
Pe
er

-t
o-

Pe
er

 C
om

pu
ti

ng

54 Published by the IEEE Computer Society 1089-7801/10/$26.00 © 2010 IEEE IEEE INTERNET COMPUTING

M ultiuser 3D virtual environments
(VEs) such as massively multi-
player online games (MMOGs)

have become very popular in recent
years. World of Warcraft, a role-playing
MMOG in which players participate in
epic battles and adventures between
two opposing camps, had more than
11 million paying subscribers in 2008.
Second Life,1 a social MMOG entirely
built by its “residents,” also boasts more
than 1.4 million active accounts and
nearly US$9 million worth of virtual
item transactions each month. Due to
the demand for more realistic worlds,
VEs have become larger and more
dynamic. As content becomes easier to
create and cheaper to host, more devel-
opers — even individuals — are build-

ing virtual worlds (for example, Second
Life hosted 34 Tbytes of user-generated
content in 2007). However, the trends
toward larger worlds and larger num-
bers of worlds are beginning to reveal
the inadequacy of current VE instal-
lation methods, which require users to
preinstall the full content via DVDs or
a prior download. Easier access to this
various and massive amount of VE con-
tent thus demands 3D streaming for
content distribution.2,3

3D streaming delivers 3D content
over networks in real time to let users
navigate a VE without a complete con-
tent installation. Similar to audio or
video media streaming, 3D streaming
requires that the content be fragmented
into pieces before it can be transmitted,

Virtual worlds have become very popular in recent years, with trends toward

larger worlds and more user-generated content. The growth of 3D content

in virtual worlds will make real-time content streaming (or 3D streaming)

increasingly attractive for developers. To meet the demands of a large user

base while lowering costs, peer-to-peer (P2P) content delivery holds the

promise for a paradigm shift in how future virtual worlds will be deployed and

used. The authors define both the problem and solution spaces for P2P 3D

streaming — by outlining its requirements and challenges — and categorize

existing proposals.

Shun-Yun Hu
and Jehn-Ruey Jiang
National Central University,
Taiwan

Bing-Yu Chen
National Taiwan University

Peer-to-Peer 3D Streaming

MARCH/APRIL 2010 55

Peer-to-Peer 3D Streaming

reconstructed, and displayed. However, unlike
linearly streamed audio or video, 3D streaming
is highly interactive and nonlinear in nature,
with the streaming sequence based on each
user’s unique visibility or interest area (that is,
the landscape or objects the user can see, or is
interested in seeing, within the virtual world).

Current 3D streaming schemes adopt the
client-server (C/S) model for content delivery.
However, such architecture is difficult to scale
because 3D streaming is both data- and pro-
cessing-intensive. Prohibitively vast amounts
of server-side bandwidth and CPU power are
required for a massive audience. On the other
hand, peer-to-peer (P2P) networks offer highly
scalable yet affordable computing and content-
sharing capabilities. Given that users in a 3D
scene could own similar content due to over-
lapping visibility, they can obtain content from
each other in a P2P manner. However, although
P2P media streaming has progressed signifi-
cantly in recent years, it might not be directly
applicable to 3D content due to different content
access patterns. In both live and on-demand
media streaming, content is often sent linearly
after a starting point, whereas access to 3D
content is rather arbitrary and nonlinear, and
depends much on real-time user behaviors.4
New insights and novel designs are thus needed
for P2P-based 3D streaming.

Here, we describe the P2P approach to 3D
streaming with a conceptual model and exam-
ine some recent designs.5–7 Using prototyping
(see Figure 1) and simulations of our proposed
framework, Flowing Level-of-Details (FLoD),7
we show that P2P holds great promise for pro-
viding scalable and affordable content delivery
for future 3D virtual worlds.

