBLEMS 

This section presents four QA algorithms solving four NP-
hard problems including the subset sum (SS) problem, the 
vertex cover (VC) problem, the graph coloring (GC) problem, 
and the traveling salesperson problem (TSP). The QA 
algorithms are elaborated on one by one below. 

A. QA algorithm solving the SS problem 

The SS problem is defined as follows. 

Given a set 𝑆 = {𝑠1 , 𝑠2 , . . . . , 𝑠𝑛 } with n integers, and a target 

integer T, the subset sum (SS) problem is to find a subset S’ of 

S such that the sum of the integers in the subset S’ is exactly 
T. 

The QA algorithm solving the SS problem has the 
following QUBO formula. 

𝐻(𝑥) = (∑ 𝑠𝑖 𝑥𝑖

𝑛

𝑖=1

− 𝑇)

2

                          (3) 

                   

In the above  QUBO formula, 𝑠𝑖 is an integer in S, 𝑥𝑖 =

1 stands for that 𝑠𝑖 is in S, and  𝑥𝑖 = 0 stands for that 𝑠𝑖 is not 

in S, where 1 i  n. 

B. QA algorithm solving the VC problem 

The VC problem is defined as follows. Given an 
undirected graph G=(V, E) with the vertex set V and the edge 
set E, the vertex cover (VC) problem is to find a minimum-
sized subset V’ of V, such that for every edge (u, v) in E,  either 
u or v is in V’. 

The QA algorithm solving the VC problem has the 
following QUBO formula. 

𝐻(𝑥) = 𝐴 ∑ (1 − 𝑥𝑢)(1 − 𝑥𝑣)

(𝑢,𝑣)∈𝐸

+ 𝐵 ∑ 𝑥𝑣

𝑣∈𝑉

        (4) 

In the above  QUBO formula, xu = 1 (resp., xu = 0) stands 
for that u is (resp., is not) in V, and xv = 1 (resp., xv = 0) stands 
for that v is (resp., is not) in V. The first term is the constraint 
term whose weight is A, whereas the second term is the 
optimization term whose weight is B. 

C. QA algorithm solving the GC problem 

The GC problem is defined as follows. Given a chromatic 
number n, and an undirected graph G=(V, E) with the vertex 
set V and the edge set E, the graph coloring (GC) problem is 
to decide if it is possible to color all vertices in V such that for 
every edge (u, v) in E, u and v have different colors. 

The QA algorithm solving the GC problem has the 
following QUBO formula. 

𝐻(𝑥) = 𝐴 ∑ (1 − ∑ 𝑥𝑣,𝑖

𝑛

𝑖=1

)

2

𝑣∈𝑉

+ 𝐴 ∑ ∑ 𝑥𝑢,𝑖𝑥𝑣,𝑖  

𝑛

𝑖=1(𝑢,𝑣)∈𝐸

   (5) 

In the above  QUBO formula,  𝑥𝑣,𝑖 = 1  stands for that 

vertex v is colored with color i. The first term and the second 
term are both constraint terms whose weights are both A. The 
first constraint term means that every vertex should only be 
colored with only one color. The second constraint term 
means that adjacent vertices should be colored with different 
colors. 

D.  QA algorithm solving TSP 

The TSP is defined as follows. Given a directed graph 
G=(V, E) with the vertex set V of n vertices and the edge set 
E, the TSP is to find a tour that first visits an arbitrary vertex 
v, then sequentially visits every vertex exactly once, and at last 
visits vertex v, such that the sum of weights of edges included 
in the tour is minimized. 

The QA algorithm solving the TSP has the following 
QUBO formula. 

