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Abstract—We propose the concepts of the explicit oracle 

and the implicit oracle for realizing quantum algorithms. Then, 

the quantum circuit of the well-known Grover algorithm is 

constructed with the explicit oracle to solve the Hamiltonian 

cycle problem for the complete graph. The quantum circuit has 

a quadratic speedup over the classical unstructured search 

algorithm for solving the same problem. The IBM quantum 

computer simulator is used to run the quantum circuit to 

validate that it can indeed derive the Hamiltonian cycle of the 

complete graph. 
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I. INTRODUCTION 

Smart manufacturing has been attracting much research 
attention recently. Combinatorial optimization problems 
need to be solved in some smart manufacturing applications. 
For example, smart factory applications may need to solve 
the job shop scheduling problem, logistics applications may 
need to solve the vehicle routing problem, and operations 
research applications may need to solve the Hamiltonian 
cycle problem. Nevertheless, since combinatorial 
optimization problems usually require huge computing 
power for obtaining instant solutions, studies advocate using 
quantum computers to solve the problems. 

Traditional (or classical) computers perform computation 
based on bits, whereas quantum computers perform 
computation based on qubits. Because qubits have 
superposition and entanglement states, quantum computers 
may solve problems fast that classical computers can never 
solve in a feasible time, achieving quantum supremacy [1]. 
We are now in the noisy intermediate-scale quantum (NISQ) 
era [2], in which quantum computers have only a moderate 
number of error-prone qubits. Hence, quantum computers 
may or may not solve a problem faster than classical 
computers. However, quantum computers are likely to show 
their advantages in computational speed over classical 
computers soon. It is then worthwhile to devote ourselves to 
investigating and designing quantum algorithms solving 
complex combinatorial optimization problems with quantum 
computers.  

The concepts of the explicit oracle and the implicit oracle 
are proposed for realizing quantum algorithms. It then shows 
how to construct the quantum circuit of the well-known 
Grover algorithm [3] with the explicit oracle to solve the 
Hamiltonian cycle problem (HCP) for the complete graph (or 
clique) with n edges. The classical algorithm may take O(2n) 
time complexity to solve the problem, whereas the quantum 

circuit based on the Grover algorithm takes O(√2𝑛 ) time 
complexity to solve the same problem, achieving a quadratic 
speedup. The quantum circuit is realized and run by an IBM 

quantum computer simulator to verify that it can solve the 

HCP with the time complexity of O(√2𝑛). 

The rest of this paper is organized as follows. Section II 
introduces some preliminaries. The concepts of the explicit 
oracle and the implicit oracle are described in Section III. 
Section IV shows the quantum circuit based on the Grover 
algorithm using the explicit oracle to solve the HCP for the 
complete graph. Finally, concluding remarks are drawn in 
Section V. 

II. PRELIMINARIES 

A. Grover Algorithm 

The Grover algorithm (or Grover's algorithm) [3] is a 
quantum algorithm proposed by Grover in 1996 to solve the 
unstructured search problem with a high probability. 
Specifically, it finds the unique input with a high probability 
to an oracle or a black box function that produces a specific 
output. It is also known as the quantum unstructured search 
algorithm, as the associated overall input has no predefined 
pattern, nor is it arranged or organized in a predefined way. 

Consider an oracle or a black box function f: {0,1}n → 
{0,1}. The oracle has N=2n input instances and there exists a 
unique solution input instance x* such that f(x*)=1. The 
oracle f is defined precisely as follows. 

𝑓(𝑥) = {
1    if 𝑥 = 𝑥∗

0    if 𝑥 ≠ 𝑥∗                          (1) 

The unstructured search problem is to find the solution input 
instance x*. 

Since the N input instances of the oracle f are unstructured, 
a classical algorithm needs to call the oracle with every input 
instance to find the solution input instance x*. A classical 

algorithm needs to call the oracle N  (resp., 
𝑁+1

2
) times to spot 

x* in the worst case (resp, the average case). Therefore, the 
classical algorithm to solve the unstructured search problem 
has a time complexity of O(N). The Grover algorithm solves 
the unstructured search problem with high a probability in 

the time complexity of O( √𝑁 ). Therefore, the Grover 
algorithm has a quadratic speedup over its classical 
counterpart in time complexity. 

