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Abstract 

In this paper, we propose a distributed prioritized h-out of-k resource allocation algorithm for a 

mobile ad hoc network (MANET) with real-time or prioritized applications. The h-out of-k resource 

allocation problem is a generalization of the k-mutual exclusion problem and the mutual exclusion 

problem. The proposed algorithm is sensitive to link forming and link breaking and thus is suitable for 

a MANET. It is worthwhile to mention that the proposed algorithm can also be applied to distributed 

systems consisting of stationary nodes that communicate with each other by exchanging messages 

over wired links. 
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1. Introduction 
In this paper, we propose a distributed prioritized h-out of-k resource allocation algorithm for a 

mobile ad hoc network (MANET). A MANET [MC97] consists of mobile nodes that can communicate 

with each other by sending messages either over a direct wireless link, or over a sequence of wireless 

links including one or more intermediate nodes. Wireless link “failures” occur when nodes move so 

that they are no longer within transmission range of each other. Likewise, wireless link “formation” 

occurs when nodes move so that they are again within transmission range of each other. It is 

worthwhile to mention that the proposed algorithm can also be applied to distributed systems 

consisting of stationary nodes that communicate with each other by exchanging messages over wired 

links. 

Consider a MANET with k identical shared resources. Assume that a node in the MANET has to 

occasionally access h out of the k shared resources to complete its job. The problem of controlling the 

nodes so that each node can acquire the desired number of resources with the restriction that the total 



 2 

number of resources simultaneously accessed by nodes should not exceed k is called the h-out of-k 

resource allocation problem or the h-out of-k mutual exclusion problem [Ray91]. The h-out of-k 

resource allocation problem is a generalization of the k-mutual exclusion problem [AGD90] and the 

mutual exclusion problem [Dij65]. If we restrict h to be 1, then the h-out of-k resource allocation 

problem becomes the k-mutual exclusion problem, in which at most k nodes are allowed to 

concurrently access one shared resource. If we restrict both h and k to be 1, then h-out of-k resource 

allocation problem becomes the mutual exclusion problem, in which only one node at a time is 

allowed to access the sole shared resource. 

In the h-out of-k resource allocation problem, nodes access the shared resource in the “first come 

first serve (FCFS)” manner; however, in the prioritized h-out of-k resource allocation problem, nodes 

access the shared resource in the “highest priority first serve (HPFS)” manner. The HPFS criterion 

arises in real time systems where the tasks have to meet deadlines; it also arises in prioritized systems 

where key tasks must proceed quickly for good performance. In real time systems, the node with the 

task of the earliest deadline is assumed to have the highest priority; while in the prioritized systems, 

the node with the most significant task is assumed to have the highest priority. 

There are several distributed prioritized mutual exclusion algorithms [Cha92, Cha94, Gos89, 

Gos90, HT00, HT01a, HT01b, Mue98, Qaz94, TH01] proposed in the literature. There are also 

several algorithms [Jia02b, MBR98, MT99] proposed to solve the h-out of-k resource allocation 

problem for distributed systems. In [Jia02a], Jiang proposed a token-based algorithm to solve the 

h-out of-k resource allocation problem for MANETs. Jiang’s algorithm applies the RL (Reverse Link) 

technique to maintain a token oriented DAG (directed acyclic graph). A node should gain the token 

along the DAG to access the shared resource. The RL technique endows Jiang’s algorithm with the 

ability of being sensitive to link forming and link breaking. This is why Jiang’s algorithm can be 

applied to MANETs. In this paper, we also utilize the concept of RL to implement prioritized h-out 

of-k resource allocation algorithm for MANETs. In addition to the concept of the RL technique, we 

also utilize the concept of priority queue and priority update to endow the algorithm with the ability 

of HPFS property. Furthermore, we adopt the concept of aging to prevent a node from being always 

preempted by nodes with higher priorities. Thus, the proposed algorithm is starvation-free and can be 

properly applied to MANETs with real-time or prioritized applications. 

The rest of this paper is organized as follows. In section 2, we introduce some preliminaries. We 

present the proposed algorithm in section 3, and prove the algorithm correctness in section 4. At last, 

we give a concluding remark in section 5. 