3D Streaming Requirements
To understand how 3D streaming could work
on P2P networks, we must first identify its
requirements and challenges from both the cli-
ent and server perspectives. Four main types of
3D streaming exist today: object-, scene-, visu-
alization-, and image-based.7 In the context
of virtual worlds, our main focus would be on
scene streaming, whose goal is to provide each
user a navigation experience within a scene by
progressively delivering the 3D objects within
the user’s area of interest (AOI, or the area
currently visible to the user, often denoted as
a circle around him or her2). We can assume

that each object consists of 3D models (such as
meshes) and other associated data (for instance,
textures, height maps, light maps, and anima-
tions), plus a certain position and orientation
described in some form. To facilitate delivery,
the content provider first fragments each object
into a base piece and many refinement pieces
in an application-specific manner at the server,
using methods such as progressive meshes8 or
geometry images9 for models, or progressive
GIF, JPEG, or PNG formats for textures. Once
the client obtains a set of base pieces, it can per-obtains a set of base pieces, it can per-
form an initial scene rendering to allow timely
navigation. Additional time in the scene will

Figure 1. Peer-to-peer (P2P) 3D streaming prototype system. The
different frames show the progression of streaming as time passes.

Peer-to-Peer Computing

56 www.computer.org/internet/ IEEE INTERNET COMPUTING

let clients download and render models in more
detail, given certain quality-of-service (QoS)
requirements.10 The two main requirements for
a 3D streaming system are thus streaming qual-
ity and scalability.

Streaming Quality
From the user’s perspective, the main concern
for 3D streaming is its visual quality. How-
ever, because visual quality can be subjective,
a more definable concept is the streaming qual-
ity in terms of how much data a client obtains
and how quickly. For the former, we could use
the ratio between the data already downloaded
and that required to render the current view —
that is, a fill ratio. A ratio of 100 percent indi-
cates the best visual quality (that is, the same as
preinstalled content). For the latter, we can use
base latency and completion latency to indicate
the time taken to obtain an object’s base piece
or full data. Base latency indicates the delay in
displaying a basic view of the scene, whereas
completion latency indicates the time needed to
fully inspect objects. The goal is thus to maxi-
mize fill ratios while minimizing latencies.

Scalability
From the server’s perspective, the main goal is
to maximize the number of concurrent users by

distributing transmission and processing loads
to clients as much as possible. For transmis-
sions, it’s preferable for clients, rather than the
server, to deliver most content. For processing,
the server should minimize its role in calculat-
ing transmission strategies. Ideally, if the server
can fully delegate these calculations (for exam-
ple, distributed determination of visibility and
delivery prioritization) to clients, then it can
simply answer data requests.

Challenges in P2P 3D Streaming
Although it’s relatively straightforward for a
server to determine and deliver content to cli-
ents, switching to a P2P model introduces new
challenges. In C/S 3D streaming, the server
first performs object discovery for each client
because it possesses complete knowledge of all
objects and can determine each client’s view-
able objects. Given that only one data provider
exists, source discovery isn’t an issue. We can
assume full data availability at the server, so
the clients also don’t need to perform any state
exchange to learn of content availability. Finally,
the content is transferred from the server to
clients in a unidirectional manner. In P2P 3D
streaming, however, we must re-examine these
tasks as follows, while considering performance
and scalability.

Related Work in 3D Scene Streaming

Researchers have proposed various techniques for
transmitting a given 3D scene over a network to allow

user interactions without preinstallation. Dieter Schmalstieg
and Michael Gervautz were the first to introduce scene stream-
ing in which a server determines and transmits visible objects
at different levels-of-detail (LODs) to clients.1 Eyal Teler and
Dani Lischinski used prerendered, image-based impostors as
the lowest LOD to enable faster initial visualizations.2 Cyber-
walk adopts progressive meshes to avoid the data redundancy
from multiple LODs and focuses on caching and prefetching to
enhance visual perception.3 Social massively multiplayer online
games (MMOGs) such as ActiveWorlds, There.com, and Sec-
ond Life,4 as well as the 3D instant messenger IMVU, use scene
streaming to support dynamic content, but little is publicly
known of their mechanisms. Our work complements these
works with distributed deliveries.

Ketan Mayer-Patel and David Gotz present the concept
of nonlinear media streaming,5 in which interactive content
(for example, images for a virtual museum) is divided and
sent through multicast channels clients have subscribed to.
The system supports a large number of receivers by send-

ing the content via application-layer multicast (ALM). How-
ever, ensuring proper content partitioning (so that clients
receive only relevant content) and bounded latency (impor-
tant for interactive applications) are nontrivial issues. Under
this approach, clients might receive excessive content beyond
current interests and experience variable latencies due to
ALM channels’ limitations.

References
1. D. Schmalstieg and M. Gervautz, “Demand-Driven Geometry Transmission

for Distributed Virtual Environments,” Computer Graphics Forum, vol. 15, no.

