
Multicasting with the Extended Dijkstra’s Shortest

Path Algorithm

for Software Defined Networking

Mahardeka Tri Ananta
1, 2

, Jehn-Ruey Jiang
1
, and Muhammad Aziz Muslim

2

1
Department of Computer Science and Information Engineering

National Central University

Jhongli City, Taiwan
2
Department of Electrical Engineering

University of Brawijaya

Malang City, Indonesia

Abstract—This work proposes a multicast algorithm on the

basis of the extended Dijkstra’s shortest path algorithm for

Software Defined Networking (SDN) to run on top of the

controller. The proposed muticast algorithm is used to generate

a multicast tree for a data publisher to deliver data packets to all

subscribers so that every node and every host on the multicast

tree will receive every packet once and at most once for reducing

bandwidth consumption. The extended Dijkstra’s algorithm

considers not only the edge weights, but also the node weights for

a graph derived from the underlying SDN topology. We use

Pyretic to implement a proposed algorithm over an SDN

network, and compare it with related ones under the Abilene

network topology with the Mininet emulation tool. As shown by

the comparisons, the proposed algorithm achieves the best

performance in terms of throughput, jitter, and packet loss.

Keywords—Software Defined Networking (SDN); Multicast;

network topology

I. INTRODUCTION

 Software Defined Networking (SDN) is a hot topic in
network research based on the concepts of control plane and
data (forwarding) plane separation [1]. McKeown et al.
proposed the OpenFlow protocol as a means to realize the SDN
concept [1]. A logically centralized controller configures the
forwarding tables (also called flow tables) of switches, which
are responsible for forwarding the packets of communication
flows. In this way, SDN users can composite application
programs to run on top of the controller to monitor and manage
the whole network. SDN offers several benefits such as ease of
implementation and administration, no distributed states, a
global network view, centrally at the control plane, no need to
configure each forwarding plane device manually, and simple
forwarding plane device configuration [2] [3].

The emergence of the SDN technology makes possible
many new network applications realized by directly
programming the SDN controller. One typical example of such
applications is multicast. Some researchers developed SDN
programming languages, such as Frenetic [4] and Pyretic [5],

to facilitate SDN application implementation. Frenetic is a
declarative query language for classifying and aggregating
network traffic as well as a functional reactive combinator
library for describing high-level packet-forwarding policies [4].
Pyretic is one member of the Frenetic family of SDN
programming languages [5] and embedded in Python and the
runtime system that implements programs written in the pyretic
language on network switches. Pyretic can enable network
programmers and operators to write succinct modular network
applications by providing powerful abstractions.

Jehn-Ruey Jiang et al. [6] extended the well-known
Dijkstra’s shortest path algorithm [7] to consider not only the
edge weights, but also the node weights for a graph derived
from the underlying SDN topology. As shown by the
simulation results in [6], the extended Dijkstra’s algorithm
outperforms the Dijkstra’s algorithm and the non-weighted
Dijkstra’s algorithm under the Abilene network [8] in terms of
end-to-end latency. This is because the extended Dijkstra’s
algorithm takes edge weights as transmission delays over edges
and takes node weights as process delays over nodes, while the
other two algorithms consider only edge weights or no weights.

Based on the extended Dijkstra’s algorithm, this work
proposes a multicast algorithm for SDN-based wide area
networks. We use Pyretic to implement the proposed
algorithms and compare it with related basic algorithms, i.e.,
the bread-first search tree multicast algorithm and the original
Dijkstra’s shortest path tree multicast algorithm, under the
Abilene network topology with the Mininet emulation tool [9].
As shown by the comparisons, the proposed algorithms
outperform the others.

The remainder of this work is organized as follows. In the
next section, we present preliminaries on the subject of this
work, i.e., Software Defined Networking, Multicast, Pyretic,
and Mininet. In Section III, we describes the extended
Dijkstra’s algorithm and its implementation. Section IV
presents and discusses the simulation settings and the results of
our simulation experiments. Finally, we give our conclusion in
Section V.