 

2. Preliminaries 
In [WWV01], a token-based mutual exclusion algorithm, named RL (Reverse Link), for a 

MANET is proposed. The RL algorithm takes the following 6 assumptions, which we also take in this 

paper. 

1. The nodes have unique node identifiers.  
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2. Node failures do not occur.  

3. Communication links are bidirectional and FIFO.  

4. A link-level protocol ensures that each node is aware of the set of nodes with which it can currently 

directly communicate by providing indications of link formations and failures.  

5. Incipient link failures are detectable.  

6. Partitions of the network do not occur. 

The RL algorithm also assumes that there is a unique token initially and utilizes the partial 

reversal technique in [GB81] to maintain a token oriented DAG (directed acyclic graph). In the RL 

algorithm, when a node wishes to access the shared resource, it sends a request message along one of 

the communication link. Each node maintains a queue containing the identifiers of neighboring nodes 

from which it has received requests for the token. The RL algorithm totally orders nodes so that the 

lowest-ordered node is always the token holder. Each node dynamically chooses its lowest-ordered 

neighbor as its outgoing link to the token holder. Nodes sense link changes of immediate neighbors 

and reroute requests based on the order newly created. The token holder grants the token according to 

the requests’ positions in the queue, and thus requests are eventually served while the DAG is being 

re-oriented and blocked requests are being rerouted. 

Now we present the scenario for the prioritized h-out of k-mutual exclusion problem. Consider a 

MANET consisting of n nodes and k shared resources. Nodes are assumed to cycle through a 

non-critical section (NCS), an entry section (ES), and a critical section (CS). A node i can access the 

shared resource only within the critical section. Every time a node i wishes to access h shared 

resources, node i moves from its NCS to the ES, waiting for entering the CS. The prioritized h-out of-k 

resource allocation problem is concerned with how to design an algorithm satisfying the following 

properties: 

Mutual Exclusion: 

No more than k resources can be accessed concurrently. 

Highest Priority First Serve: 

If there are nodes competing for entering the CS, the node with the highest priority will proceed first. 

Bounded Delay: 

If a node enters the ES, then it eventually enters the CS. 

 

3. The Proposed Solution 
In this section, we propose a distributed token-based algorithm to solve the prioritized h-out of 

k-resource allocation problem for a MANET. The algorithm is assumed to execute in a system 

consisting of n nodes and k shared resources. Nodes are labeled as 0, 1, …, n-1. We assume there is a 

unique token held by node 0 initially. The variables used in the algorithm for node i are listed below. 

Note that the subscript “i” is included when needed. 

� state: Indicates whether node i is in the ES, CS, or NCS state. Initially, state = NCS.  
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� N: The set of all nodes (neighbors) in direct wireless contact with node i. Initially, N contains all 

neighbors of node i. 

� height: A triplet (h1, h2, i) representing the height of node i. Links are considered to be directed 

from higher-height nodes toward lower-height nodes, based on lexicographic ordering. For 

example, if the height of node 1, height1, is (2, 3, 1) and the height of node 2, height2, is (2, 2, 2), 

then height1 > height2 and the link would be directed from node 1 to node 2. Initially, height0 = 

(0, 0, 0), and heightj, j≠ 0, is initialized so that the directed links form a DAG where each node 

has a directed path to node 0.  

� htVector: An array of triplets representing node i's view of height of node j, j∈N . Initially, 

htVector[j] = height of node j. From node i's viewpoint, the link between i and j is incoming to 

node i if htVector[j] >heighti, and outgoing from node i if htVector[j] < heighti.  

� next: Indicates the location of the token from node i's viewpoint. When node i holds the token, 

next = i, otherwise next is the node on an outgoing link. Initially, next = 0 if i = 0, and next is an 

outgoing neighbor otherwise. 

� tokenHolder: a boolean variable indicating whether or not node i holds the token. If node i holds 

the token, tokenHolder is set to true. It is set to false, otherwise. 

� Q: a queue which contains requests of neighbors. Initially, Q = ∅. Operations on Q include 

enqueue, dequeue, and delete. The enqueue operation inserts an item at the rear of Q, and the 

dequeue operation returns and removes the item at the front of Q, and the delete operation 

removes a specified item from Q, regardless of its location. 