 



𝐻(𝑥)

= 𝐴 ∑

𝑛

𝑣=1

(1 − ∑

𝑛

𝑗=1

𝑥𝑣,𝑗)

2

+ 𝐴 ∑

𝑛

𝑗=1

(1 − ∑

𝑛

𝑣=1

𝑥𝑣,𝑗)

2

+ 𝐴 ∑

(𝑢,𝑣)∉𝐸

∑

𝑛

𝑗=1

𝑥𝑢,𝑗𝑥𝑣,𝑗+1

+ 𝐵 ∑

(𝑢,𝑣)∈𝐸

𝑊𝑢,𝑣 ∑

𝑛

𝑗=1

𝑥𝑢,𝑗𝑥𝑣,𝑗+1                                      (6)  

In the above  QUBO formula,  𝑥𝑣,𝑗 = 1 stands for that 

vertex v is the jth vertex to be visited. The first three terms are 
all constraint terms whose weights are A. The first constraint 
term indicates that each vertex must only be visited once, the 
second term means that only one vertex must be visited at a 
time, and the third term means that if the visit of vertex u is 
followed by the visit of vertex v, then there must exist an edge 
(u, v). The fourth term is an optimization term, in which 𝑊𝑢,𝑣 

is the weight associated with the edge (u, v). 

IV. QUBO FORMULA CLASSIFICATION 

By investigating many QA algorithms, including the 
above-mentioned QA algorithms solving the SS problem, the 
VC problem, the GC problem, and the TSP, the QUBO 
formula of QA algorithms can be classified into four 
categories according to two criteria.  

The two classification criteria are shown below. 

(1) Classification criterion 1 (CC1): Does the number of 
QUBO variables have a linear relationship with one input 
parameter of the problem? 

Several QUBO formulas meet CC1 and maintain a linear 
relationship between the number of QUBO variables and one 
input variable of problems, whereas other QUBO formulas do 
not. For example, the QUBO formulas associated with the SS 
and the VC problems meet CC1. The QUBO formula 
associated with the GC problem does not meet CC1. Its 

number of variables is n  |V|, where n is the given chromatic 
number and |V| is the cardinality of the vertex set V.  The 
QUBO formula associated with the TSP does not meet CC1, 
either; its number of variables is |V|2, where |V| is the 
cardinality of the vertex set V. 

(2) Classification criterion 2 (CC2): Does the QUBO formula 
have both the constraint term and the optimization term? 

Several QUBO formulas meet CC2 and have both the 
constraint term and the optimization term. However, other 
QUBO formulas do not meet CC2 and have either the 
constraint term or the optimization term. For example, the 
QUBO formulas associated with the VC problem and the TSP 
have both the constraint term and the optimization term. 
However, the QUBO formulas associated with the SS problem 
and the GC problem have only the constraint term.  

According to the two criteria CC1 and CC2, the QUBO 
formulas can be classified into four categories. Table I shows 
the four QUBO formula categories and problem examples 
each of which can be solved by the QA algorithm using a 
category of QUBO formulas. 

 

 

TABLE I. FOUR CATEGORIES OF QUBO FORMULAS 

                CC1  
                 

CC2 
Yes No 

No 

Category 1 

(e.g., the QUBO 
formula for the SS 

problem) 

Category 3 

(e.g., the QUBO 
formula for the GC 

problem) 

Yes 

Category 2 

(e.g., the QUBO 
formula for the VC 

problem) 

Category 4 

(e.g., the QUBO 
formula for the TSP) 

V. QA ALGORITHM PERFORMANCE COMPARISONS 

This section presents the performance comparisons of four 
QA algorithms and classical algorithms for solving the SS 
problem, the VC problem, the GC problem, and the TSP. Note 
that the four QA algorithms use exactly four different 
categories of QUBO formulas. 

The performance comparison experiments are conducted 
by connecting to the D-Wave Advantage quantum annealer 
through the Amazon Braket service and the D-Wave Leap 
service for running the four QA algorithms mentioned above. 
The performance information of the fastest (lowest time-
complexity) classical algorithms solving the same problems is 
derived from research papers in the literature. Certainly, the 
QA algorithms and the classical algorithms employ the same 
problem instances for the sake of fair comparisons.  

A. Comparisons of algorithms solving the SS problem 

The public problem instances, p01, P01,…, p07, derived 
from Ref. [14] are used for performance comparisons. Every 
integer element in set S of the SS problem is between 5 and 
30, and the target integer T is between 20 and 200. Note that 
there exists a solution to every problem instance. The classical 
comparative counterpart is a dynamic programming algorithm 
[14]. 