II. PRELIMINARIES

A. Software Defined Networking

Software-Defined Networking (SDN) is a new approach to
networking and emerging architecture that is dynamic,
manageable, cost-effective, and adaptable, making it ideal for
the high-bandwidth, dynamic nature of today's applications.
This architecture decouples the network control and
forwarding functions enabling the network control to become
directly programmable and the underlying infrastructure to be
abstracted for applications and network services. The
OpenFlow™ protocol is a foundational element for building
SDN solutions [10]. With SDN, a researcher, network
administrator, or third party can introduce a new capability by
writing a software program that simply manipulates the logical
map of a slice of the network also dictates the overall network
behavior by using a controller [11] [12].

SDN encourages the separation of control and data planes,
where underlying switching hardware is controlled via
software that runs in an external, decoupled automated control
plane [13]. So in short, SDN separates the network control
(Learning, routing and forwarding packets) from Network
topology (Routers, switches, Hubs, etc.) [14]. So basically,
SDN architecture consist of three functional layers: the data
plane, the control plane, and the applications. In addition, it
also contains a set of APIs that enable network administrator
easily manage network services, including routing, access list,
multicast, and other traffic engineering to meet the business
goal [15]. Fig.1 depicts a logical view of the SDN
architecture.

The communications between the control and forwarding
layers of an SDN architecture are conducted by OpenFlow
protocol. OpenFlow provides an open protocol to program the
flow table in different switches and routers. A network
administrator can partition traffic into production and research
flows. Researchers can control their own flows - by choosing
the routes their packets follow and the processing they receive.
In this way, researchers can try new routing protocols, security
models, addressing schemes, and even alternatives to IP. On
the same network, the production traffic is isolated and
processed in the same way as today [1].

OpenFlow provide an open, programmable, virtualized
platform on their switches and routers so that researchers can
deploy new protocols, while network administrators can take
comfort that the equipment is well supported. An OpenFlow
Switch consists of one or more flow tables and a group table,
which perform packet lookups and forwarding, and an
OpenFlow channel to an external controller as shown in Fig.
2. The switch communicates with the controller and the
controller manages the switch via the OpenFlow protocol. By
using the OpenFlow protocol, the controller can add, update,
and delete flow entries in flow tables, both reactively (in
response to packets) and proactively. Each flow table in the
switch contains a set of flow entries, each flow entry consists
of match fields, counters, and a set of instructions to apply for
matching packets as shown in Fig. 3 [16].

Basically matching starts at the first flow table and may
continue to additional flow tables. We can see Fig. 4, flow

entries match packets in priority order, with the first matching
entry in each table being used. If a matching entry is found,
the instructions associated with the specific flow entry are
executed. If no match is found in a flow table, the outcome
depends on configuration of the table-miss flow entry: for
example, the packet may be forwarded to the controller over
the OpenFlow channel, dropped, or may continue to the next
flow table [16].

Fig. 1. The illustration of the SDN architecture [16]

Fig. 2. The OpenFlow controller and the switch [16]

Fig. 3. The flow table entry of the OpenFlow switch [16]

B. Pyretic

N. Foster et al. [4] introduced high-level for SDN network.
Frenetic provide a domain specific sub-language for specifying
the dataplane packet processing in terms of packet functions
and combinators inside of a general purpose programming
language for describing high-level packet-forwarding policies.
Modularity is the important key for managing complexity in
any software system, and SDNs are no exception. Joshua Reich
et.al [17], introduced Pyretic as a programming platform that
raise the level of abstraction and enable to create modular
software. Pyretic is one member of the Frenetic family of SDN
programming languages (Python + Frenetic = Pyretic) that is

extended from Frenetic [4]. It has two policy composition
operators, parallel composition and sequential composition, to
allow programmers to combine multiple policies together.