� receivedLink[j]: a boolean array indicating whether LINK message has been received from node 

j, to which a token message was recently sent. Any height information received at node i from a 

node j for which receivedLINK[j] is false will not be recorded in htVector. Initially, 

receivedLINKi[j] = true for all j∈Ni. 

� forming[j]: a boolean array set to true when link to node j has been detected as just forming and 

reset to false when first LINK message arrives from node j. Initially, formingi[j]=false for all 

j∈Ni. 

� formHeight[j]: an array of triplets storing value of i’s height when new link to j first detected. 

Initially, formHeighti[j]=heighti for all j∈Ni. 

 

The following are the messages used in the algorithm. Note that each message is attached with 

the height value, denoted by ht, of the node sending the message. Also note that we use “the front 

node of Q” to indicate “the node whose request message is at the front of queue Q.” 

� TOKEN(t): a unique message for nodes to enter the CS. The data field t, 0≤t≤k, of the message 

indicates the number of available resources. 

� REQUEST(i, R): When i wishes to enter the CS to access h resources with priority R, it sends 

out REQUEST(i, R) to the neighbor indicated by next. 

� RELEASE(r): When i leaves the CS to release r copies of resources, it first calls aging 
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procedure to increase the priority of every request message in Q. And if node i is the token 

holder, it just increases t of TOKEN(t) by r and sends TOKEN(t) to the front node (if exists) of 

Q. If i is not the token holder, it just sends RELEASE(r) to the neighbor indicated by next. 

� UPDATE(i, S): When i receives a new request with priority S, which is higher than those of 

messages in Q, it sends out UPDATE(i, S) to the neighbor indicated by next to update its request 

priority to be S to reflect the priority change.  

� LINK: a message used for nodes to exchange their height values with neighbors. 

 

The proposed algorithm is event-driven. An event at node i consists of receiving a message from 

another node, or an indication of link failure or formation from the link layer, or a signal from the 

application layer for accessing or releasing resources. Each event triggers a procedure which is 

assumed to be executed atomically. Below, we present the overview of the event-driven procedures:  

� Requesting h copies of resources with priority R: When node i requests to enter the CS with 

priority R to access h resources, it enqueues the message REQUEST(i, R) on Q and sets state to 

ES. If node i does not currently hold the token and i has a single element on its queue (the single 

element must be REQUEST(i, R)), it calls forwardRequest() to send a REQUEST(i, R) message 

to the neighbor indicated by next. If node i holds TOKEN(t), i then checks if t≥h. If so, i sets 

t=t− h, removes i from Q and sets state to CS to access h resources, since i will be at the front of 

Q. On the contrary, if t<h, then node i persists in waiting for the condition t≥h to be true to enter 

the CS. Note that after node i enters the CS, if Q is not empty, then i sends TOKEN(t) to the 

requesting neighbor at the front of Q (by calling giveTokenToFrontOfQ() procedure) to allow the 

concurrent access of resources. 

� Receiving a priority update message: When a UPDATE(j, S) message sent by a neighbor j is 

received at node i, i changes the priority of j’s request message and adjust its position in Q 

according to the new priority if j’s request message is in Q. If j’s request is moved to the front of 

Q due to the priority update and i does not hold the TOKEN, then i should also send out a 

UPDATE(i, S) message to the neighbor indicated by next to report the priority change on behalf 

of j. 

� Releasing r copies of resources: When node i leaves the CS to release r copies of resources, it 

sets state=NCS. If node i does not hold the token, it calls forwardRelease(r) to send out 

RELEASE(r) message to the neighbor indicated by next. On the other hand, if i holds the token 

TOKEN(t), i sets t=t+r.  

� Receiving a request message: When a REQUEST(j, S) message sent by a neighbor j is received 

at node i, i ignores the message if receivedLINK[j] is false. Otherwise, i changes htVector[j] 

according to the height value attached with REQUEST(j, S). And i enqueues the request on Q if 

the link between i and j is incoming at i. If Q is non-empty, and state ≠ CS, i calls 

giveTokenToFrontOfQ() provided i holds the token. Non-token holding node i calls 

forwardRequest() if ⎪Q⎪=1 or if Q is non-empty and the link to next has reversed. If ⎪Q⎪≥2 and 



 6 

REQUEST(j, S) is at the front of Q, then i sends out a UPDATE(i, S) message to report that the 

highest priority of the messages in Q of node i is changed to be S. 