As shown in Table II, both QA and classical algorithms 
find the solutions (indicated by Y) to all problem instances 
except for the p03 instance, in which set S contains many large 
integers. That is to say, they have the same quality as solutions. 
QA algorithms may have shorter execution times, either in 
terms of the total annealing time (AT) or QPU time (QPUT). 
For problem instances p02 and p03, the QA algorithm is faster 
than the classical algorithm by a factor of around 30, and 130, 
respectively. Note that below blue with a superscript =, red 
with a superscript >, and green with a superscript < are used 
to indicate that the QA algorithms’ experimental results or 
solutions (Sol) are equal to, better than, and worse than those 
of classical algorithms, respectively. The time unit is “second”. 

TABLE II. PERFORMANCE COMPARISONS OF ALGORITHMS SOLVING THE SS 

PROBLEM 

SS Prob. p01 p02 p03 p04 p05 p06 p07 

CA-Sol Y Y N Y Y Y Y 

QAA-Sol Y= Y= N= Y= Y= Y= Y= 

CA-Time 0.024 3.463 123.466 0.029 0.051 0.008 0.027 

QAA-AT 0.093< 0.117> 0.952> 0.134< 0.097< 0.065< 0.118< 

QAA-QPUT 0.077< 0.031> 0.323> 0.066< 0.057< 0.051< 0.081> 

B. Comparisons of algorithms solving the VC problem 

The public problem instances, p-hat300-1, keller4, 
brock400-2, keller5, DSJC500.5, C1000.9, and keller6, 
derived from DIMACS (Center for Discrete Mathematics and 



Theoretical Computer Science) challenge [15] are used for the 
performance comparisons. The number of vertices in V of the 
VC problem is between 300 and 1000. The classic 
comparative counterpart is a branch-and-bound algorithm 
implemented in Java and complied with JDK 1.7 to run on a 
platform of CentOS atop a 3.1-GHz CPU with 64 GB memory 
[16]. 

As shown in Table III, QA and classical algorithms can 
find equally good solutions for most problem instances. 
However, QA algorithms may have worse solutions than 
classical algorithms for some problem instances. Furthermore, 
QA algorithms may be faster or slower than the classical 
algorithms for some problem instances. 

TABLE III. PERFORMANCE COMPARISONS OF ALGORITHMS SOLVING THE VC 

PROBLEM 

VC Prob. p-hat300-1 keller4 brock400-2 keller5 DSJC500.5 C1000.9 keller6 

CA-Sol 292 160 371 745 487 932 3298 

QAA-Sol 292= 160= 371= 749< 487= 932= 3305< 

CA-Time 0.560 0.006 0.935 2.380 177.790 0.498 186.540 

QAA-AT 53< 37.22< 34.13< 49.2< 47.797> 20.756< 171.7> 

QAA-QPUT 0.126> 0.117 0.121> 0.213> 0.178> 0.107> 0.268> 

C. Comparisons of algorithms solving the GC problem 

The public problem instances, R125.1, DSJC125.1, 
DSJC125.5, R250.1, DSJC250.1, DSJC250.5, DSJC500.1, 
and le450_15d, derived from DIMACS  challenge [17] are 
used for the performance comparisons. The number of 
vertices in V of the GC problem is between 125 and 450. The 
classic comparative counterpart is a memetic algorithm 
combining the teaching-learning concept and the tabu-search 
concept [18]. The algorithm is implemented and run on a 
computer with AMD Operon 6376 CPU and 64 GB memory. 

As shown in Table IV, the QA algorithm cannot find 
solutions for several problem instances, whereas the classical 
algorithm can find solutions for all problem instances. 
Furthermore, the QA algorithm may be faster or slower than 
the classical algorithm for some problem instances. 

