
1

Nondominated Local Coteries

for Resource Allocation in Grids and Clouds

Jehn-Ruey Jiang

Department of Computer Science and Information Engineering

National Central University, Jhongli, 32001, Taiwan

E-mail: jrjiang@csie.ncu.edu.tw

Abstract

The resource allocation problem is a fundamental problem in Grid and Cloud computing environments. This

paper focuses on constructing nondominated (ND) local coteries to solve the problem in a distributed way.

Distributed algorithms using coteries usually incur low communication overhead and have high degree of

fault-tolerance, and ND coteries are candidates for the algorithms to achieve the highest degree of fault-tolerance.

A new type of coteries, called p-coteries, is defined to aid the construction of local coteries. Theorems about the

nondomination of p-coteries are then developed, and an operation, called pairwise-union (p-union), is proposed

to help generate ND p-coteries, which in turn can be used to generate ND local coteries for solving the resource

allocation problem.

Keywords: Mutual exclusion, resource allocation, distributed computing, coteries, quorums, nondomination

1 Introduction

A Grid system is described as a computation infrastructure for resource sharing in dynamic virtual

organizations [1]. A virtual organization is formed temporally for cooperation and resource sharing among several

institutions to achieve some common computation goal. Also with the concept of virtualization, a Cloud system

packs computing power and other resources as services to be leased to individuals or enterprise users [2]. Some

resources, such as database objects, protected shared mutable storage, special data visualization displays and

DAT tape drives, must be shared in a mutually exclusive way. Jobs or processes running in Grids or Clouds may

require multiple resources simultaneously. Problems arise in designing efficient resource allocation algorithm

allowing processes to simultaneously acquire multiple resources for execution. This paper proposes solving the

resource allocation problem in a distributed manner with the help of local coteries constructed by the pairwise

union (p-union) operation. It also shows that some local coteries are toward the optimality in the sense that they

are not dominated by other local coteries.

In this paper, a Grid or a Cloud computing environment is regarded as a distributed system consisting of a

set P of processes and a set R of shared resources each of which is of a different type and must be accessed in a

mutually exclusive way. The processes can communicate with each other by exchanging messages, and from time

to time, a process may request to enter the critical section (CS) to access some of the resources. A process pi, piP,

enters the CS after it acquires all the requested resources. Afterwards, pi leaves the CS and releases all the acquired

resources. Processes are assumed to leave the CS in finite time. The resource allocation problem is concerned with

how to ensure that all resources are accessed in a mutually exclusive way and that all processes wishing to enter

the CS can proceed in a finite time.

The process-accessing-resource relation in the resource allocation problem can be represented by a resource

allocation graph (RAG). A RAG for the system with process set P and resource set R is a bipartite graph G=(V, E),

where V=PR is a set of vertices and E is a set of edges. There is an edge e=(p, r)E if and only if process p

requests to access resource r. Let Ri = {r | process pi requests to access resource r} be the set of all the resources

2

that process pi requests to access. If RiRj, it means that process pi and process pj compete for the same

resources.

Fig. 1 is an example of RAG for the system with P={p1, p2, p3} and R={r1, r2}. It is noted that we represent

processes and resources as circles and squares, respectively. With respect to the RAG, R1={r1}, R2={r1, r2} and

R3={r2}, which means that process p1 requests to access resource r1, process p2 requests to access resources r1 and

r2, and process p3 requests to access resource r2.

Figure 1. The resource allocation graph (RAG)

for the system with P={p1, p2, p3} and R={r1, r2}

The mutual exclusion [3], the k-mutual exclusion [4], the h-out of-k mutual exclusion [5], the dining

philosophers [6] and the drinking philosophers [7] problems are all special cases of the distributed resource

allocation problem. The mutual exclusion problem deals with the mutually-exclusive sharing of a unique resource

among all processes. The k-mutual exclusion problem deals with the sharing of k identical resources with the

restriction that one process can access any one resource at a time. The h-out of-k mutual exclusion problem deals

with the sharing of k identical resources with the restriction that one process can access any h, hk, resources at a

time. The dining philosophers problem and the drinking philosophers problem describe the resource sharing

relation by the conflict graph, in which a vertex represents a process and an edge represents the resource shared by

the two processes incident to the edge. It is noted that a conflict graph can be transformed to be a resource

allocation graph by adding a resource node in the middle of an edge. In the dining philosophers problem, a process

can enter the CS when it has acquired all the resources represented by the edges incident to it; while in the drinking

philosophers problem, a process can enter the CS when it has acquired a subset of the resources.