� Receiving a release message: Suppose node i holds the token, then when a RELEASE(r) 

message sent by a neighboring node j is received at node i, i sets t=t+r. Note that if state = ES at 

this time point, it means that i is waiting for t≥h (within the giveTokenToFrontOfQ() procedure) 

to enter the CS, where h is the number of resources i requests. After t=t+1 is executed, if t≥h, 

then node i can stop the waiting and can enter the CS. Otherwise, node i keeps waiting within the 

giveTokenToFrontOfQ() procedure for the condition t≥h to be true to enter the CS. For the 

condition that node i does not hold the token, i just calls forwardRelease(r) to forward the 

release message when it receives a RELEASE(r) message. 

� Receiving the token message: When node i receives a TOKEN(t) message from some neighbor j, 

i sets tokenHolder to true. Then i lowers its height to be lower than that of the last token holder 

(i.e., node j), and informs all its neighbors of its new height by sending LINK messages, and 

calls giveTokenToFrontOfQ() if ⎪Q⎪>0. 

� Receiving a link information message: When a link information message LINK from node j is 

received at node i, j is added to N and j's height is recorded in htVector[j]. If j’s request message 

is in Q and j is an outgoing link, then j’s request message is removed from Q. If node i has no 

outgoing links and is not the token holder, i calls raiseHeight() so that an outgoing link will be 

formed. Otherwise, if Q is non-empty and the link to next has reversed, i calls forwardRequest() 

since it must send another request (reroute the request) for the token. 

� Link failing: When node i senses the failure of a link to a neighboring node j, it removes j from 

N and sets receivedLINK[j] to ture. And if j’s request message is in Q, the request is deleted from 

Q. Then, if i is not the token holder and i has no outgoing links, i calls raiseHeight(). If node i is 

not the token holder, Q is non-empty, and the link to next has failed, i calls forwardRequest() 

since it must send another request (reroute the request) for the token. 

� Link forming: When node i detects a new link to node j, i sends a LINK message to j. 

 

Below, we introduce the procedures called by the event handling procedures mentioned above.  

� Procedure giveTokenToFrontOfQ(): Node i dequeues the first element on Q and sets next equal 

to the first element. If next = i, then i checks if t≥h, where t is the field of TOKEN(t) message 

recording the number of unoccupied resources and h denotes the number of resources node i 

requests. If so, i sets t=t−h and then i enters the CS. Otherwise, i waits for the condition t≥h to be 

true. After i enters the CS, if Q is not empty then i recursively calls giveTokenToFrontOfQ() 

procedure to pass TOKEN message to the node at the front of Q to allow concurrent access of 

the resources. Now, consider the case of next ≠ i. In this case, i lowers htVector[next] to 

(height.h1, height.h2 −1, next), so that any incoming REQUEST message will be sent to next. 

Node i also sets tokenHolder to false, and then sends a TOKEN(t) message to next. If Q is 

non-empty after sending the token message to next, a request message REQUEST(i, R) (R is the 
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priority of the request message at the front of Q) is sent to next immediately following the token 

message so that the token will eventually be returned to i. 

� Procedure raiseHeight(): Called at non-token holding node i when i loses its last outgoing link. 

Node i raises its height using the partial reversal method of [GB81] and informs all its neighbors 

of its height change with LINK messages. Every node v is deleted from Q if v is at a outgoing 

link. If Q is not empty at this point, forwardRequest() is called since i must send another request 

(reroute request) for the token. 

� Procedure forwardRequest(): Selects node i’s lowest-height neighbor to be next. Sends a request 

message REQUEST to next. 

� Procedure forwardRelease(r): A non-token holding node i selects its lowest-height neighbor to 

be next and sends a release message RELEASE(r) to next. Note that the forwardRelease(r) 

procedure is never called by a token-holding node. 