TABLE IV. PERFORMANCE COMPARISONS OF ALGORITHMS SOLVING THE 

GC PROBLEM 

GC Prob. R125.1 DSJC125.1 DSJC125.5 R250.1 DSJC250.1 DSJC250.5 DSJC500.1 le450_15d 

CA-Sol Y Y Y Y Y Y Y Y 

QAA-Sol Y= Y= N< Y= Y= N< N< N< 

CA-Time 0.001 0.029 0.143 0.002 0.017 10.9 720.3 983 

QAA-AT 15.647< 14.577< 47.199< 19.054< 30.11< 47.199< 139.687> 238.58> 

QAA-QPUT 0.117< 0.118< 0.184< 0.116< 0.184< 0.194> 0.31> 0.38> 

D.  Comparisons of algorithms solving the TSP 

The public problem instances, br17, ftv33, ftv35, gr17, 
gr21, p43, ry48p, and kro124p, derived from tsplib [19] are 
used for the performance comparisons. The number of cities 
in the TSP is between 17 and 124. The classic comparative 
counterpart is the algorithm in Google OR-Tools [20]. 

As shown in Table V, the QA algorithm and the classical 
algorithm find good solutions for a problem instance, whereas 
the QA algorithm has worse solutions than the classical 
algorithm for other problem instances. Furthermore, the QA 
algorithm is slower than the classical algorithm for all problem 

instances in terms of total QA time. The former is faster than 
the latter for two problem instances in terms of the QPU time. 

TABLE V. PERFORMANCE COMPARISONS OF ALGORITHMS SOLVING THE 

TSP 

TSP br17 ftv33 ftv35 gr17 gr21 p43 ry48p kro124p 

CA-Sol 39 1355 1584 2085 2707 5635 14682 41232 

QAA-Sol 39= 1686< 1990< 2123< 2909< 5679< 17883< 105918< 

CA-Time 0.027 0.194 0.166 0.055 0.06 0.15 0.261 1.666 

QAA-AT 35.3< 119.9< 128.8< 61.0< 90.3< 70.6< 130.7< 421.1< 

QAA-QPUT 0.121< 0.173> 0.121> 0.213< 0.198< 0.243< 0.244> 0.476> 

By the performance comparisons of QA algorithms using 
different categories of QUBO formulas and classical 
algorithms for solving different problems, we have the 
following observations and suggestions. The QA algorithms 
with the category-1 QUBO formula category are likely to have 
better performance than classical algorithms. This is because 
the category-1 QUBO formula usually has fewer QUBO 
variables and has only the constraint term. The weight 
assignments of the constraint term(s) and the optimization 
term(s) affect the performance of QA algorithms using 
category-2 QUBO formulas. The performance can be 
improved by carefully assigning proper weights to the two 
terms. The performance of QA algorithms using category-3 
QUBO formulas can be improved by adjusting the quantum 
annealing time. The category-4 QUBO formulas are the most 
complex. The performance of QA algorithms using category-
4 QUBO formulas can be improved by adopting proper minor 
embedding procedures and problem partition mechanisms. 

VI. CONCLUSION 

QA algorithms using QUBO formulas are used to solve 
NP-hard problems, namely the SS problem, the VC problem, 
the GC problem, and the TSP. The QUBO formulas used are 
classified into four categories according to two classification 
criteria. The two criteria are as follows: (1) “Does the number 
of QUBO variables have a linear relationship with one input 
parameter of the problem?” and (2) “Does the QUBO formula 
have both the constraint term and the optimization term?”  

The QA algorithms are compared with their classical 
counterparts in terms of the quality of the solution and the time 
to the solution. Compared with classical algorithms, QA 
algorithms usually have comparatively good solutions to 
problems and faster or slower than classical algorithms. Based 
on the comparison results, suggestions are given for 
improving the performance of QA algorithms using different 
categories of QUBO formulas. QA algorithms are expected to 
have superior performance in the future when we go beyond 
the current noisy intermediate-scale quantum (NISQ) era [21], 
in which quantum devices have only a moderate number of 
error-prone qubits. 

