
Peer-to-Peer AOI Voice Chatting for Massively Multiplayer Online Games

Jehn-Ruey Jiang and Hung-Shiang Chen
Computer Science Department

National Central University
Jhongli City, Taiwan, Republic of China

Abstract

In recent years, massively multiplayer online games
(MMOGs) have become more and more popular. Many
techniques have been proposed to enhance the experience
of using MMOGs, such as realistic graphics, vivid ani-
mations, and player communication tools, etc. However,
in most MMOGs, communication between players is still
based on text, which is unnatural and inconvenient. In this
paper, we propose the concept of AOI voice chatting for
MMOGs. The term AOI stands for the area of interest; a
player in the MMOG only pays attention to his/her AOI.
By AOI voice chatting, a player can easily chat by voice
with other plays in the AOI. This improves the way players
communicate with one another and provides a more realis-
tic virtual environment. We also propose two peer-to-peer
schemes, namely QuadCast and SectorCast, to achieve ef-
ficient AOI voice chatting for MMOGs. We perform simu-
lation experiments to show that the proposed schemes have
reasonable end-to-end delay and affordable bandwidth con-
sumption.

1. Introduction

In recent years, massively multiplayer online games
(MMOGs) have become more and more popular. For ex-
ample, World of Warcraft [4], one of the most popular
MMOGs, reached a record of 8.5 million subscribed play-
ers worldwide. And according to a report by ScreenDigist
[5], the MMOG market broke $1 billion mark in 2006. An
MMOG is a computer game which can support hundreds
of thousands of players playing simultaneously in a virtual
world over internet. A player in the MMOG is represented
by a personalized 3D character called an avatar. By con-
trolling the avatar, a player can navigate the virtual world,
fight monsters for rewards, and interacts with other players,
and so on.

Many techniques have been proposed to enhance the ex-
perience of using MMOGs, such as realistic graphics, vivid

animations, and player communication tools, etc. However,
in most MMOGs, communication between players is still
based on text, which is unnatural and inconvenient. Play-
ers type and read the text in the chat box instead of speak-
ing and listening. Furthermore, because the mouse and the
keyboard are the major input devices of most MMOGs, it is
hard for a player to control the avatar and communicate with
other players at the same time. When a player wants to chat
with others by typing text, he/she may lose the control of the
avatar for a while. Text-based chatting is inconvenient for
players to use, especially for those not good at typing. As
a result, players begin to seek for voice chatting solutions,
such as Teamspeak[2], Ventrilo[3], and Skype[1], etc.

Teamspeak and Ventrilo are two popular VoIP applica-
tions supporting group voice chatting. They are client-
server based and thus need dedicated servers. When a user
of a group talks, his/her voice is transmitted to the server in
the form of voice packets. The server then mixes voice con-
tents of all group users and send the mixed contents to each
group user. The client only delivers user’s voice packets and
receives voice packets from the server, but the server needs
to receive voice packets from all clients and deliver voice
packets in real time. Therefore, the number of users sup-
ported by a server is limited; it depends on the server’s net-
work bandwidth and computation power. Skype is a popu-
lar peer-to-peer based VoIP application. It not only supports
telephoning over internet, but also the group voice chatting.
Skype needs no dedicate server for mixing voice packets be-
cause of its peer-to-peer architecture. However, since Skype
only support group voice chatting for at most five users, it is
not suitable for MMOGs, which usually have more than five
players chatting together. Teamspeak, Ventrilo, and Skype
may be used as a voice chatting tool for MMOGs. However,
they reduces the interactivity of players in an MMOG since
they have static group membership (i.e., the membership of
a group is fixed or seldom changed) and a player thus has
to previously join a certain group to talk to someone in the
group.