Charles et al. showed the Grover algorithm is 
asymptotically optimal by proving that any quantum 
algorithm to solve the unstructured search problem needs to 

call the oracle (√𝑁) times [4]. The Grover algorithm has 
many applications. It can be extended and applied for finding 
the minimum [5], maximum [6], mean, median [7,8], number 
of solution input instances [9], and collision pairs [10] of a 
given set of unstructured data. 

Figure 1 shows the quantum circuit of the Grover 
algorithm using the quantum phase oracle 𝑈𝑓 [11]. Let |𝑥∗⟩ 



be the unique solution input instance such that the phase of 
|𝑥∗⟩ is inversed. Specifically, 𝑈𝑓 is defined as follows. 

𝑈𝑓|𝑥⟩ = {
−|𝑥⟩    if |𝑥⟩ =  |𝑥∗⟩

   |𝑥⟩    if |𝑥⟩ ≠  |𝑥∗⟩
               (2) 

The following steps describe the details of the quantum 
circuit of the Grover algorithm: 

Step 1 prepares n working qubits in the state |0⟩, i.e., the state 

|0⟩𝑛 . 

Step 2 lets all qubits pass through the Hadamard (H) gate or 
operation so that the qubits are in a uniform superposition 
state, as shown in the following equation. 

𝐻𝑛 |0⟩𝑛 =  
1

√𝑁
∑ |𝑥⟩𝑁−1

𝑥=0 ,              (3) 

where N=2n.  

Step 3 lets the qubits in the superposition state pass through 
the phase oracle to perform phase inversion for the solution 
input instance |𝑥∗⟩.  

Step 4 lets all qubits go through the diffusion operation 𝑈𝑠, 
the inversion-around-mean operation is defined. 

 𝑈𝑠 = 𝐻𝑛(2 |0𝑛⟩⟨0𝑛| − 𝐼)𝐻𝑛 ,        (4) 

where I is the identity matrix, and |0𝑛⟩⟨0𝑛| stands for the 

outer product of an n1 column vector (1,0.…,0)T and a 1n 
row vector (1,0,…0). 

As shown in Fig. 2, the diffusion operation causes the 
probability amplitudes of all qubits to invert around the mean 
𝜇 of all amplitudes [11]. Thus, the original positive amplitude 
just decreases slightly. However, the original negative 
amplitude becomes a very large positive amplitude. 

Note that 2 |0𝑛⟩⟨0𝑛| − 𝐼 =  −1𝑋𝑛[𝑀𝐶𝑍]𝑋𝑛, where X 
stands for the X gate or operation and [MCZ] stands for the 
multi-controlled Z gate or operation.   

Step 5 repeats steps 3 and 4 for ⌊
𝜋

4
√𝑁⌋times. 

Note that step 3 performs phase inversion for the solution 

input instance |𝑥∗⟩ and step 4 performs the inversion-around-

mean operation for all input instances. Thus, the probability 

amplitude of the solution input instance |𝑥∗⟩ become larger, 

whereas other input instances’ amplitudes remain relatively 

small. Also note that Chen et al. [12] showed that when the 

number of solution input instances is M, M  1, then steps 3 

and 4 are repeated for  ⌊
𝜋

4
√

𝑁

𝑀
⌋ times to find all the M solution 

input instances with high probability. 

Step 6  measures all qubits. The qubit state with the highest 
probability corresponds to the solution input instance. 

 
Based on the quantum circuit of the Grover algorithm, it 

easily derives that the time complexity of the Grover 

algorithm is O( √𝑁 ). This is because steps 3 and 4 are 

repeated for O(√𝑁) times. 

Figure 3 shows the quantum circuit of the Grover 
algorithm of 2 input qubits with the solution input instance 
being |10⟩. The part between the first barrier and the second 
barrier in Fig. 3 is the circuit of the oracle, which is realized 
by adding the X gate on qubit 0, adding the controlled-Z (CZ) 

gate on qubits 0 and 1, and adding the X gate on qubit 0. The 
phase kickback effect of the CZ gate inverts the phase of the 
input instance |10⟩. The part between the second barrier and 
the third barrier in Fig. 3 is the circuit of the diffusion 
operation, which is realized by adding the H gate on qubits 0 
and 1, adding the X gate on qubits 0 and 1, adding the CZ 
gate on qubits 0 and 1 (if there are three qubits or more, then 
the MCZ gate is added on all the qubits instead), adding the 
X gate on qubits 0 and 1, and finally adding the H gate on 
qubits 0 and 1. There are 4 input instances in total and only 
one solution input instance, so the oracle and the diffusion 

operation repeat only once (⌊
𝜋

4
√𝑁⌋ = 1). 