 

4. Correctness 
In this section, we prove that the proposed algorithm satisfies the mutual exclusion property, the 

highest priority first serve property, and the bounded delay property. We first show that the mutual 

exclusion property is guaranteed. 

 

Theorem 1. The algorithm ensures the mutual exclusion property. 

Proof: 

    The algorithm assumes a unique token with the field t for recording the number of unoccupied 

resources out of k shared resources, where t=k initially. When a node wishes to enter the CS, it must 

first own the token and then checks if t is larger than the number of requested resources. If so, the 

node decreases the number of requested resources from t and enters the CS. Thus, no more than k 

resources can be accessed concurrently. The theorem holds.   ■ 

 

    Below, we show that the proposed algorithm satisfies the highest priority first serve (HPFS) 

property in Theorem 2. 

Theorem 2. The algorithm ensures the highest priority first serve (HPFS) property. 

Proof: 

When a node receives a request, it checks whether or not the request’s priority exceeds the 

priority of the request at the front of its local queue. If so, the priority of the received message exceeds 

all the priorities of the requests in the local queue. An UPDATE message is sent to next to report the 

higher priority newly found. The UPDATE message propagates along the path indicated by next until 

the token holder is reached or until the priority of the received request does not exceed the priority of 

the request at the front of the local queue. Nodes receiving UPDATE messages will adjust requests’ 

positions in local queues according to the updated priorities. Thus, the token will first be passed to the 

node with the highest priority. According to the proposed algorithm, the node with the highest priority 
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will hold the token until it acquires enough resources and enters the CS. The theorem holds.      ■ 

 

Below, we prove that the proposed algorithm satisfies the bounded delay property by first 

showing that a requesting node owns the token eventually. Consider the logical graph whose arcs are 

indicted by next variables (from the node of a larger height value to the node of a smaller height 

value). Since the next variable stores the neighboring node with the smallest height value and all the 

height values are totally ordered, the logical graph has no cycles and thus is a DAG (Directed Acyclic 

Graph). We want to show that the DAG is token oriented, i.e., for every node i, there exists a directed 

path originating at node i and terminating at the token holder. We present Lemma 1, which is the very 

Lemma 3 in [WWV01]. 

 

Lemma 1. If link changes cease, the logical graph whose arcs are indicated by next variables is a 

token oriented DAG.   ■ 

On the basis of Lemma 1, we can prove that a requesting node (a node in the ES) owns token 

eventually.  

 

Theorem 3. The algorithm ensures the bounded delay property. 

Proof: 

When a token holder i is not in the ES, it passes the token to the node j at the front of the queue Q. 

Node i then removes j from Q after passing the token. Afterwards, if Q is not empty, i will send a 

request message to j so that the token will eventually be returned to i. Furthermore, the proposed 

algorithm applies aging procedure to increase the priorities of pending requests in queue. Thus, every 

node’s request will eventually be of the highest priority and be at the front of the queue to have the 

opportunity to own the token. Since the algorithm make a node send request message to the node 

indicated by next, we have, by Lemma 1, that there is a request chain toward the token holder for 

every requesting node with pending request. Hence, a requesting node owns the token eventually. 

According to the proposed algorithm, the node with the highest priority will hold the token and 

enter the CS when t≥h, where t is the field in the token message recording the number of unoccupied 

resources out of totally k shared resources, and h is the number of resources the node requests, 0≤t≤k, 

1≤h≤k. Since each node sends release message to the token-holding node along the path indicated by 

next pointer to add the number of released resources to t when it leaves the CS, the condition t≥h 

eventually holds and the node with the highest priority will eventually enter the CS. 

To sum up, every node will eventually become the node with the highest priority and will 

eventually enter the CS. The theorem holds.     ■ 

 

5. Concluding Remarks 
In this paper, we have proposed a distributed prioritized h-out of-k resource allocation algorithm 

for a MANET with real-time or prioritized applications. The h-out of-k resource allocation problem is 
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a generalization of the k-mutual exclusion problem and the mutual exclusion problem. The prioritized 

algorithm can be regarded as a non-prioritized one if we assume that each node has the same priorty. 