3, 1996, pp. 421–432.

2. E. Teler and D. Lischinski, “Streaming of Complex 3D Scenes for Remote

Walkthroughs,” Computer Graphics Forum, vol. 20, no. 3, 2001, pp. 17–15.

3. J. Chim et al., “CyberWalk: A Web-Based Distributed Virtual Walkthrough

Environment,” IEEE Trans. Multimedia, vol. 5, no. 4, 2003, pp. 503–515.

4. P. Rosedale and C. Ondrejka, “Enabling Player-Created Online Worlds with

Grid Computing and Streaming,” Gamasutra Resource Guide, 2003; www.

gamasutra.com/resource_guide/20030916/rosedale_01.shtml.

5. K. Mayer-Patel and D. Gotz, “Scalable, Adaptive Streaming for Nonlinear

Media,” IEEE Multimedia, vol. 14, no. 3, 2007, pp. 68–83.

MARCH/APRIL 2010 57

Peer-to-Peer 3D Streaming

Object Discovery
To know which objects to download, the user
client must first discover the objects within its
AOI. Preferably, the client should conduct vis-the client should conduct vis-should conduct vis-
ibility determination without the server being
involved or having any global knowledge of the
scene. However, because only the server ini-
tially possesses complete scene knowledge, we
must partition and distribute the scene descrip-
tions (that is, object metadata such as placement
or orientation) so that the client can conduct a
distributed discovery (via hierarchical trees5 or
grids,7,11 for example).

Source Discovery
To obtain content from other clients instead of
the server, each client must know some other
peers who might hold the content of inter-
est. These partner peers likely are within each
other’s AOIs given that overlapped visibility
indicates shared interests. However, other peers
who have been in the same area previously
might also retain content in their caches. So,
how to maintain and discover potential con-
tent sources, either centrally6 or in a distributed
way,7 is another challenge.

State Exchange
Once the client finds a few peers, it still needs
to know which content pieces are available at
which peers, and what network conditions
exist for each peer, so that it can fulfill content
requests. A naïve approach is to query (that is,
pull) each known peer,7 but the query-response
time might not meet 3D streaming’s real-time
requirements. A push approach, in which peers
proactively notify each other about content
availability, is thus also possible.12

Content Exchange
To optimize the visual (or streaming) quality for
a given bandwidth budget, a client can lever-
age its knowledge of peers to schedule content
requests based on visibility, content availabil-
ity, and network conditions. Interestingly, 3D
streaming can be view-dependent,8 with data
pieces applied arbitrarily to reconstruct objects.
As long as the download sequence satisfies the
piece dependencies, only a roughly sequential
transfer is needed (as opposed to the strictly
sequential transfer required for video stream-transfer required for video stream-video stream-
ing). The clients can also exploit concurrent
downloads to accelerate the retrieval for pieces

that don’t involve dependencies. Depending on
the results of initial requests, additional peers
or requests might then be needed.

A Conceptual Model
Given the requirements and challenges we’ve
discussed, we categorized the main tasks for
P2P-based 3D scene streaming as follows (see
Figure 2):

• Partitioning divides the entire scene into
smaller units so that the client doesn’t
require global knowledge of all object place-
ments to determine visibility.5 Scene par-
titioning is essential for decentralizing
visibility calculations.

• Fragmentation divides 3D objects into pieces
so that a client can progressively receive
and reconstruct the 3D objects. Progressive
meshes8 and geometry images9 are some
example techniques.

• Prefetching predicts data usage ahead of
time and generates data requests so that
transmission latency is hidden from users.
The client can also try to predict user move-can also try to predict user move-also try to predict user move-user move-
ments or behaviors for this task.10,11

• Prioritization occurs when the client per-the client per-per-
forms visibility determination to generate
the request order for object pieces. The goal
is to maximize visual quality by consider-
ing factors such as distance, line of sight, or
visual importance.2,11

• Selection determines the proper peers to con-
nect with and pieces to obtain based on peer
capacity, content availability, and network
conditions to efficiently fulfill prefetching
and prioritization needs.

We can see from this model that the main
additional tasks in P2P 3D streaming are
partitioning the scene (for distributed visibility
determination) and selecting peers and pieces
(for P2P content exchange). Other tasks more or
less are also required in C/S 3D streaming.