 

Fig. 1. Quantum circuit of the Grover algorithm [11]. 

 

Fig. 2. Illustration of the diffusion operation [11]. 

 

Fig. 3. Qantum circuit of the Grover algorithm of 2 input qubits with the 

solution input instance being |10⟩. 

B.  Hamiltonian Cycle Problem 

Given an undirected graph G=(V, E) with vertex set V of 
n vertices and edge set E, the Hamiltonian cycle (HC) of 
graph G is a cycle containing n edges and passing through 
every vertex exactly once. The Hamiltonian cycle problem 
(HCP) is to find the HC of a given graph. 

Figure 4 (a) shows a complete graph or clique of 4 
vertices, which is also called a 4-clique. It is known that an 
n-clique has (n-1)!/2 HCs. Therefore, a 4-clique has 
(4-1)!/2=3 HCs. The 3 HCs are v0-e0-v1-e1-v2-e2-v3-e3, v0-e0-
v1-e5-v3-e2-v2-e4, and v0-e4-v2-e1-v1-e5-v3-e3. Figure 4 (b) 
shows a 5-clique. It has (5-1)!/2=12 HCs. The 12 HCs are v0-
e0-v1-e1-v2-e2-v3-e3-v4-e4, v0-e0-v1-e1-v2-e9-v4-e3-v3-e6, v0-e0-
v1-e8-v3-e2-v2-e9-v4-e4, v0-e0-v1-e8-v3-e3-v4-e9-v2-e5, v0-e0-v1-
e7-v4-e9-v2-e2-v3-e6, v0-e0-v1-e7-v4-e3-v3-e2-v2-e5, v0-e5-v2-e1-
v1-e8-v3-e3-v4-e4, v0-e5-v2-e1-v1-e7-v4-e3-v3-e6, v0-e5-v2-e2-v3-
e8-v1-e7-v4-e0, v0-e6-v3-e8-v1-e1-v2-e9-v4-e5, v0-e6-v3-e8-v1-e7-
v4-e9-v2-e4, and v0-e6-v3-e3-v4-e8-v1-e1-v2-e5. 

 



 

Fig. 4. (a) 4-clique complete graph of 4 vertices and 6 edges, and (b) 5-

clique complete graph of 5 vertices and 10 edges. 

III. EXPLICIT ORACLE AND IMPLICIT ORACLE 

The explicit oracle and the implicit oracle borrow the 
names of the explicit function and the implicit function in 
mathematics, but they have different meanings from their 
mathematical counterparts. They are defined precisely below. 

An explicit oracle has solution input instances known in 
advance and given explicitly. For example, the oracle in the 
quantum circuit of the Grover algorithm of two input qubits 
in Fig. 3 is explicit. This is because the unique solution input 
instance |10⟩ is known and given explicitly, and the oracle 
can then be easily built accordingly. For another example, to 
build an oracle to check whether a given edge set constitutes 
an HC for the 4-clique or 5-clique in Fig. 4, we easily build 
an explicit oracle according to the three or twelve known 
HCs given in advance. 

On the other hand, an implicit oracle has solution input 
instances that are unknown in advance but given implicitly 
by constraints or conditions. For example, to build an oracle 
to check whether a given edge set constitutes an HC for the 
cliques in Fig. 4 without the  HCs known in advance, we 
build an implicit oracle according to the given constraints 
(i.e., the edge set must contain n edges to pass through every 
vertex exactly once). Since the solution input instance is 
usually not known in advance, the implicit oracle is more 
practical but harder to build than the explicit oracle.  

IV. PROPOSED QUANTUM CIRCUITS 

This section shows the quantum circuit construction of 
the explicit oracle for the Grover algorithm to solve the 
Hamiltonian cycle problem for the cases of the 4-clique and 
the 5-clique. It also shows the experiment results of executing 
the whole circuit to verify that the Grover algorithm along 
with the explicit oracle indeed can find the HCs of the 
4-clique and the 5-clique. 