Quorum-based algorithms are promising for solving the distributed resource problem. Their basic idea is to

as follows. Processes are first grouped as quorums to form a quorum system which is a family of sets (quorums)

satisfying the intersection property that any two quorums overlap mutually. It is noted that if a quorum system also

satisfies the minimality property that no quorum is a super set of others, then the quorum system is called a coterie.

Many coterie-related structures are proposed to solve different cases of the distributed resource allocation

problem. For example, the coterie is used to solve the mutual exclusion problem [8, 9], the k-coterie is used to

solve the k-mutual exclusion problem [10, 11] and the h-out of-k mutual exclusion problem [12], and the local

coterie [13, 14] is used to solve the general resource allocation problem.

The solutions using coterie structures usually incur low communication overhead and can tolerate process

and/or communication link faults. Among coterie structures, nondominated (ND) coterie structures [8, 15] are

candidates for the solutions to achieve the highest degree of fault-tolerance. Thus, we should always concentrate

on ND coterie structures if fault-tolerance is significant. There are papers [8, 9, 10, 15] investigating ND coteries

or ND k-coteries.

This paper investigates ND local coteries and aims at constructing ND local coteries to solve the resource

allocation problem in Grids and Clouds in a distributed way. A new type of coteries, called p-coteries, is

proposed to aid the construction of local coteries. Theorems about the nondomination of p-coteries are developed,

and an operation, called pairwise-union (p-union), is proposed to help generate ND p-coteries from known ND

p1 p2 p3

r1 r2

3

coteries, such as majority coteries, tree coteries, hierarchical coteries, composite coteries, level coteries, Lovasz

coteries and cohorts coteries, all of which have been shown to be ND, as mentioned in [15]. As defined in [8], a

coterie is family of mutually intersected, minimal subsets (or quorums) of a universal set. And as defined in [13],

a local coterie is a list
1
 of coteries. By the theorems and the operation, an ND local coterie LC=(C1,…,CP) can

be constructed to solve the resource allocation problem with process set P and resource set R as flows. For each

resource rj in R, an ND coterie Crj is constructed. Then for each process pi in P, an ND p-coterie Ci is constructed

for the following two cases. For the case that pi accesses only one resource, say rj, we set Ci=Crj. For the case

that pi accesses two or more resources, say r1,…,rm, m>1, we set Ci= Min(Cr1…Crm), where  stands for the

p-union operation and Min(Q) is a function to eliminate non-minimal quorums from a family Q of quorums.

Process pi needs to receive permissions from all members of a quorum of Ci to enter the CS; it releases all

permissions after leaving the CS. Maekawa’s permission-based algorithm [16] can be used for obtaining and

releasing permissions to prevent deadlocks and livelocks. As will be shown, the p-coterie has the inter-coterie

intersection property, which can be relied on to solve the resource allocation problem. Furthermore, since the

constructed local coterie LC is ND, the solution is toward the highest degree of fault-tolerance.

The rest of this paper is organized as follows. Section 2 shows the definitions and examples of the coterie,

local coterie and p-coterie. And Section 3 introduces theorems for checking their nondomination. It is also shown

that the p-union operation can help generate ND p-coteries for the construction of ND local coteries. And finally,

Section 4 concludes this paper.

2 The Coterie, Local Coterie and p-Coterie

In this section, we give the definitions and examples of the coterie, the local coterie and the p-coterie. We

also introduce Kakugawa and Yamashita’s algorithm [13] and Cheng et al.’s algorithm [14] for constructing

local coteries to solve the resource allocation problem.

Definition 1. (Coterie) [8]

A coterie C under P is a family of subsets of P. Each member in C is called a quorum and should observe the

following two properties:

Intersection Property: q1, q2 : q1, q2C : q1q2

Minimality Property: q1, q2 : q1, q2C : q1q2

For example, C ={{p1, p2}, {p1, p3}, {p2, p3}} is a coterie under P={p1, p2, p3} because every pair of

quorums (members) in C have a non-empty intersection, and no quorum is a super set of another quorum.