The MANET has the characteristic of dynamically changing topology since wireless link 

“failures” and/or “formation” occurs frequently. The proposed algorithm is sensitive to link forming 

and link breaking and thus is suitable for a MANET. However, the proposed algorithm can also be 

applied to distributed systems consisting of stationary nodes that communicate with each other by 

exchanging messages over wired links. In such a case, the assumptions 3 and 4 adopted by the RL 

algorithm [WWV01] (please refer to section 2) can be omitted. The topology of the distributed system 

is fixed (and thus N, the set of all neighboring nodes is fixed), and all execution steps, messages, and 

variables concerning only with the link forming and breaking may be omitted (or they can be retained 

and remain intact when the proposed algorithm is executed). 

Based on the statements mentioned above, we can draw the following conclusion: The proposed 

algorithm is very flexible since it can be used to solve many types of problems for many types of 

environments. To be more precise, the proposed algorithm can be used to solve the prioritized h-out 

of-k resource allocation problem, the prioritized k-mutual exclusion problem and the prioritized 

mutual exclusion problem for mobile ad hoc networks (MANETs) and distributed systems. 
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Appendix 

The Proposed Algorithm (for node i)** 
**Note that every message sent is attached with height value of the sender, and we omit this attachment. 
 
When node i requests to enter the CS to access h resources with priority R:  

1. state := ES  
2. enqueue(Q, REQUEST(i, R) )  
3. If (not tokenHolder) Then  
4.   If (⎪Q⎪ = 1) Then forwardRequest()  
5. Else giveTokenToFrontOfQ()    //i is the token holder 

 
When node i leaves the CS to release r copies of resources: 

1. state := NCS  
2. aging(Q)   //raise the priority for each message in Q  
3. If (not tokenHolder) Then  
4.  forwardRelease(r) 
5. Else    //i is the tokenHolder 
6.  t=t+r 
7.  If (⎪Q⎪>0) Then giveTokenToFrontOfQ() 
 
 

 
When TOKEN message is received at node i from node j: 
// ht denotes the height value attached with the TOKEN message 

1. tokenHolder := true  
2. htVector[j] := ht  
3. height.h1 := ht.h1  
4. height.h2 := ht.h2 −1 // lower height value to be lower than ht, the height value of the last token holder 
5. Send LINK to all v ∈ N  
6. If (⎪Q⎪ > 0) Then giveTokenToFrontOfQ()  

 
When REQUEST(j, S) message is received at node i from node j: 
// ht denotes the height value attached with the REQUEST(j, S) message 

1. If (receivedLink[j]) Then htVector[j]:=ht // set i's view of j's height value  
2. If (height < htVector[j]) Then enqueue(Q, REQUEST(j, S))  
3.  If (tokenHolder) Then  
4.    If (state≠CS) Then giveTokenToFrontOfQ() 
5.  Else // not tokenHolder  
6.   If ((⎪Q⎪=1) or ((⎪Q⎪>0) and (height < htVector[next]))) Then forwardRequest() 

     // ⎪Q⎪=1 means that j’s request is only request message in Q 

7.   Else If ((⎪Q⎪≥2) and (REQUEST(j, S) is at the front of Q)) Then 

8.         forwardUpdate()  //i reports the higher priority newly found 
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When UPDATE(j, S) message is received at node i from node j: 
1. If (j’s request is in Q) Then 
2.  update the priority of j’s request to be S and rearrange the request’s position in Q. 
3.  If (tokenHolder and (i is in ES) and (j, S)>(i, R) and j is at the front of Q) Then 
    // i holds the token but still waits to acquire enough number of resources and the updated 
    // priority of j’s request is higher than that of i’s request and j’s request is at the front of Q 
4.    sendTokenToFrontOfQ() 
5.    send REQUEST(i, R) to next  //i resends the request message 
6.  If ((not tokenHolder) and (j is moved to the front of Q from another position)) Then 
7.    forwardUpdate()         //i reports the priority change of j’s request 

 
When RELEASE(r) message is received at node i from node j: 
// ht denotes the height value attached with the RELEASE(r) message 

1. If (tokenHolder) Then 
2.  t:=t+r 
3. Else //not tokenHolder 
4.  forwardRelease(r)   //just bypass the RELEASE(r) message 