As such Pyretic enables network programmers and
operators to write shorter modular network applications by
providing powerful abstractions. Pyretic is both a programmer-
friendly domain-specific language embedded in Python and the
runtime system that implements programs written in the Pyretic
language on network switches [5].

C. The Extended Dijkstra’s Shortest Path Algorithm

Given a weighted, directed graph G=(V, E) and a single
source node s, the classical Dijkstra’s algorithm can return a
shortest path from the source node s to every other node,
where V is the set of nodes and E is the set of edges, each of
which is associated with a non-negative weight (or length). In
the original Dijkstra’s algorithm, nodes are associated with no
weight. The paper [6] shows how to extend the original
algorithm to consider both the edge weights and the node
weights.

Fig. 4 shows the extended Dijkstra’s algorithm, whose
input is a given graph G=(V, E), the edge weight setting ew,
the node weight setting nw, and the single source node s. The
extended algorithm uses d[u] to store the distance of the
current shortest path from the source node s to the destination
node u, and uses p[u] to store the previous node preceding u

on the current shortest path. Initially, d[s]=0, d[u]=∞ for uV,

us, and p[u]=null for uV.

Extended Dijkstra’s Algorithm

Input: G=(V, E), ew, nw, s

Output: d[|V|], p[|V|]

1: d[s]←0; d[u]←∞, for each u≠s, uV

2: insert u with key d[u] into the priority queue Q, for each uV

3: while (Q)

4: u←Extract-Min(Q)

5: for each v adjacent to u

6: if d[v] > d[u]+ew[u,v]+nw[u] then

7: d[v]←d[u]+ew[u,v]+nw[u]

8: p[v]←d[u]

Fig. 4. The extended Dijkstra’s algorithm [6]

Note that the extended Dijkstra’s algorithm is similar to
the original Dijkstra’s algorithm. The difference is that the
extended version adds the node weight in line 6 and line 7 of
the algorithm. The original Dijkstra’s algorithm cannot
achieve the same result just by adding node weights into edge
weights. This is because the node weight should be considered
only at the outgoing edge of an intermediate node on the path.
Adding node weights into edge weights implies that an extra
node weight of the destination node is added into the total
weight of every shortest path, making the algorithm return the
wrong result.

The extended Dijkstra’s algorithm is very useful in
deriving the best routing path to send a packet from a specific

source node to another node (i.e., the destination node) for the
SDN environment in which significant latency occurs when
the packet goes through intermediate nodes and edges (or
links). Below, we show how to define the edge weights and
node weights so that the extended Dijkstra’s algorithm can be
applied to derive routing path for some specific SDN
environment.

A. Rus et al. [18] has addressed the implementation issues
for the modified Dijkstra’s algorithm [19] and the modified
Floyd-Warshall shortest path algorithm in OpenFlow.
However, the modified Dijkstra’s algorithm is different from
the extended Dijkstra’s algorithm proposed in [6] in the sense
that the former is modified to solve the multi-source single-
destination shortest path problem and the latter are extended
from the Dijkstra’s algorithm to consider both edge weights
and node weights for solving the single-source shortest path
problem. It is worth mentioning that the extension concept
proposed in this work can also be applied to the modified
Dijkstra’s algorithm.

Assume that we can derive from the SDN topology a graph
G=(V, E), which is weighted, directed, and connected. For a

node vV and an edge eE, let Flow(v) and Flow(e) denote
the set of all the flows passing through v and e, respectively,
let Capability(v) be the capability of v (i.e., the number of bits
that v can process per second), and let Bandwidth(e) be the
bandwidth of e (i.e., the number of bits that e can transmit per
second). The node weight nw[v] of v is defined according to
Eq. (1), and the edge weight ew[e] of e is defined according to
Eq. (2).

 []
∑

where Bits(f) stands for the number of f’s bits processed by
node v per second.

 []
∑

where Bits(f) stands for the number of f’s bits passing through
edge e per second.

Note that we can easily obtain the number of a flow’s bits

processed by a node or passing through an edge with the help

of the “counters field” of the OpenFlow switches’ flow tables.