Definition 2. (Local Coterie) [13]

Given a RAG of the system with a set P of processes and a set R of resources, a local coterie LC=(C1,…,CP) is a

list of coteries under P. There is a coterie Ci associated with each process piP, 1iP and all of the following

conditions should hold:

Non-emptiness Property: pi : piP : Ci

Intersection Property: If RiRj, then q1, q2: q1Ci, q2Cj : q1q2, where Ri = {r | process pi requests to

access resource r}.

Minimality Property: pi, q1, q2 : piP, q1, q2Ci : q1  q2

1
 A local coterie is defined to be a “set” of coteries in paper [13]. Since the order of the coteries makes sense, we

modify the definition of the local coterie to be a “list” of coteries.

4

For example, LC=({{p1}}, {{p1, p3}}, {{p3}}) is a local coterie for the RAG in Fig. 1. The reader can check

that there is a coterie associated with every process (for example, C1={{p1}} for process p1, C2={{p1, p3}} for

process p2 and C3={{p3}} for process p3) and every quorum in C2 intersects with every quorum in C1 (resp. C3)

because p2 and p1 (resp. p3) compete for the same resource r1 (resp. r2).

The local coterie can be used to develop algorithms solving the resource allocation problem. To enter the

critical section, a process is required to form a quorum, that is, to receive the permissions from all the processes of

some quorum of its associated coterie. If we restrict that every process can grant its permission to only one process

at a time, then the mutually exclusive access of resources is guaranteed because any two quorums q1 and q2, q1Ci

and q2Cj, must intersect when pi and pj compete for the same resources. It is noted that the minimality property is

not necessary for the correctness of resource allocation but is used to enhance efficiency.

After obtaining permissions from all members of a quorum in the associated coterie, a process can enter the

CS. It is assumed to leave the CS in finite time, and to release all obtained permissions after leaving the CS. To

prevent deadlocks and livelocks, Maekawa’s algorithm [16] should be used to obtain and release permissions.

Kakugawa and Yamashita proposed an algorithm [13] to construct local coteries. In the algorithm, for each

process pi, its associated coterie Ci is {qi}, where qi={pjRiRj} (i.e., Ci has only one quorum containing all the

processes competing resources with pi). For example, with respect to the RAG in Fig. 1, a local coterie constructed

by the Kakugawa and Yamashita’s algorithm is ({{p1, p2}}, {{p1, p2, p3}}, {{p2, p3}}). Cheng et al. proposed

another algorithm [14] to construct local coteries, described below. For each resource rj, the algorithm first finds

out Pj={p process p accesses resource rj}, the set of all processes that access resource rj. Then, for each resource rj,

the algorithm constructs a coterie Crj under Pj (note that in this paper, we use the term “the coterie for resource rj”

to refer to Crj). Afterwards, for each process pi, a set Qi of quorums is derived, where Qi={q q=U
m

j
jq

1
, qjCrj and

rjRi}. To be more precise, if process pi accesses resources r1,…,rm, m>1, then each member q of Qi is of the form

q=q1…qm, where q1Cr1,…, qmCrm. Finally, the coterie Ci associated with pi is derived by removing every

non-minimal quorum of Qi (note that a quorum is non-minimal if it is a superset of another quorum).

Below is a local coterie construction via the majority coterie for the RAG in Fig. 2 of a grid computing

environment by the Cheng et al.’s algorithm.