In the future, we plan to investigate more QA algorithms 
using different QUBO formulas to solve more problems, such 
as the maximum cut, the 0/1 knapsack, the Hamiltonian cycle, 
and the job shop scheduling problems. We also plan to apply 
the QUBU formulas to developing algorithms for different 
machines that are similar to the quantum annealer, such as the 
digital annealer (DA) [22] and the coherent Ising machine 
(CIM) [23], to see if the DA or the CIM can obtain results with 
better performance with the help of QUBO formulas. 

 



REFERENCES 

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, ... , 
and J. M. Martinis, “Quantum supremacy using a programmable 
superconducting processor,” Nature, 574(7779), 505-510, 2019. 

[2] D-Wave system, url: https://www.dwavesys.com/solutions-and-
products/systems/, last accessed in October 2022. 

[3] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and 
using QUBO models,” arXiv preprint arXiv:1811.11538, 2018. 

[4] D. E. Knuth, Art of computer programming, volume 2: Seminumerical 
algorithms, Addison-Wesley Professional, 2014. 

[5] R. C. T. Lee, R. C. Chang, Y. T. Tsai, and S. S. Tseng, Introduction to 
the design and analysis of algorithms, McGraw-Hill, 2005. 

[6] S. A. Cook, “The complexity of theorem-proving procedures,” In 
Proceedings of the third annual ACM symposium on Theory of 
computing. pp. 151-158, 1971. 

[7] R. M. Karp, “Reducibility among combinatorial problems,” In 
Complexity of computer computations, pp. 85-103, 1972. 

[8] M. Razavy, Quantum theory of tunneling, World Scientific, 2013. 

[9] S. Yarkoni, E. Raponi, S. Schmitt, and T. Bäck, “Quantum annealing 
for industry applications: introduction and review,” arXiv preprint 
arXiv:2112.07491, 2021. 

[10] S. S. Wald, Thermalisation and relaxation of quantum systems, 
Doctoral Dissertation, Université de Lorraine, 2017. 

[11] A. Lucas, “Ising formulations of many NP problems,” Frontiers in 
Physics, 5, 2014. 

[12] G. Bass, M. Henderson, J. Heath, and J. Dulny, “Optimizing the 
optimizer: decomposition techniques for quantum annealing,” 
Quantum Machine Intelligence, 3(1), pp. 1-14, 2021. 

[13] E. Pelofske, G. Hahn, and H. N. Djidjev, “Solving larger optimization 
problems using parallel quantum annealing,” arXiv preprint 
arXiv:2205.12165, 2022. 

[14] Data for the subset sum problem, url: 
https://people.sc.fsu.edu/~jburkardt/datasets/subset_sum/subset_sum.
html, last accessed in Oct. 2022. 

[15] Network repository: a scientific network data repository with 
interactive visualization and mining tools, url: 
https://networkrepository.com/index.php, last accessed in Oct. 2022. 

[16] L. Wang, S. Hu, M. Li, and J. Zhou, “An exact algorithm for minimum 
vertex cover problem,” Mathematics, 7(7), 603, 2019. 

[17] Graph coloring instances, url: 
https://mat.tepper.cmu.edu/COLOR/instances.html#XXDSJ, last 
accessed in Oct. 2022. 

[18] T. Dokeroglu, and E. Sevinc, “Memetic teaching-learning-based 
optimization algorithms for large graph coloring problems,” 
Engineering Applications of Artificial Intelligence, 102, 104282, 2021. 

[19] G. Reinhelt, TSPLIB: a library of sample instances for the TSP (and 
related problems) from various sources and of various types, url: 
http://comopt. ifi. uniheidelberg. de/software/TSPLIB95, last accessed 
in Oct. 2022. 

[20] Google OR-Tools, url: https://developers.google.com/optimization, 
last accessed in Oct. 2022. 

[21] J. Preskill, “Quantum computing in the NISQ era and beyond,” 
Quantum, 2, 79, 2018.  

[22] O. Şeker, N. Tanoumand, and M. Bodur, “Digital annealer for 
quadratic unconstrained binary optimization: a comparative 
performance analysis,” Applied Soft Computing, 127, 109367, 2022. 

[23] T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, ... , 
and H. Takesue, “100,000-spin coherent Ising machine,” Science 
Advances, 7(40), 2021. 

 