FLoD Design
Based on the model just mentioned, we devel-
oped the FLoD framework7 to realize P2P 3D
streaming. Given that content and users (or
nodes) tend to cluster at hotspots,13 a user often
has overlapped visibility with its AOI neighbors
(that is, other users within that user’s AOI). By
requesting data from the neighbors first, the

Peer-to-Peer Computing

58 www.computer.org/internet/ IEEE INTERNET COMPUTING

server needn’t answer content requests repeti-answer content requests repeti-content requests repeti-requests repeti-repeti-
tively. Note that neighbors here are based on
proximity inside the virtual world and not on
the physical network. Finding AOI neighbors
is, in fact, the discovery of the proper interest
groups for content exchange and must occur
efficiently. For this purpose, we utilize a Vor-
onoi-based Overlay Network (VON)14 that sup-
ports neighbor discovery for P2P-VEs. VON
lets a node learn its AOI neighbors’ IDs, vir-
tual coordinates, and IP addresses (akin to per-
forming a spatial query for objects within the
AOI). The basic idea is that even though a node
might not know other nodes beyond its AOI, its
neighbors near the AOI border (called boundary
neighbors) have such knowledge and can send
notification about incoming neighbors. We can
thus conduct neighbor discovery in a fully dis-
tributed way without relying on any servers.

To allow client-side visibility determination,
we partition the VE into square grids, each with
a small scene description for the objects within.
Each client can then determine the visible objects
by retrieving scene descriptions for the cells
that its AOI covers. When entering a new area,
a client first prepares some scene requests to
obtain scene descriptions from its AOI neighbors
or the server. The client then performs object
discovery by decoding the scene descriptions
and sends out prioritized piece requests based on
the client’s visibility preferences. As data pieces
arrive from either other peers or the server
(which acts as the final data source for unfilled
peer requests), the client can render a view pro-, the client can render a view pro-render a view pro-
gressively. Before the actual content exchange,
the client first queries its neighbors on content
availability. Among the neighbors that answer

positively, some are chosen randomly to request
the actual content. The client repeats this pro-. The client repeats this pro-
cess as it moves in the environment.

To demonstrate how FLoD works in real sce-
narios, we implemented a prototype (see Figure
1) that performs all the major 3D streaming
tasks except prefetching. We experimented
with the prototype by setting up a Linux server
to load the initial scene and respond to client
requests as users log in to navigate the scenes.
The experiment shows that the server band-
width usage is about half that of a pure C/S
approach because clients can be self-sufficient
in content serving.7

To investigate large-scale behaviors, we then
performed simulations with bandwidth lim-
its (a 1-Mbps download/256-Kbps upload limit
for clients, and a 10-Mbps symmetric limit for
the server). We placed objects randomly on a
2D map, with sizes based on our prototype (15
Kbytes per object, with a 3-Kbyte base piece,
1.2-Kbyte refinement pieces, and 300 to 500
bytes per scene description). The nodes move
with constant speeds using random waypoints11
for 3,000 time steps and request scene descrip-
tions or data pieces as needed.

Scalable systems must keep resource usages
bounded at all relevant system nodes. Figure
3a shows the upload bandwidth for both a C/S
server and a FLoD server. Because the server
upload limit is 10 Mbps, the C/S server exhausts
its bandwidth at 1,250 Kbyte/sec when serving
200 nodes. On the other hand, a FLoD serv-
er’s upload stays relatively constant under 50
Kbytes/sec. Figure 3b explains this reduction,
showing that the upload and download band-
widths of FLoD clients converge, indicating

Server-side

Object
preprocessing

Client-side

Fragmementation

Partitioning

Cache

Rendering

Prioritization

Prefetching

Movement

Object determination

Peer and piece
selection

Object transmission

Defragmentation

Departition

Object reconstruction

Figure 2. A conceptual model for peer-to-peer (P2P)-based 3D scene streaming. Obtaining movements and performing
rendering are the only tasks required when content is locally available. Object preprocessing, determination,
transmission, and reconstruction are additional stages for networked 3D streaming. Client-server 3D streaming
requires only fragmentation, prefetching, and prioritization. Partitioning and selection are the new tasks required for
P2P-based 3D streaming.