P={p1, p2, p3, p4, p5}

R={r1, r2}

R1={r1, r2}

R2= R4={r1}

R3= R5={r2}

P1={p1, p2, p4}

P2={p1, p3, p5}

Cr1={{p1, p2}, {p1, p4}, {p2, p4}}

Cr2={{p1, p3}, {p1, p5}, {p3, p5}}

Q1={qq=q1q2, for every q1Cr1 and every q2Cr2}={{p1, p2, p3}, {p1, p3, p4}, {p1, p2, p3, p4}, {p1, p2, p5}, {p1,

p4, p5}, {p1, p2, p4, p5}, {p1, p2, p3, p5}, {p1, p3, p4, p5}, {p2, p3, p4, p5}}

Q2=Q4= Cr1

Q3=Q5=Cr2

By removing all non-minimal sets from Q1, Q2, …, and Q5, we have

C1={{p1, p2, p3}, {p1, p3, p4}, {p1, p2, p5}, {p1, p4, p5}, {p2, p3, p4, p5}}

C2=C4 =Cr1

C3=C5 =Cr2

5

Figure 2. The RAG for the system with P={p1, p2,…, p5} and R={r1, r2}

We have observed that when a process accesses only one resource, the coterie associated with the process is

actually a coterie as defined in [8]. However, when a process accesses more than one resource, the coterie

associated with the process has inter-coterie quorum intersection relationship with other coteries. Below, we

define a new type of coteries, called p-coteries, to capture the inter-coterie quorum intersection relationship.

Definition 3. (p-coterie)

Given m (m>1) and coteries Cr1,…,Crm, a p-coterie C for Cr1,…,Crm is defined to be a coterie satisfying the

following three properties:

Intersection Property: q1, q2 : q1, q2C : q1q2

Inter-coterie Intersection Property: q, q, j: qC, qCrj, 1jm : qq.

Minimality Property: q1, q2 : q1, q2C : q1q2

We can easily check that a p-coterie for Cr1,…,Crm can be used as a coterie associated with the process

accessing resources r1,…,rm in Cheng et al.’s algorithm [14], if coteries Cr1,…,Crm are selected respectively to be

the coteries for resources r1,…,rm.

3 Nondomination of Local Coteries

In this section, we focus on the nondomination property of local coteries. A coterie is always better than the

coterie it dominates in the sense that if a quorum can be formed in the dominated one then a quorum can be formed

in the dominating one [8]. Thus, we should always concentrate on the nondominated (ND) coteries that no coterie

can dominate. The local coteries constructed by the algorithms in [13] and [14] are not ND, though.

We thus develop theorems about the nondomination of p-coteries, and propose an operation, called

pairwise-union (p-union), to help generate ND p-coteries. ND p-coteries can then be used to generate ND local

coteries for solving the resource allocation problem in Grids and Clouds.

Below we first give the definition of coterie domination.

Definition 4. (coterie domination) [8]

Let C and D be two distinct coteries. C is said to dominate D iff q, q: qD, qC: qq. (We say that q is the

set that dominates q.)

For example, coterie C={{p1, p2}, {p1, p3}, {p1, p4}, {p2, p3, p4}} dominates coterie D={{p1, p2, p3}, {p1, p2, p4},

{p1, p3, p4}, {p2, p3, p4}} because for every quorum q in D we can find a quorum q in C such that q is a super set

of q. A dominating coterie, such as C, is always better than a dominated coterie, such as D, since if a quorum can

p1 p2 p3 p4 p5

r1 r2

6

be formed in the dominated one then a quorum can be formed in the dominating one. A coterie is nondominated

(ND) if no other coterie can dominate it. ND coteries are candidates to achieve the highest availability, which is

the probability that a quorum can be formed in an error-prone environment. Thus, we should always concentrate

on ND coteries if fault-tolerance is one of the main concerns. Some classes of coteries, such as the majority, the

tree, the hierarchical, the composite, the level, the Lovasz, and the cohorts coteries, have been shown to be ND.

Theorem 1 in the following is developed by Garcia-Molina and Barbara in [8]. This theorem is useful to

check if a coterie is dominated or not.

Theorem 1. Let C be a coterie under P. Then, C is dominated iff there exists a set xP such that

L1. q : qC: qx.

L2. q : qC: qx.

Following the definition of coterie domination, we give the definition of local coterie domination below.

Definition 5. (local coterie domination)

Let C=(C1,…,Cn) and D=(C1,…,Cn) be two distinct local coteries. C is said to dominate D iff Ci=Ci or Ci

dominates Ci, for 1in (i.e., every coterie in C equals or dominates its corresponding coterie in D).