In this paper, we propose the concept of AOI voice
chatting for MMOGs, which is dynamic-membership voice

978-1-4244-1890-9/07/$25.00 ©2007 IEEE

chatting based on the AOIs of players in the MMOG. The
term AOI stands for the area of interest; a player in the
MMOG has a position in the virtual world and only pays
attention to his/her AOI, which is ordinarily defined to be a
circular area centered at the player [11]. By AOI voice chat-
ting, an MMOG player can easily chat by voice with other
players within her/his AOI. This improves the way players
communicate with one another and provides a more realis-
tic virtual environment. We also propose two peer-to-peer
schemes, namely QuadCast and SectorCast, to achieve ef-
ficient AOI voice chatting for MMOGs. The two schemes
adopt the peer-to-peer architecture to eliminate the require-
ment of servers and to utilize the bandwidth of all partici-
pating players. We perform simulation experiments for the
two schemes to show they have reasonable end-to-end delay
and affordable bandwidth consumption.

The rest of this paper is organized as follows: Section
2 introduces some background knowledge. In Section 3,
we first describe how we model the system, and we then de-
scribe a basic scheme and its problem. In Section 4, we pro-
pose QuadCast and SectorCast to support AOI-voice chat-
ting for MMOGs. We perform simulation experiments for
the two schemes. The simulation results and the compar-
isons are given in Section 5. Finally, concluding remarks
are drawn in Section 6.

2. Related work

2.1. Architecture of MMOG

Most MMOGs nowadays are based on the client-server
architecture. In such an architecture, the virtual world of
MMOG is maintained on a centralized server or server clus-
ter, where players log in and start playing the game. By a
centralized server or server cluster, the consistency of game
states can be easily maintained and cheating between play-
ers can also be avoided. However, because the server is in
charge of all event processing and message transmission,
it becomes a performance bottleneck when the number of
players are increasing, this constrains the scalability of the
MMOG system.

To achieve better scalability, researchers propose peer-
to-peer architectures, such as VON [7], Solipsis [8] and
Apolo [9], for the MMOG. In the peer-to-peer architectures,
every player runs a same peer program in a distributed man-
ner without a centralized server; the peer program plays the
roles of both a server and a client. In the MMOG, a player
interacts only with other players in his/her AOI. Therefore,
a player only exchanges messages with a limited number
of players within the AOI. In this way, the peer-to-peer
MMOG architecture can potentially provide better scalabil-
ity than the client-server one. However, because there is
no centralized server, many problems become more com-

plex to solve. For example, in the client-server architecture,
finding new players in a player’s AOI can be achieved by
the server easily because the server has position information
of all players. But in the peer-to-peer architecture, play-
ers have to discover new players in the AIO by exchanging
messages extensively among players according to specific
protocols [7, 8, 9].

2.2. Immersive Audio Systems

The paper [12] proposes an immersive audio communi-
cation system for MMOGs. The system allows an player to
hear voices of all players within its “hearing range” by cre-
ating a personalized “audio scene” for every player. This
personalized audio scene mixes and attenuates all voice
contents from other players according to the propagation
distances. The paper also examines advantages and lim-
itations of architectures to realize the system, including
the peer-to-peer, the centralized server and the distributed
server architectures. In the peer-to-peer architecture, a
player send the voice packet directly to other players in the
hearing range. Due to the direct sending, the system pro-
vides low delay and has no single point of failure. How-
ever, if a player has a large number of players in the hearing
range, the bandwidth consumption may not be affordable
since a separate voice packet must be sent to each player in
the hearing range in real time. In the centralized server ar-
chitecture, the centralized server gathers voice streams from
all players, mixes them and then sends a separate mixed
stream to each player. In this architecture, the centralized
server becomes the bottleneck and the single point of fail-
ure of the system. In the distributed server architecture,
the whole virtual world is partitioned into multiple regions,
called locales, and audio streams can be processed by dif-
ferent locale servers. A player can transmit audio streams
to one of the locale servers with the shortest transmission
delay. As shown in [12], the distributed server architecture
has shorter delay than the centralized server one, but has
longer delay than the peer-to-peer one. However, it poses
more complexity in the control and the coordination of dis-
tributed servers.