MARCH/APRIL 2010 59

Peer-to-Peer 3D Streaming

that as the system scales (that is, as the num-
ber of AOI neighbors increases), FLoD clients
become self-sufficient in content serving. How-
ever, some bandwidth overhead exists for using
the P2P overlay, because the overlay needs to
exchange user positions and notify peers of new
neighbors.7 Although this overhead indicates a
certain scalability limit as AOI neighbor density
increases, the entire system can still accommo-
date users scalably (to possibly millions of con-
current users).

Comparisons and Open Questions
FLoD addresses object discovery by using
grid-based scene descriptions, and queries AOI
neighbors from a P2P-VE overlay for source
discovery. It uses a query-response approach
for state exchange and random selection from
peers for content exchange. Although this basic
design is simple, the data sources are limited
and the query for states might be slow. In a
subsequent work,12 we let clients keep historic
AOI neighbors as extra sources and proactively
push content availability to all connected
neighbors to reduce the query-response delay.
Clients also send requests to closer AOI neigh-also send requests to closer AOI neigh-
bors first to avoid concentrating requests.
Simulation results show that both fill ratio and
base latency have improved.

Other researchers have recently proposed
two alternative designs for P2P 3D streaming.
Table 1 shows a taxonomy based on the main
challenges we mentioned and compares these
designs with FLoD, while outlining the poten-with FLoD, while outlining the poten- FLoD, while outlining the poten-
tial solution space.

LODDT
The level-of-detail description tree (LODDT)5 is a
tree structure that stores urban cityscapes hier-
archically. Clients can progressively perform
visibility determination given a partial tree cov-
ered by the user’s AOI. LODDT also evaluates
a few peer-selection strategies based on object
proximity and estimated content availability.
Object discovery is thus based on a distributed
tree, whereas source discovery is performed
with a P2P-VE overlay similar to FLoD. How-
ever, given that only a selected set of connec-
tivity peers provides the AOI neighbors, LODDT
is more of a super peer than a fully distributed
design. To learn about client states, peers also
exchange queries and responses. Content avail-
ability isn’t exchanged but is rather inferred

from the relative positions between neighbors.
Based on response time and estimated con-
tent availability, a client then randomly makes
requests from potential sources.

HyperVerse
HyperVerse uses a group of public servers to
construct a static, structured overlay that main-
tains user positions for a VE.6 The clients learn
of other peers from the servers and exchange
content by forming a loosely structured overlay.
Thus, the server performs object and source dis-
covery centrally and notifies clients of relevant
peers and objects. No explicit state exchange
policy exists, and clients request content from
random neighbors.

Object Discovery Comparison
FLoD differs from LODDT mainly in the scene-
partitioning method (for example, FLoD uses

0

200

400

600

800

1,000

1,200

1,400

1,600

200 400 600 800 1,000
Node size

0 200 400 600 800 1,000
Node size

Tr
an

sm
is

si
on

 s
iz

e
(K

by
te

s/
se

c)

(a)

(b)

5

10

15

20

25

Tr
an

sm
is

si
on

 s
iz

e
(K

by
te

s/
se

c)

C/S server

FLoD server

FLoD client download
FLoD client upload
FLoD client download (without overlay)
C/S client download
C/S client upload

Figure 3. Bandwidth usage comparison between peer-to-peer (P2P)
and client-server (C/S) 3D streaming. (a) Server bandwidth usage
shows that a P2P server uses much less bandwidth than a C/S
server after a saturation point of 200 nodes. (b) Client bandwidth
usage shows that by providing content through client upload, a
P2P client has matching upload/download sizes, which alleviates
the server from content transmission. Some overhead for using the
overlay exists and grows with user density in the region.

Peer-to-Peer Computing

60 www.computer.org/internet/ IEEE INTERNET COMPUTING

grids whereas LODDT utilizes trees); Hyper-
Verse uses the server to maintain the object
list. A central list is arguably more flexible and
secure because distributed scene descriptions
aren’t straightforward to update, and mali-
cious clients could manipulate the object list.
On the other hand, a central list faces scalabil-
ity limitations if the server receives too many
requests. Grid partitioning is simple, and only
a few cells are needed for ground-level navi-
gation. However, for scenes viewable from dif-
ferent altitudes (such as city models or virtual
globes), grids become inefficient because too
many cells might be involved. Tree structures,
however, require a top-down construction, so
clients must first retrieve many nodes from the
root down before they can determine ground-
level objects.