 
When LINK message is received at node i from node j: 
// ht denotes the height value attached with the LINK message 

1. N := N ∪ {j} 
2. If ((forming[j]) and (height ≠ formHeight[j])) Then send LINK to j 
3. forming[j] := false 
4. If (receivedLINK[j]) Then htVector[j]=ht 
5. Else If (htVector[j]=ht) Then receivedLINK[j]=true 
6. If (height > htVector[j]) Then delete(Q, j)  // delete(Q, j) means deleting j’s request form Q 
7. If ((height < htVector[v], for all v ∈ N) and (not tokenHolder)) Then raiseHeight()  
8. Else If ((⎪Q⎪>0) and (height < htVector[next])) Then forwardRequest() // reroute request  

 
When failure of link to j detected at node i:  

1. N := N − { j }  
2. delete(Q, j)  // delete(Q, j) means deleting j’s request form Q if j’s request is in Q 
3. receivedLINK[j] := true 
4. If (not tokenHolder) Then 
5.  If ((height < htVector[k], for all k ∈ N) Then raiseHeight()  
6.  Else If ((⎪Q⎪ > 0) and (next ∉ N)) Then forwardRequest()   // reroute request  

 
When formation of link to j is detected at node i:  

1. Send LINK to j  
2. forming[j] := true 
3. formHeight[j] := height 

 
Procedure forwardRequest():  

1. next := j ∈ N : htVector[j] ≤ htVector[v] for all v ∈ N  
2. Send REQUEST(i, S) to next, where S is the priority associated with the message at the front of Q 
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Procedure forwardUpdate():  
1. next := j ∈ N : htVector[j] ≤ htVector[v] for all v ∈ N  
2. Send UPDATE(i, S) to next, where S is the priority associated with the message at the front of Q 

 
Procedure forwardRelease(r):  

1. next := j ∈ N : htVector[j] ≤ htVector[v] for all v ∈ N 
2. Send RELEASE(r) message to next  

 
Procedure giveTokenToFrontOfQ(): // only called when ⎪Q⎪ > 0  

1. next := dequeue(Q)  
  //dequeue(Q) removes the message at the front of Q and returns the removed message’s sender id 
2. aging(Q)   //raise the priority for each message in Q 
3. If (next ≠ i) Then  
4.  tokenHolder := false  
5.  htVector[next] := (height.h1, height.h2−1, next)  
6.  receivedLink[next] := false 
7.  Send TOKEN(t) to next  
8.  If (⎪Q⎪ > 0) Then Send REQUEST(i, R) to next 
    //R is the priority associated with the message at the front of Q 
9. Else // next = i 

10.   wait until (t≥h)  //only when t≥h, can i stop the blocked waiting 
     //Note that t is the field of TOKEN recording number of available resources 
     //and h is the number of resources which i requests to access. 
     //Also note that the token may be preempted by other the node with higher 
     //priority while i is waiting. When the token is preempted, the procedure 
     //giveTokenToFrontOfQ() terminates directly. 

11.   t := t− h 
12.   state := CS 
13.   Enter CS 
14.   If (⎪Q⎪ > 0) Then giveTokenToFrontOfQ() 
     //Although i is in the CS, it sends out TOKEN to allow other nodes to enter the CS concurrently 
 

Procedure raiseHeight(): 
1. height.h1 := 1 + min v∈N {htVector[v].h1} 
2. T := {v ∈ N : htVector[v].h1 = height.h1} 
3. If (T ≠ ∅) Then height.h2 := min v∈T {htVector[v].h2} − 1 
4. Send LINK to all v ∈ N  
  // Raising i’s own height value can cause some links to become outgoing  
5. For (all v ∈ N such that height > htVector[v]) do delete(Q, v)  
  // delete(Q, v) means deleting v’s request form Q 
6. If (⎪Q⎪ > 0) Then forwardRequest()  
  //call forwardRequest() to reroute request if queue is non-empty, since i just had no outgoing links 
 

Procedure aging(Q): 
1. For (all request message REQUEST(v, S) ∈ Q ) do 
2.   S:=S+ε   //increment each request message’s priority by constant ε 
 