The paper [10] proposes a peer-to-peer based immersive
audio streaming system for MMOGs. This paper proposes
to use the Voronoi diagram to find out the connecting neigh-
bors for a peer (i.e. player) to connect with directly. It also
proposes a model for mixing audio of connecting neighbors
by taking into consideration the neighbors’ positions and
audio directions. Each peer in the system gathers the voice
streams of all connecting neighbors, mixes them accord-
ing to the audio mixing model and sends a separate mixed
stream to every neighbor in each time step. Since the num-
ber of connecting neighbors is often a small constant, the
system is affordable. However, the system does not sup-

port a definite hearing range and has the echo problem that
a peer may hear its own voice just emitted earlier.

2.3. Human Conversational Speech Model

The article [13] describes some characteristics and statis-
tics of human conversational speech. The human conversa-
tion can be modeled as short burst of voice signals (called
talkspurts) separated by silence gaps (called pauses). The
gaps occur between phrases, sentences, words or syllables
when a speaker is talking. The gap may also caused by the
mutual silence, which occurs when no one is talking. The
talkspurts are contributed by either a single talk or a double
talk. Statistics of temporal parameters of a conversational
speech are shown in Table 1. This table shows that in a con-
versation a person only spends about 40% of time in speak-
ing and keeps silent during the rest of the time. Also, we
can see that in a conversation, once a person is talking, the
talking rate of the other people is reduced to only 6%. In
sum, a person has a probability of 40% to talk in a conver-
sation, and people are often silent when one of the people is
talking.

Table 1. Temporal parameters in conversa-
tional speech

Parameter Rate (%)
Talk-spurt 38.53

Pause 61.47
Double talk 6.59

Mutual silence 22.48

3. The System Model and the Problem

3.1. The System Model

The virtual world of an MMOG is modeled as a two-
dimensional plane, and the players are modeled as nodes
moving on it. (Note that below we use the terms “node”
and “player” exchangeably.) Each node has a unique id
(ID), a coordinate (X, Y), an AOI, and some other behav-
ior parameters. The AOI of each node defines the area in
which the node can interact with others. We assume that
each node’s AOI is a circle centered at the node with a fixed
radius and all nodes have the same AOI radius. The nodes
in a node’s AOI is called the node’s AOI neighbors. For ex-
ample, in Figure 1, the big circle around node A is A’s AOI,
and nodes B,..,I are node A’s AOI neighbors.

Under the above-mentioned system model, the AOI
voice chatting can be regarded as voice packet multicast
within the AOI. When a node talks, the voice packets are

A
A’s AOI radius

B

I

F

H

E

G

C

DK

J

Figure 1. The AOI (Area of Interest) of a node
A

multicast to its AOI neighbors. In this way, a node’s AOI
neighbors can hear its voice, and vice versa. As illustrated
in Figure 1, when node A talks, all its AOI-neighbors should
receive the voice packet, but non-AOI-neighbors should not.
In order to correctly multicast the voice packets to AOI
neighbors, we need a recipient list containing these AOI
neighbors. In this paper, we assume the MMOG system can
provide a node with the information of its AOI neighbors,
such as their ids, network addresses, virtual world coordi-
nates, etc. The assumption is practical. For example, the
VON system [7] can support such information.

3.2. The Problem of a Base Scheme

In this subsection, we introduce a base AOI voice chat-
ting scheme, NimbusCast, and its problem. When a node
talks, it first requests AOI neighbor information from the
MMOG system. After that, the node delivers voice pack-
ets to every AIO neighbor. For example, in Figure 2, when
node A talks, it first figures out nodes B..I are its AOI neigh-
bors, and then delivers separate voice packets to B..I. Nodes
J and K do not receive the voice packets because they are
outside A’s AOI.