Source Discovery Comparison
The current designs use mostly AOI neigh-
bors as sources, maintained either centrally
or among peers. Using a P2P-VE overlay for
neighbor discovery can drastically reduce
server loads.14 However, the overlay incurs
some overhead that grows with AOI neighbor
density. A super-peer-based tracker for sources
might be a balance between the two extremes
and could keep track of non-AOI neighbors with
relevant content. However, we must consider
the fault-tolerance of the super-peers, so that
the neighbor tracking tasks would not become
unavailable when the super-peers fail.

State Exchange Comparison
The current designs exchange few states (such
as content availability and network condition),
and the two main approaches are pull (query-
response) and push (proactive update). Current
evaluation indicates that the push approach
is faster than the pull approach.12 However,

whether alternative or hybrid approaches exist
requires further investigation.

Content Exchange Comparison
Both the basic FLoD design and HyperVerse use
random selection. With enhanced FLoD, clients
send requests to closer neighbors first, whereas
LODDT bases requests on estimated capacities.
However, researchers have yet to make detailed
comparisons among these approaches. The
clients can also use additional criteria to form
the requests, such as latency or piece depen-
dency. Current methods are mostly pull-based
(that is, a client sends requests to the source
providers), but push-based approaches are also
possible (that is, sources proactively send out
content, similar to how content delivery net-
works, or CDNs, push Web content to different
geographic servers).

Besides these network-specific issues, other
3D streaming requirements are also worth
exploring — for example, commercial applica-
tions likely will require dynamic updates and
content authentication.15 Prefetching and cach-
ing are also important aspects we have yet to
investigate in-depth.10,11

A recent study on Second Life traffic has
shown that 60 to 88 percent of server band-

width usage is for textures, and a busy region
might deliver close to 100 Gbytes of textures
a day.13 As our experiments and simulations
show, FLoD can relieve the server of its heavy
loads. Virtual globe applications such as Google
Earth might also benefit from P2P 3D stream-
ing as they move toward 3D content with pos-
sible multiuser interactions.

Real-time 3D content has yet to find its way
to most Internet users in spite of years of effort.
Although challenges remain in areas such as

Table 1. Taxonomy of P2P 3D streaming approaches.

Stage FLoD Level-of-detail description
tree (LODDT)

HyperVerse

Basic Enhanced

Object discovery Grid-based scene
descriptions

Grid-based scene
descriptions

Hierarchical scene
descriptions

Server-provided
list

Source discovery AOI (area of interest)
neighbors (from peers)

Extended AOI neighbors
(from peers)

n nearest neighbors
(from super peers)

AOI neighbors
(from server)

State exchange Query-response (pull) Incremental update (push) Query-response (pull) N/A

Content exchange Random selection Multilevel AOI selection Round-trip time (RTT) and
estimated peer loading

Random selection

MARCH/APRIL 2010 61

Peer-to-Peer 3D Streaming

protocol standards and ease of content creation,
content streaming can effectively address the
delivery problem. 3D streaming on P2P networks
is thus a topic of interest to both graphics and
networking professionals. By identifying the
basic issues, we hope to highlight this promising
direction for making 3D content more accessible.
An open source implementation of FLoD is avail-
able at http://ascend.sourceforge.net.

Acknowledgments
This work was supported by National Science Council Tai-National Science Council Tai- Tai-

wan, ROC., under grants 95-2221-E-008-048-MY3 and

95-2221-E-002-273-MY2. We thank Shing-Tsaan Huang

for his support and Shao-Chen Chang and Ting-Hao Huang

for invaluable discussions. We’re grateful to the National

Center for High-Performance Computing (NCHC), Taiwan,

for its computing facilities, Guan-Ming Liao for the game

scene, and the constructive feedback from the anonymous

reviewers. We also thank Nein-Hsien Lin, Wei-Lun Sung,

Guan-Yu Huang, and Chien-Hao Chien.

References
1. P. Rosedale and C. Ondrejka, “Enabling Player-Created

Online Worlds with Grid Computing and Streaming,”

Gamasutra Resource Guide, 2003; www.gamasutra.

com/resource_guide/20030916/rosedale_01.shtml.

2. D. Schmalstieg and M. Gervautz, “Demand-Driven

Geometry Transmission for Distributed Virtual Envi-

ronments,” Computer Graphics Forum, vol. 15, no. 3,

1996, pp. 421–432.