Also note that the numerators in Eq. (1) and Eq. (2) are of the

unit of “bits”, and the denominators are of the unit of “bits per

second”. Therefore, the node weight nw[v] and the edge

weight ew[e] are of the unit of “second”. When we accumulate

all the node weights and all the edge weights along a path, we

can obtain the end-to-end latency from one end to the other

end of the path.

D. SDN-based Multicast

Recently, Aakash Iyer et al. [20] developed a new

multicast algorithm, called Avalanche Routing Algorithm

(AvRA), attempting to minimize the size of the routing tree

created for each multicast group. Instead of trying to find the

shortest path from a group member to the source node of the

group, the AvRA tries to find the shortest path to the existing

multicast tree node. AvRA is designed for typical data center

topologies like the FatTree structure. However, we will not

compare the proposed algorithm with AvRA, because AvRA

is designed for special topologies used in data centers, while

the work focuses on general SDN-based wide area networks.

The multimedia data (e.g., video and audio data) have been

a major source of data to be delivered by the multicast

algorithm [21]. The growth and popularity of the Internet in

the mid-1990’s motivated multimedia data delivery over best-

effort packet networks. Such multimedia data delivery is

affected by a number of factors, including unknown and time-

varying bandwidth, jitter, and losses. There raise issues such

as how to fairly share the network resources among many

flows and how to efficiently perform one-to-many

communication for popular content [21]. Thanks to the SDN

technology, the issues can be efficiently solved.

E. Mininet

Mininet is either a network simulation tool or network
emulation tool that runs a collection of end-hosts, switches,
routers, and links on a single Linux kernel. It uses lightweight
virtualization to make a single system look like a complete
network, running the same kernel, system, and user code.
Mininet hosts run standard Linux network software, and its
switches support OpenFlow for highly flexible custom routing
and Software-Defined Networking [9]. By using Mininet We
can emulates an arbitrary OpenFlow network on our machine.

Mininet also enable us to use client servers program such as
ping and iperf. In this work, we use iperf to generate TCP and
UDP packets from clients to servers. Iperf is a tool for
measuring throughput, reminiscent of ttcp and nettest. It allows
the tuning of various parameters and UDP characteristics. Iperf
reports throughput, delay jitter, packet loss. The Iperf code is
also designed to compile easily on any POSIX compliant
platform. Iperf can run as a server mode or client mode and
also specify the durations of testing [22].

III. THE PROPOSED MULTICAST ALGORITHMS

The proposed multicast algorithm is based on the multicast

tree construction algorithm using the extended Dijkstra’s

algorithm for a multicast group publisher p to send data

packets to all members in the multicast group MG of

subscribers. The multicast tree construction algorithm for the

proposed multicast algorithm is called the EDSPT (Extended

Dijkstra’s Shortest Path Tree) algorithm, as shown in Fig. 5.

We just add an array pred[i] to keep track the predecessor of

every node i so that we can construct a tree T rooted at p to

span all nodes, in term deriving the subtree MG of T

associated with MG to make all subscribers in the multicast

group MG reachable from the publisher p.

Extended Dijkstra’s Shortest Path Tree Algorithm

Input: G = (V, E), ew, nw, p, MG

Output: MT

1: T={p};d[p]←0; d[u]←∞ and pred[i]←nil for each u≠p, uV

2: insert u with key d[u] into the priority queue Q, for each uV

while (Q  )

3: j ← Extract-Min(Q)

4: for every node i, i T and i is adjacent to j

5: alt = d[j] + ew(j, i) + nw (j)

6: if alt < d[i] then

7: d[i] ← alt

8: pred[i] ← j // set i as a child node of j

9: add i into T

10: return MT, the subtree of T rooted at p associated with MG

Fig. 5. The extended Dijkstra’s shortest path tree (EDSPT) algorithm

IV. SIMULATION FOR THE PROPOSED MULTICAST ALGORITHM

We set up one POX OpenFlow controller and 11 OpenFlow
switches as nodes based on the Abilene topology in the Mininet
simulator, each of switch is linked to the controller logically.
The Abilene network [8] is a high-performance backbone
network suggested by the Internet2 project. Fig. 6 shows a
historical Abilene (network) core topology [23], connecting 11
regional sites or nodes across the United States. The Abilene
network has 10 Gbps connectivity between neighboring nodes
and 100 Mbps connectivity between a host and a node.