A

B

I

F

H

E

G

C

DK

J

Figure 2. Illustration of NimbusCast

NimbusCast is simple; however, it has the problem of
bandwidth overloading that the burst bandwidth consump-
tion of a voice source node may exceed the upload band-
width limitation. This is because voice packets should
be sent in real time and when the number of a node’s
AOI neighbors is large, the burst bandwidth consumption
is prone to exceed the bandwidth limitation. For example,
if it takes 16kbps to support an end-to-end voice communi-
cation and the upload bandwidth limitation is 256kbps, the
burst bandwidth consumption will exceeds the bandwidth
limitation of a talking node when the number of its AOI
neighbors is more than 16. As shown in Figure 3, for a spe-
cific node, the problem may occur every time the node talks;
however, it does not occur when the node keeps silent.

U
pl

oa
d

ba
nd

w
id

th
co

ns
um

pt
io

n

Time

Bandwidth
limitation

Silent Talking Silent Talking

Figure 3. Network bandwidth consumption in
NimbusCast

4. The Proposed Schemes

In this section, we propose two schemes, QuadCast and
SectorCast, to support AOI voice chatting for MMOGs.
When a node talks, it must deliver the voice packets to all
its AOI neighbors with reasonable delay and without band-
width overloading. Therefore, we have the following two
design goals for the proposed schemes.

• Reasonable delay

ITU-T recommendation G.114 [14] provides a guide-
line about the one-way end-to-end (or mouth-to-ear)
delay. It says that most users are satisfied with the
delay between 150ms to 250ms, while a delay below
400ms may also be tolerable by users. According to
the recommendation, the end-to-end delay of the pro-
posed schemes should be less than 400ms.

• No bandwidth overloading

The schemes should avoid bandwidth overloading.
That is, they should prevent the burst bandwidth con-
sumption of a node from exceeding the upload band-
width limitation.

As we have mentioned in Section 2, in a conversation,
a node only spends about 40% of the time talking, and is
silent for the rest 60% of the time. If the idle upload band-
width of those silent nodes can be used to help forward other
nodes’ voice packets, the burst upload bandwidth consump-
tion will be reduced, which in turn can help avoid upload
bandwidth overloading. However, the forwarding of voice
packets will make the end-to-end delay longer. Thus, we
should have a systematic way to perform the voice packet
forwarding with reasonable delay. QuadCast and Sector-
Cast apply different strategies to divide the recipient list for
efficient packet forwarding. Below, we elaborate the details
of the two schemes in the following subsections, respec-
tively.

4.1. Quadrant-Based Forwarding (Quad-
Cast)

In QuadCast, in stead of directly transmitting voice pack-
ets to AOI neighbors, a node transmits voice packets only
to few forwarding assistants (FAs). These forwarding as-
sistants then forward the voice packets to the remaining
AOI neighbors. In this way, because all nodes contribute
their bandwidth resource to help forward the voice packets,
the burst bandwidth consumption of the speaking node de-
creases, and the overall quality of conversation is improved.

To save bandwidth, we demand accurate forwarding,
which means that each AOI neighbor should receive a voice
packet just once. To achieve this, we attach a recipient list
to the forwarding voice packet to indicate the recipients of
the packet. The forwarding voice packet thus contains a
packet header, the voice data, and a recipient list, etc. On
receiving a forwarding voice packet, the FA is in charge of
forwarding the voice contents to all nodes in the recipient
list.

When a node talks, it divides the neighbors by their coor-
dinates into four quadrants, and creates four recipient lists,
each for a quadrant. Afterwards, for each quadrant, the node
closest to the talking node is chosen as the FA for the quad-
rant. Note that the FA does not exist if there is no node in
that quadrant. After the FA selection, the talking node cre-
ates four separate forwarding packets with corresponding
recipient lists and delivers them to the four FAs. The FA
applies the same procedure to forward the received packets
recursively until the recipient list is empty. For example, in
Figure 4, when node A talks, it first acquires AOI neighbors
from the MMOG system, and then divides them into four
lists according to their coordinates. It then delivers four for-
warding packets to four FAs, namely I, F, E and C, in the

first, second, third, and fourth quadrants, respectively. Af-
ter receiving the forwarding packets, these FAs apply the
same procedure to forward voice packets to the nodes in the
recipient lists by dividing them into four quadrants.