For example, let local coterie C be ({{p1}}, {{p1, p3}}, {{p3}}) and local coterie D be ({{p1, p2}}, {{p1, p2,

p3}}, {{p3}}). We can see that C dominates D since {{p1}} dominates {{p1, p2}}, {{p1, p3}} dominates {{p1, p2,

p3}}, and {{p3}} equals {{p3}}.

By Definition 5, the domination of two distinct local coteries is based on the domination (or equality) of each

pair of corresponding coteries. When a process accesses only one resource, we can apply Theorem 1 to check the

domination of the coterie associated with the process since the coterie is exactly the same as defined in [8]. When

a process accesses more than one resource, the coterie associated with the process is a p-coterie. Below we give

the definition of p-coterie domination, which is similar to that of coterie domination.

Definition 6. (p-coterie domination)

Let C and D be two distinct p-coteries for m (m>0) given coteries Cr1,…,Crm. C is said to dominate D iff q, q:

qD, qC: qq.

We have the following theorem for checking the domination of a p-coterie. Note that by definition a p-coterie

is also a coterie, which is a fact used in the proof of Theorem 2.

Theorem 2. Let C be a p-coterie for coteries Cr1,…,Crm, m>1. C is dominated if and only if there exists a set x

such that

L1. q: qC: qx

L2. q: qC: qx

L3. qj : qCrj, 1jm: qx

Proof :

(if part)

We first show that L1, L2 and L3 imply C is dominated. There are two cases to consider. Case 1: If there are

one or more q1,...,qlC such that xq1,…,xql, then construct set S=(Cq1…ql){x}. It is easy to see that S is a

7

p-coterie for Cr1,…,Crm and S dominates C. Case 2: If there are no supersets of x in C, then S=C{x} is a p-coterie

for Cr1,…,Crm and S dominates C.

(only if part)

Now, assume that C is dominated by D, we show that conditions L1, L2 and L3 hold by considering two

cases. Case 1: CD. Let x be one of the elements in DC. Set x must satisfy conditions L1, L2 and L3 or else D

would not be a valid p-coterie for Cr1,…,Crm. Case 2: CD. In such a case, there must be a set qC and a set xD

such that xq (see Definition 4). If condition L1 is false for x, then q′x for some q′C and C is not a coterie

because q′  x  q. Similarly, if condition L2 doesn’t hold for x, then D would not be a coterie because L2

implies q′: q′C: q′x=, which in turn implies xx′=, where x′ is the set in D that dominates q′. If condition

L3 doesn’t hold for x, then D would not be a p-coterie for Cr1,…,Crm because L3 implies q′: q′Crj: q′x=

for some Crj, 1jm, which in turn implies xx′=, where x′ is the set in D that dominates q′. We can see that

either in case 1 or in case 2, the conditions L1, L2 and L3 should hold. ■

Below, we propose an operation, denoted by  and called pairwise-union (p-union, for short), to generate

p-coteries for a list of coteries. As will be shown later, we can apply p-union operation on ND coteries to generate

ND p-coteries for the construction of ND local coteries.

Definition 7. (pairwise-union operation)

Let P1 and P2 be two non-empty sets of processes. Also let G be a coterie under P1, and H be a coterie under

P2. The pairwise-union (p-union) operation  of G and H is defined to be

GH={gh |gG, hH}.

For example, let G={{p1, p2},{p2, p3},{p1, p3}} be a coterie under P1={p1, p2, p3} and H={{p2, p3},{p3,

p4},{p2, p4}} be a coterie under P2={p2, p3, p4}. Then GH={ {p1, p2, p3}, {p1, p2, p3, p4}, {p1, p2, p4}, {p2, p3}, {p2,

p3, p4}, {p2, p3, p4}, {p1, p2, p3}, {p1, p3, p4}, {p1, p2, p3, p4} }.

Let F=Min(GH), where Min(Q) is a function to eliminate non-minimal quorums from a family Q of

quorums. The following Theorem 3, Theorem 4 and Theorem 5 are about properties of F.

Theorem 3. Let P1 and P2 be two non-empty sets of processes. If G is a coterie under P1 and H is a coterie under

P2, then F=Min(GH) is a p-coterie for G and H under P1P2.

Proof:

The minimality property is satisfied after Min() function is applied. Thus, to prove the theorem, we only have

to show (F1)f, f : f, f F: ff (F2) f, g: fF, gG: fg (F3) f, h: fF, hH: fh.