Fig. 6. The Abilene network core topology [23]

We simulate the multicast algorithms based on the based on
the multicast tree construction algorithms using the breadth
first search algorithm, the original Dijkstra’s algorithm, and the
extended Dijkstra’s algorithm, respectively. Those multicast
tree construction algorithms are called BFST, DSPT, and
EDSPT algorithms. We assume 1 publisher as the source node
(host5) located at switch 5, and 12 subscribers located in
different areas of the Abilene network topology shown in Fig.
7. The bandwidth of the edges (links) were set randomly within
the range from 100Mbps to 1Gbps, and the capability of nodes
were set randomly from 3Gbps to 7Gbps. However the BFST
algorithm considered all edge weights as 1.

Fig. 7. Topology Setting

Table I describes the details of our simulation settings. We
used POX as the OpenFlow controller and implemented the
multicast tree algorithms using Pyretic. We ran this simulation
on a PC with Pentium(R) Dual-Core CPU E5400@2.70GHz
and 4GB of RAM.

TABLE I. SIMULATION SETTINGS

Parameter Setting

Number of controller 1

Number of switches 11
Number of publishers 1

Number of subscribers 12

Number of edges 25
Controller POX 2.0 supporting Pyretic

OpenFlow switch Openvswitch 1.0

Testing tool Iperf

Testing time per case 30 sec

In the simulation experiments, we measure the following
network performance metrics, namely, throughput, jitter, and
packet loss, for the multicast algorithms using BFST, DSPT,
and EDSPT. We used Iperf to create the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) data
stream packets. The experiment time for every test case was 30
seconds.

Fig. 8 shows the throughput for different numbers of
multicast group subscribers, and Fig. 9 shows the average
throughput. We can see that the multicast algorithm using
EDSPT (i.e., the proposed algorithm) outperforms the
algorithms using BFST and DSPT.

Fig. 8. The throughput comparisons

Fig. 9. The average throughput comparisons

We also conducted the jitter measurement. By using Iperf
the publisher sends UDP packets to the subscribers for 30
seconds. Fig.10 shows the jitter for different numbers of
subscribers, and Fig. 11 shows the average jitter. We can see
that the multicast algorithm using EDSPT outperforms the
algorithms using BFST and DSPT.

Fig. 10. The jitter comparisons

Fig. 11. Average Jitter

We also measured packet loss to verify the performance of

several multicast algorithms. The measurement is based on the

Iperf tool generating UDP packets for the publisher to send to

subscribers for 30 seconds. Fig.12 shows the packet loss rates

for different numbers of subscribers, and Fig. 13 shows the

average packet loss rates. By the simulation results, we can

see that the multicast algorithm using EDSPT is more suitable

for dense networks and yields the highest throughput, the

smallest jitter and the packet loss rate. This is because the

EDSPT algorithm considers both the edge weights and node

weights, and the DSPT algorithm only considers the edge

weights, and the BFST algorithm only considers the adjacent

nodes to generate the multicast tree.

Fig. 12. The packet loss rate comparisons

Fig. 13. The average packet loss rate comparisons

V. CONCLUSION

This work proposes a multicast algorithm on the basis of the

extended Dijkstra’s shortest path algorithm for SDN. The

extended Dijkstra’s algorithm considers not only the edge

weights, but also the node weights for a graph derived from

the underlying SDN topology. We use Pyretic to implement

the multicast algorithms using BFST, DSPT, and EDSPT and

compare them in terms of throughput, jitter, and packet loss

under the Abilene network topology with the Mininet

emulation tool. The simulation results show that the proposed

multicast algorithm outperforms others.