A

B

I

F

H

E

G

C

DK

J

Figure 4. Quadrant-based voice package for-
warding

4.2. Sector-Based Forwarding (SectorCast)

In an MMOG, players are usually clustered in some hot
spots like markets, town squares or shopping malls. Thus in
Quadrant-Cast, the number of players in a certain quadrant
may be much greater than those in others, causing unbal-
anced player grouping. For example, in Figure 5(a), there
are much more players in the first quadrant of player A’s
AOI. The message forwarding in the crowded quadrant thus
has more hops, which causes more processing time and
transmission delay. If we can evenly distribute AOI players
into sectors as shown in Figure 5(b), the message forward-
ing in each sector will go through approximately the same
number of hops. Therefore, the maximum end-to-end delay
will be shorter and the quality of service will be better.

A

P

N
B

K

I

L
M

J

C

D

E
G

H
F

O

(a) Unbalanced player grouping

A

P

N
B

K

I

L
M

J

C

D

E
G

H
F

O

(b) Balanced player grouping

Figure 5. Unbalanced and balanced player
grouping in MMOGs

With the balanced player group in mind, we propose a
sector-based AOI voice chatting scheme called SectorCast

for MMOGs. SectorCast and QuadCast are similar; they are
different only in player grouping. QuadCast divides the AOI
into four fixed quadrants with equal size, while SectorCast
divides the AOI into four variable sectors containing ap-
proximately equal number of players. For example, in Fig-
ure 6, SectorCast divides the AOI into four sectors contain-
ing 4 or 3 players. When FAs applies the same procedure as
used by the talking player, the maximum (or average) hops
of packet forwarding in all sectors are almost equal because
sectors have about the same number of players. SectorCast
thus has shorter end-to-end delay than QuadCast. However,
SectorCast has higher computation complexity than Quad-
Cast. This is because QuadCast only needs to divide AOI
neighbors into four quadrants, while SectorCast needs to
sort neighbors according to their polar angles (between the
X-axis and the lines from players to the voice source or FA),
and divide them equally into four sectors.

A

B

I

P

JN
K

M

F

H

O

E

G

C

D

L

Figure 6. Sector-based voice packet forward-
ing

4.3. Packet Aggregation

In QuadCast and SectorCast, an FA might forward dif-
ferent packets to a same recipient. These packets are sent
separately. However, if we can apply aggregation tech-
niques to merge packets, the bandwidth consumption can
be reduced dramatically. Below we propose two aggre-
gation techniques: header sharing (HS) and voice mixing
(VM). In the former packets are merged by sharing a same
header, while in the latter packets are merged by mixing the
voice contents. For example, in Figure 7, node A is the FA
of node C and D; node A is in charge of forwarding their
voice packets to the recipient, node B. At the same time,
node A also needs to deliver its own voice packet to node B.
As shown in Figure 7(a), without aggregation, three voice
packets containing the same header and different voice con-
tents are delivered to node B. However, as shown in Figure
7(b), the three packets can be merged to be one packet by
sharing the same header or by mixing the voice contents. As

a result, packet traffic is lowered and bandwidth consump-
tion is reduced.