A. 4-clique case 

Figure 5 shows the quantum circuit of the Grover 
algorithm with the explicit oracle to solve the HCP for the 4 
clique. Six input qubits q0,…,q5 are present in the circuit, 
each of which corresponds to an edge. On the one hand, if a 

qubit qi, 0  i 5, is of the state |1⟩, then edge ei is regarded 

to be included in the HC. On the other hand, if a qubit qi, 0  

i 5, is of the state |0⟩, then edge ei is regarded to be excluded 
from the HC. There are N=26=64 possible input instances and 
3 solution input instances. Hence, the oracle and the diffusion 

operation should repeat ⌊
𝜋

4
√

64

3
⌋ = 3  times. The repeating 

number is in the order of √𝑁, so the whole circuit has the 

time complexity of O(√𝑁).  

Figure 6 shows the measurement result of running (or 
evolving) the quantum circuit in Fig. 5 for 1000 shots using 
a quantum computer simulator provided by the IBM quantum 
service [13]. The three input instances 001111, 110101, and 

111010 have the highest occurrence probabilities, about 1/3, 
at 0.329, 0.341, and 0.329, respectively. They are the three 
solution input instances. However, the input instance 101001 
has a very low occurrence of 0.001. Such an input instance is 
not a solution input instance, since its appearing probability 
is too low. Following the ‘1’ bit of the three solution input 
instances from right to left (i.e., from the least significant bit 
to the most significant bit) leads to edge sequences, each of 
which corresponds to an HC. 

 

Fig. 5. Quantum circuit of the Grover algorithm with an explicit oracle to 

solve the HCP for 4-clique. 

 

Fig. 6. Measurement results of running the quantum circuit of the Grover 

algorithm with an explicit oracle to solve the HCP for 4-clique. 

B. 5-clique case 

The quantum circuit of the Grover algorithm with the 
explicit oracle to solve the HCP for the 5-clique is not shown 
in this paper. This is because it is too complex and too 
lengthy to be shown. It has 10 input qubits q0,…,q9, each of 

which corresponds to an edge. Similarly, if a qubit qi, 0  i 

9, is of the state |1⟩ (resp., |0⟩), then edge ei is regarded to 
be included in (resp., excluded from) the HC. There are 
N=210=1024 possible input instances and 12 solution input 
instances. Hence, the oracle and the diffusion operation 

should repeat ⌊
𝜋

4
√

1024

12
⌋ = 7 times. The repeating number is 
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in the order of √𝑁 , so the whole circuit has the time 

complexity of O(√𝑁). 

Figure 7 shows the measurement result of running (or 
evolving) the quantum circuit of the Grover algorithm with 
an explicit oracle to solve the 5-clique HCP for 1000 shots 
using a quantum computer simulator provided by the IBM 
quantum service [13]. Twelve input instances have high 
probabilities of occurrence. They are 0000011111, 
0010101101, 0011101010, 0100111010, 0101101010, 
0110100101, 1001001011, 1011000101, 1100010101, 
1100101001, 1101100010, 1111010000. They are solution 
input instances and their associated probabilities are 0.074, 
0.096, 0.072, 0.08, 0.08, 0.087, 0.082, 0.084, 0.082, 0.096, 
0.079, 0.085, respectively. Three input instances 
0001100110, 0001110010, and 0111001101 have low 
probabilities of occurrence. They are not solution input 
instances since the probabilities are too low. 

 

Fig. 7. Measurement results of running the quantum circuit of the Grover 

algorithm with an explicit oracle to solve the HCP for 5-clique. 

V. CONCLUSION 

We propose the concepts of the explicit oracle and the 
implicit oracle for realizing quantum algorithms. We also 
show how to construct the quantum circuit of the well-known 
Grover algorithm with the explicit oracle to solve the HCP 

for the 4-clique and the 5-clique complete graphs. The 
quantum circuit is shown to have quadratic speedup over the 
classical unstructured search algorithm for solving the same 
problem. It is implemented and run by the IBM quantum 
computer simulator to validate that it can derive HCs for the 
4-clique and the 5-clique. Since the implicit oracle is more 
practical than the explicit oracle, we plan to build the 
quantum circuit of the Grover algorithm with the implicit 
oracle to solve the HCP for general graphs and other related 
problems. 
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