REFERENCES

[1] McKeown, Nick, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication, 2008.

[2] Software-Defined Networking (SDN) Definition. Website
https://www.opennetworking.org/sdn-resources/sdn-definition, last
accessed on January 2014.

[3] Software-Defined Networking Research Project. http://www.ipvs.uni-
stuttgart.de/abteilungen/vs/forschung/projekte/sdn, last accessed on
March 2014.

[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A.
Story, and D. WalkerFoster, “Frenetic: A Network Programming
Language”, ACM, 2013.

[5] Python + Frenetic = Pyretic. http://frenetic-lang.org/pyretic/ , last
accessed on March 2014.

[6] Jehn-Ruey Jiang, Hsin-Wen Huang, Ji-Hau Liao, and Szu-Yuan Chen,
"Extending Dijkstra’s Shortest Path Algorithm for Software Defined
Networking," Technical Report, National Central University, 2014.

[7] E. . Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no.1, 1959, pp. 269-271.

[8] Abilene Network, http://en.wikipedia.org/wiki/Abilene_Network-
#cite_note-line-1, last accessed on March 4, 2014.

[9] Mininet, An Instant Virtual Network on your Laptop (or other PC),
http://mininet.org/, last accessed on June 2014.

[10] Software-Defined Networking (SDN) Definition. Website
https://www.opennetworking.org/sdn-resources/sdn-definition, last
accessed on January 2014.

[11] Kobayashi, Masayoshi, Et al., “Maturing of OpenFlow and Software-
defined Networking through deployments,” Science Direct Computer
Networks, 2013.

[12] Hyojoon, Kim Feamster, N, “Improving Network Management With
Software Defined Networking,” Communications Magazine, IEEE,
2013.

[13] Saurav Das, Et al., “Handbook of Fiber Optic Data Communication a
Practical Guide to Optical Networking Chapter 17, 4th edition”.

[14] Sugam Agarwal, Murali Kodialam, T. V. Lakshman, "Traffic
Engineering in Software Defined Networks," Proceedings IEEE
INFOCOM, Bell Labs Alcatel-Lucent Holmdel, 2013.

[15] The Open Networking Foundation, “Software-Defined Networking: The
New Norm for Networks,” April 13, 2012.

[16] The Open Networking Foundation, “OpenFlow Switch Specification
version 1.4.0,” October 14, 2013.

[17] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN Programming with Pyretic”, Technical Reprot of USENIX,
available at http://www.usenix.org, 2013.

[18] A. Rus, V. Dobrota, A. Vedinas, G. Boanea, and M. Barabas, “Modified
Dijkstra’s algorithm with cross-layer QoS,” ACTA TECHNICA
NAPOCENSIS, Electronics and Telecommunications, vol. 51, no. 3,
2010, pp. 75-80.

[19] A. Furculita, M. Ulinic, A. Rus, and V. Dobrota, “Implementation issues
for Modified Dijkstra's and Floyd-Warshall algorithms in OpenFlow,” in
Proc. of 2013 RoEduNet International Conference 12th Edition:
Networking in Education and Research, 2013, pp. 141-146

[20] A akash Iyer, Praveen Kumar, Vijay Mann, “Avalanche: Data center
Multicast using Software Defined Networking”, IEEE Communication
Systems and Networks (COMSNETS), Sixth International Conference,
2014

[21] John G. Apostolopoulos, Wai-tian Tan, Susie J. Wee, “Video Streaming:
Concepts, Algorithms, and, System,” Streaming Media Systems Group
Hewlett-Packard Laboratories, 2002.

[22] Iperf Website, http://iperf.fr/, last accessed on June 2014.

[23] Historical Abilene Connection Traffic Statistics,
http://stryper.uits.iu.edu/abilene/, last accessed in March 2014.