D

C

B

AD
C

A C

D

H A H C H D

(a) Forwarding without aggre-
gation

D

C

B

AD
C

{A
,C

,D
}

H A C D orHACD

(b) Forwarding with aggregation

Figure 7. Examples of packet aggregation

Since an FA node forwards voice packets to many recip-
ients on behalf of many source nodes, it must have a way to
aggregate voice packets for every recipient properly. Below,
we model the aggregation of packets as 2-power number ad-
dition. A voice packet is assigned a unique ID of a 2-power
number. And the ID of the aggregated voice packet is set to
be the addition of the IDs of packets from different sources.
In this manner, an ID corresponds to a unique combination
of packets from specific sources. For example, in Figure 8,
there are three nodes A, C, and D talking simultaneously.
Assume the voice packets of these three nodes are assigned
the IDs 1, 2, and 4, respectively. Also assume that node A
is the FA of nodes C and D to send voice packets to nodes
B and E. Node B should receive via node A the voice pack-
ets from nodes A, C, and D, and thus the ID of the aggre-
gated voice packet for B is 7, the addition of 1, 2, and 4.
Node D should receive via node A the voice packets from
nodes A and D, so the ID of the aggregated voice packet
for D is 5, the addition of 1 and 4. To perform packet ag-
gregation, an FA calculates the ID of the aggregated voice
packet for each recipient. Recipients are then grouped by
the calculated IDs; they are put in a same group if they are
to receive a same aggregated packet. Finally, the FA sends
each aggregated voice packet to corresponding recipients by
putting nodes of the corresponding group into the attached
recipient list.

4.4. Alternatives of the Recipient List

In QuadCast and SectorCast, a recipient list is appended
to a voice packet for transmitting the packet only to proper
recipients. However, delivering the recipient list consumes
a lot of bandwidth. We would like to trade computation
complexity with network bandwidth. When a voice packet
is forwarded, instead of appending a whole recipient list,
we only append the ID of the current FA for the next FA to
calculate the recipients.

C

D A
B

E

C
D

ID=7

ID=5

ID=2

ID=4 ID=1

Figure 8. The concept of packet aggregation
by 2-power number addition

In QuadCast, when a node talks, it appends its ID to the
voice packet and deliver the voice packet to the FAs. The
FA can acquire the position and the AOI of the talking node
by the ID and then figure out the forwarding area of the
voice packet. Once the forwarding area is specified, the FA
can select the recipients from its AOI neighbors properly.
Similarly, the FA also has to append its ID to the forwarding
voice packet in order to allow the next FA to specify the
forwarding area. In SectorCast, besides IDs, the source and
the FA need to further append to the voice packets the begin
and end angles of the forwarding sector for the next FA to
calculate the forwarding area to choose recipients from its
AOI neighbors properly.

5. Evaluation

In this section, we perform simulation experiments
for comparing the proposed AOI voice chatting schemes,
QuadCast and SectorCast, with the base scheme. We place
200, 400, ..., 1000 nodes in a 1000×1000 area to simulate
different node density scenarios. Nodes are assumed to have
arbitrary initial positions. All nodes have the same AOI ra-
dius of 100. According to Table 1, each node is assumed
to have a 40% probability of talking and 60% of keeping
silient. Each experiment case lasts for 1000 discrete time-
steps, and each step has an interval of 100ms. In each step,
every node moves along a random direction by a distance
of 10. The voice packet is assumed to have the format as
shown in Figure 9. The header size of a voice packet is
40 bytes (12(RTP) + 8(UDP) + 20(IP)), and the voice
contents occupy 100 bytes.

We first perform experiments under the assumption that
there is no bandwidth limitation. Figure 10 shows the per-
node total upload bandwidth consumption for NimbusCast,
QuadCast, and SectorCast without bandwidth limitation. In
Figure 10 and the following figures, ”-HS” in the legend
stands for the aggregation method of header sharing ; ”-

RTP
header

UDP
header

IP
header

Voice
content

Recipient
list

Figure 9. Format of a forwarding voice packet

Total per-node upload bandwidth consumption without bandwidth limitation

0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

200 400 600 800 1000

The number of nodes

kb

y t

e s

 / s
 e c

Nimb u s Ca s t

QuadCast

QuadCast-HS

QuadCast-VM

SectorCast

SectorCast-HS

SectorCast-VM

Figure 10. Total per-node upload bandwidth
consumption without bandwidth limitation
for AIO voice chatting schemes

VM”, the voice mixing. Without packet aggregation, the
total bandwidth consumption of the three schemes are the
same. This is because all AOI neighbors of a node should
receive every voice packet of the node no matter which node
sends out the packet (the packet may be directly sent by the
node itself or by a certain FA node). However, by applying
packet aggregation, the bandwidth consumption of Quad-
Cast and SectorCast is reduced, and the reduction is propor-
tional to the number of nodes. When the number of nodes
increases, the probability of performing aggregation and the
degree of aggregation (i.e., the number of voice packets to
be aggregated) also increase. This leads to less bandwidth
consumption.