3. E. Teler and D. Lischinski, “Streaming of Complex 3D

Scenes for Remote Walkthroughs,” Computer Graphics

Forum, vol. 20, no. 3, 2001, pp. 15–17.

4. K. Mayer-Patel and D. Gotz, “Scalable, Adaptive

Streaming for Nonlinear Media,” IEEE Multimedia, vol.

14, no. 3, 2007, pp. 68–83.

5. J. Royan et al., “Network-Based Visualization of 3D

Landscapes and City Models,” IEEE Computer Graphics

and Applications, vol. 27, no. 6, 2007, pp. 70–79.

6. J. Botev et al., “The HyperVerse — Concepts for a Feder-

ated and Torrent Based ‘3D Web,’” Int’l J. Advanced Media

and Communication, vol. 2, no. 4, 2008, pp. 331–350.

7. S.-Y. Hu et al., “FLoD: A Framework for Peer-to-Peer 3D

Streaming,” Proc. 27th Conf. Computer Communication

(INFOCOM 08), IEEE CS Press, 2008, pp. 1373–1381.

8. H. Hoppe, “View-Dependent Refinement of Progres-

sive Meshes,” Proc. 24th Ann. Conf. Computer Graphics

and Interactive Techniques (SIGGRAPH 97), ACM Press,

1997, pp. 189–198.

9. N.-S. Lin, T.-H. Huang, and B.-Y. Chen, “3D Model

Streaming Based on JPEG 2000,” IEEE Trans. Con-

sumer Electronics, vol. 53, no. 1, 2007, pp. 182–190.

10. G.V. Popescu and C.F. Codella, “An Architecture for

QoS Data Replication in Network Virtual Environ-

ments,” Proc. IEEE Virtual Reality Conf. (VR 02), IEEE

Press, 2002, pp. 41–48.

11. J. Chim et al., “CyberWalk: A Web-Based Distributed

Virtual Walkthrough Environment,” IEEE Trans. Mul-

timedia, vol. 5, no. 4, 2003, pp. 503–515.

12. W.-L. Sung, S.-Y Hu, and J.-R. Jiang, “Selection Strat-

egies for Peer-to-Peer 3D Streaming,” Proc. 18th Int’l

Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV 08), ACM Press,

2008, pp. 15–20.

13. H. Liang, M. Motani, and W.T. Ooi, “Textures in Second

Life: Measurement and Analysis,” Proc. 14th IEEE Int’l

Conf. Parallel and Distributed Systems, Workshop P2P-

NVE (ICPADS 08), IEEE Press, 2008, pp. 823–828.

14. S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “VON: A Scalable

Peer-to-Peer Network for Virtual Environments,” IEEE

Network, vol. 20, no. 4, 2006, pp. 22–31.

15. M.-C. Chan, S.-Y. Hu, and J.-R. Jiang, “Secure Peer-

to-Peer 3D Streaming,” Multimedia Tools and Applica-

tions, vol. 45, nos. 1–3, Oct. 2009, pp. 369–384.

Shun-Yun Hu is a research assistant at the Institute of

Information Science, Academia Sinica, Taiwan. His

research interests include networked virtual envi-

ronments and peer-to-peer systems. Hu has a PhD in

computer science from National Central University,

Taiwan. He’s a member of the IEEE and the ACM. Con-

tact him at syhu@ieee.org.

Jehn-Ruey Jiang is an associate professor in the Depart-

ment of Computer Science and Information Engineer-

ing, National Central University, Taiwan. His research

interests include peer-to-peer computing and perva-

sive computing. He’s a member of the IEEE and the

ACM. Contact him at jrjiang@csie.ncu.edu.tw.

Bing-Yu Chen is an associate professor in the Department of

Information Management, the Department of Computer

Science and Information Engineering, and the Graduate

Institute of Networking and Multimedia at the National

Taiwan University, and a visiting associate professor in

the Department of Computer Science at the University

of Tokyo. His research interests are mainly in computer

graphics, human-computer interaction, and image and

video processing. Chen has a PhD in information sci-

ence from the University of Tokyo. He’s a member of the

IEEE, the ACM, ACM SIGGRAPH, Eurographics, IEICE,

and IICM. Contact him at robin@ntu.edu.tw.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