Let f and f be two sets in F. We have f=(gh) for some gG and some hH, and f=(gh) for some gG

and some hH. Assume ff=. It follows that (gh)(gh)=. And hence, we have gg= and hh=,

which contradicts the fact that G and H are coteries. So, the condition (F1) holds.

Let f be a set in F. We have f=(gh) for some gG and some hH. Assume fg= for some gG. It

follows that (gh)g=. We have gg=, which contradicts the fact that G is a coterie. Thus, the condition (F2)

holds.

Let f be a set in F. We have f=(gh) for some gG and some hH. Assume fh= for some hH. It

follows that (gh)h=. We have hh=, which contradicts the fact that H is a coterie. Thus, the condition (F3)

holds. ■

In Theorem 3, G and H are taken to be coteries. However, G and H in Theorem 3 can also be taken to be

p-coteries because a p-coterie is also a coterie. Below, we apply Theorem 3 with G being a p-coterie to prove the

following Theorem 4.

8

Theorem 4. Let P1,…,Pm , m>1, be non-empty sets of processes. If Crj is a coterie under Pj, 1jm, then

Min(Cr1…Crm) is a p-coterie for Cr1,…,Crm under P1…Pm.

Proof : (by induction on the value of m)

(1) Basis: (m=2)

By Theorem 3, the basis case holds.

(2) Induction hypothesis:

Assume that if Crj is a coterie under Pj for 1jm, then G=Min(C1…Cm) is a p-coterie for Cr1,…,Crm

under P1…Pm.

(3) Induction step:

On the basis of the induction hypothesis, below we show that if Crj is a coterie under Pj for 1jm+1, then

F=Min(Cr1…Crm+1) is a p-coterie for Cr1,…,Crm+1 under P1…Pm+1.

Let G be Min(Cr1…Crm). Then F=Min(GCrm+1). Since G is a p-coterie for Cr1,…,Crm under

P1…Pm (by the induction hypothesis) and Crm+1 is a coterie under Pm+1, we have F is a p-coterie for G and

Crm+1 under P1…Pm+1 by Theorem 3. Because G is a p-coterie for Cr1,…,Crm, each quorum in G intersects

every quorum in Cr1,…,Crm. And because F=Min(GCrm+1), any quorum f in F must be of the form f=gq, where

gG and qCrm+1. It follows that each quorum in F intersects every quorum in Cr1,…,Crm+1. Hence, we have that

F is a p-coterie for Cr1,…,Crm+1 under P1…Pm+1.

Therefore, by the induction principle, we have Min(C1…Cm) is a p-coterie for Cr1,…,Crm under

P1…Pm for m>1. ■

The following Theorem 5 is about the nondomination of the p-coteries generated by the p-union operation.

Theorem 5. Let P1,…,Pm , m>1, be non-empty sets of processes. Also let Crj be a coterie under Pj for 1jm, and

F=Min(Cr1…Crm) be a p-coterie for Cr1,…,Crm under P1…Pm. Then, F is ND if Cr1,…,Crm are all ND.

Proof:

Assume F is dominated, then by Theorem 2, there must exist a set x(P1…Pm) such that (L1) f : fF :

fx, (L2) f : fF : fx, (L3) qj : qCrj, 1jm: qx.

Let x1=xP1, x2=xP2, …, and xm=xPm. Then, we have q: qCr1: qx1 because qx1=qxP1 by

(L3) and (qx)P1. Similarly, we have q: qCr2: qx2 because qx2=qxP2 by (L3) and

(qx)P2. … And we have q: qCrm: qxm because qxm=qxPm by (L3) and (qx)Pm. To sum up,

we have qj: qCrj, 1jm: qxj.

Suppose q: qCr1: qx1. Then, we have Cr1{x1} is a coterie dominating Cr1, which contradicts the fact

that Cr1 is ND. It follows that q1: q1Cr1: q1x1. We can proceed with the same inference to have q2: q2Cr2:

q2x2, …, and qm: qmCrm: qmxm. It follows that (q1…qm)x since

(q1…qm)(x1…xm)=(xP1)…(xPm)x. Because F=Min(Cr1…Crm), we have f: fF:

f(q1…qm) by  operation definition. We then have f: fF: f(q1…qm)x, which contradicts (L1).