In practice, every node has a bandwidth limitation. Be-
low, we perform simulations with considering the band-
width limitation. We assume each node has an upload band-
width limitation of 32k bytes/sec. Under the bandwidth
limitation, when a node delivers a voice packet, the packet
is delivered normally if there is still enough bandwidth for
packet transmission. However, if the upload bandwidth con-
sumption exceeds the limitation, the packet will be dropped.
The total per-node bandwidth consumption for the three
schemes with considering bandwidth limitation is shown in
Figure 11. We can see that QuadCast and SectorCast con-
sumes more upload bandwidth than NimbusCast, especially
when the number of nodes is more than 800. This is because
the burst bandwidth consumption of NimbusCast exceeds
the bandwidth limitation frequently and the so-called band-

To t a l p e r-n o d e u p lo a d b a n d wid t h c o n s u mp t io n wit h b a n d wid t h limit a t io n

0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

200 400 600 800 1000

The number of nodes

kb

y t

e s

/ s

e c

NimbusCast

QuadCast

QuadCast-HS

QuadCast-VM

SectorCast

SectorCast-HS

SectorCast-VM

Figure 11. Total per-node upload bandwidth
consumption with bandwidth limitation for
AIO voice chatting schemes

Dropping rate with bandwidth limitation

0

5

10

15

20

25

200 400 600 800 1000

The number of nodes

D
ro

pp
in

g
ra

te
(%

)

NimbusCast

QuadCast

QuadCast-HS

QuadCast-VM

SectorCast

SectorCast-HS

SectorCast-VM

Figure 12. Drooping rate for AOI voice chat-
ting schemes with bandwidth limitation

width overloading problem occurs, while the problem does
not occur so frequently for the forwarding based schemes,
QuadCast and SectorCast.

Figure 12 shows the packet dropping rates of all three
schemes. We can observe that in this figure, the dropping
rate of NimbusCast is overe 20% when the number of nodes
in the system reaches 1000, while the dropping rate of other
schemes are below 5%. In [6], the authors summarize that
it is acceptable when the dropping rate of voice packets is
lower than 5% in the internet voice chatting. The proposed
forwarding based schemes, QuadCast and SectorCast, do
fulfill this requirement in our simulation setting.

We also measure the average end-to-end delay for all
schemes when bandwidth limitation is considered. We
adopt the assumption of end-to-end delay proposed in [15].
That is, the packet propagation delay between two directly
connected nodes and the packet processing time are as-
sumed to be 70ms and 30ms, respectively. This means

End-to-end latency

0

50

100

150

200

250

300

200 400 600 800 1000
The number of nodes

L
at

en
cy

(m
s)

NimbusCast

QuadCast

SectorCast

QuadCast-HS

QuadCast-VM

SectorCast-HS

SectorCast-VM

Figure 13. Average end-to-end delay for AOI
voice chatting schemes with bandwidth limi-
tation

that when a voice packet is forwarded through one more
hop, the end-to-end delay is increased by 100ms. Figure 13
shows the simulation results for the end-to-end delay of the
three schemes. As shown in the figure, NimbusCast has the
shortest end-to-end delay 100ms because a node delivers all
voice packets directly to all AOI neighbors. QuadCast has
about 250ms end-to-end delay when the number of nodes
is 1000. SectorCast has shorter delay than QuadCast be-
cause it evenly divides the AOI neighbors into four sectors,
which yields even shorter delay. As we have mentioned in
Section 3, the end-to-end delay of a conversation should not
exceed 400ms, and a delay below 250ms is considered to be
of good quality. We can conclude that QuadCast and Sec-
torCast have reasonable end-to-end delay in our simulation
setting.