The assumption that F is dominated cannot stand. Hence, the theorem holds. ■

Note that we do not know whether the “only if” part of Theorem 5 (i.e., F is ND only if Cr1,…,Crm are all

ND) is true or not; we leave it as an open problem. Fortunately, Theorem 5 itself is sufficient to guide us to derive

ND p-coteries for the construction of ND local coteries.

9

4 Conclusion

This paper has defined a new type of coteries, called p-coteries, to aid the construction of local coteries. It

has also described and developed theorems about the nondomination of p-coteries, and proposed an operation,

called pairwise-union (p-union), to help generate ND p-coteries. By the theorems and the operation, ND local

coteries can be constructed on the basis of known ND coteries, such as the majority coterie, tree coterie,

hierarchical coterie, composite coterie, level coterie, Lovasz coterie or cohorts coterie, to solve the resource

allocation problem in Grids and Clouds. Since the constructed local coterie LC is ND, it is toward the optimality

in the sense that no other local coterie can dominate it.

References
[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scalable virtual organizations.

International,” Journal Supercomputer Applications, 15(3):200–222, 2001.

[2] F. Chang, J. Ren, and R. Viswanathan, “Optimal resource allocation in clouds,” in Proc. of IEEE 3rd

International Conference on Cloud Computing (CLOUD), pp. 418-425, 2010.

[3] E. W. Dijkstra, “Solution to a problem in concurrent programming control,” CACM, 8(9):569, 1965.

[4] M. Fisher, N. Lynch, J. Burns and A. Borondin, “Resource allocation with immunity to limited process

failure,” in Proc. of the 20th IEEE annual symposium on foundations of Computer Science, pp. 234–254,

1979.

[5] M. Raynal, “A distributed solution for the k-out of-m resources allocation problem,” Lecture Notes in

Computer Sciences, Springer Verlag, 497:599-609, 1991.

[6] E. W. Dijkstra, “Hierarchical ordering of sequential processes,” Acta Informatica, 1:115-138, 1971.

[7] K. M. Chandy and J. Misra, “The drinking philosophers problem,” ACM Transactions on Programming

Languages and Systems, 6(4):632-646, 1984.

[8] H. Garcia-Molina and D. Barbara, “How to assign votes in a distributed system,” JACM., 32(4):841-860,

1985.

[9] J.-R. Jiang, “Fault-tolerant distributed mutual exclusion with O(1) message overhead,” in Proc. of the 13th

International Conference on Applied Informatics, pp.228-231, 1995.

[10] J.-R. Jiang and S.-T. Huang, “Obtaining nondominated k-coteries for fault-tolerant distributed k-mutual

exclusion,” in Proc. of 1994 IEEE International Conference on Parallel and Distributed Systems, pp.

582–587, 1994.

[11] J.-R. Jiang, S.-T. Huang and Y.-C. Kuo, “Cohorts structures for fault-tolerant k entries to a critical section,”

IEEE Transactions on Computers, 48(2):222-228, 1997.

[12] J.-R. Jiang, “Distributed h-out of-k mutual exclusion using k-coteries,” in Proc. of the 3rd International

Conference on Parallel and Distributed Computing, Application and Technologies (PDCAT’02), pp.

218-226, 2002.

[13] H. Kakugawa and M. Yamashita, “Local coteries and a distributed resource allocation algorithm,”

Transactions of Information Processing Society of Japan, 37(8):1487-1496, 1996.

[14] Z. Cheng, Y. Wada, S. Hashimoto, A. He and T. Huang, “A new method for constructing efficient local

coteries,” in Proc. of the 15th International Conference on Information Networking, pp. 512 –517, 2001.

[15] Jehn-Ruey Jiang, “Quorum structures for fault-tolerant distributed mutual exclusion,” Ph.D. Dissertation,

Tsing-Hua University, 1995.

[16] M. Maekawa, “A N algorithm for mutual exclusion in decentralized systems,” ACM Transactions on

Computer Systems, 3(2): 145- 159, 1985.