6 Conclusion

In this paper, we first describe the concept of AOI voice
chatting for MMOGs. By AOI voice chatting, a player in the
MMOG can chat by voice with other players within his/her
AOI. We then introduce NimbusCast as a base scheme, in
which each node directly delivers all voice packets to each
of its AOI neighbors. This scheme has the shortest end-to-
end delay; however, when the number of AOI neighbors in-
creases, the burst upload bandwidth consumption frequently
exceeds the bandwidth limitation, which leads to the band-
width overloading problem and causes a high packet drop-
ping rate.

We propose the QuadCast and SectorCast schemes for
avoiding the bandwidth overloading problem. In QuadCast,
a speaking player divides the AOI neighbors into four lists
according to the quadrants they reside. It then selects a for-
warding assistant (FA) for each quadrant, and sends voice
packets to the FAs only. Each FA then helps forward voice

packets to the remaining AOI neighbors in the correspond-
ing quadrant. SectorCast is similar to QuadCast. The major
difference is that in SectorCast, a speaking player divides
the AOI into four sectors with nearly the same number of
AOI neighbors. Both the two schemes can deal with the
bandwidth overloading problem properly and thus have low
packet dropping rate. However, they have longer end-to-
end delay. Fortunately, as shown by the simulation results,
the two schemes both have reasonable delay. QuadCast and
SectorCast can run on either a client/server or a peer-to-peer
based MMOG, only if the MMOG can provide proper AOI
neighbor information. We are planning to implement Quad-
Cast and SectorCast on top of VON [7] in the near future.

References

[1] Skype, http://www.skype.com/.
[2] Teamspeak, http://www.goteamspeak.com/.
[3] Ventrilo, http://www.ventrilo.com/.
[4] World of warcraft, http://www.worldofwarcraft.com/.
[5] Western world mmog market: 2006 review and

forecasts to 2011, http://www.screendigest.com/ re-
ports/07westworldmmog/ readmore/view.html/.

[6] L. Ding and R. Goubran. Assessment of effects of packet
loss on speech quality in VoIP. Proceedings of the 2nd IEEE
Internatioal Workshop on Haptic, Audio and Visual Environ-
ments and Their Applications (HAVE 2003), pages 49–54,
2003.

[7] S. Hu, J. Chen, and T. Chen. VON: a scalable peer-to-peer
network for virtual environments. IEEE Network, 20(4):22–
31, 2006.

[8] J. Keller and G. Simon. Solipsis: A massively multi-
participant virtual world. Proc. of PDPTA, pages 262–268,
2003.

[9] J. Lee, H. Lee, S. Ihm, T. Gim, and J. Song. Apolo: Ad-
hoc peer-to-peer overlay network for massively multi-player
online games. Technical report, 2005.

[10] L. Liu and R. Zimmermann. Immersive peer-to-peer audio
streaming platform for massive online games. Proceedings
of 3rd IEEE Consumer Communications and Networking
Conference (CCNC 2006), 2, 2006.

[11] K. Morse, L. Bic, and M. Dillencourt. Interest management
in large-scale virtual environments. Presence: Teleoperators
and Virtual Environments, 9(1):52–68, 2000.

[12] C. Nguyen, F. Safaei, and D. Platt. On the provision of im-
mersive audio communication to massively multi-player on-
line games. Proceedings of Ninth International Symposium
on Computers and Communications, 2, 2004.

[13] I. T. Union. ITU-T Recommendation P.59 Artificial conver-
sational speech, 1993.

[14] I. T. Union. ITU-T Recommendation G.114 One-way trans-
mission time, 2003.

[15] R. Zimmermann and L. Liu. ACTIVE: adaptive low-latency
peer-to-peer streaming. Proceedings of SPIE, 5680:26–37,
2005.

