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Abstract—This paper extends the well-known Dijkstra’s 

shortest path algorithm to consider not only the edge weights but 

also the node weights for a graph derived from the underlying 

SDN topology. We use Pyretic to implement the extended 

Dijkstra’s algorithm and compare it with the original Dijkstra’s 

algorithm and the non-weighted Dijkstra’s algorithm under the 

Abilene network topology in terms of end-to-end latency with the 

Mininet tool. As shown by the comparisons, the extended 

Dijkstra’s algorithm outperforms the other algorithms. 
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I.  INTRODUCTION 

Software Defined Networking (SDN) is a concept to 
decouple the control plane and data plane of network devices 
[8][14]. Mckeown et al. proposed the OpenFlow protocol to 
realize the SDN concept to allow reserachers to experiment 
novel network protocols [6]. In SDN, a logically centralized 
controller configures the forwarding tables (also called flow 
tables) of switches, which are responsible for forwarding the 
packets of communication flows. In this way, SDN users can 
composite application programs run on top of the controller to 
monitor and manage the whole network in a centralized and 
real-time manner. 

The emergence of the SDN technology brings many new 
network applications realized by programming the SDN 
controller. Typical examples include load balancing, 
multimedia multicast, intrusion detection, and so on. It is also 
usefull for realizing network virtualization [2]. Some 
researchers developed programming languages, such as 
Frenetic [3] and Pyretic [11], to facilitate SDN application 
design. Frenetic is a declarative query language for classifying 
network traffic and providing a functional reactive combinator 
library for describing high-level packet-forwarding policies [3]. 
Pyretic is a Python-base language that is extended from 
Frenetic. Pyretic raises the level of network abstraction and 
enables programmers to create modular software for SDN [3]. 

In this paper, we extend the well-known Dijkstra’s shortest 
path algorithm [1] to consider not only the edge weights but 
also the node weights for a graph derived from the underlying 
SDN topology. We use Pyretic to implement the extended 
Dijkstra’s algorithm and compare it with the original Dijkstra’s 

algorithm and the non-weighted Dijkstra’s algorithm under the 
Abilene network [12] in terms of end-to-end latency with the 
Mininet tool. As shown by the comparisions, the extended 
Dijkstra’s algorithm outperforms the other algorithms. 

We have noticed that the study [4] has addressed the 
implementation issues for the modified Dijkstra’s algorithm 
[10] and the modified Floyd-Warshall shortest path algorithm 
in OpenFlow. However, the modified Dijkstra’s algorithm is 
different from the proposed extended Dijkstra’s algorithm in 
the sense that the former is modified to solve the multi-source 
single-desitination shortest path problem and the latter is 
extended from the Dijkstra’s algorithm to consider both edge 
weights and node weights for solving the single-source shortest 
path problem. Hence, we will not compare the proposed 
algorithm with the modified Dijkstra’s algorithm. It is worth 
mentioning that the extension concept proposed in this paper 
can also be applied to the modified Dijkstra’s algorithm. 

The remainder of this paper is organized as follows. In 
Section II, we introduce some preliminary knowledge, 
including the SDN concept, Pyretic, and Mininet. Section III 
describes the extended Dijkstra’s algorithm and its 
implementation. Section IV shows the simulation results and 
observations. Finally, this paper is concluded with Section V. 

II. PRELIMINARIES 

A. Software Defined Networking  

SDN advocates the separation of control and data planes 
(or layers), where underlying switching hardware devices 
(called switches) are controlled via software entities (called 
applications) that runs in external, decoupled automated 
control plane devices (called controllers) [14]. Fig. 1 depicts 
the logical view of the SDN architecture. SDN enables 
network administrator to write applications to manage network 
services, including routing, access control, multicast, and other 
traffic engineering tasks. 

OpenFlow is one of the first open protocols defined 
between the control plane device, the controller, and the data 
plane device, the switch, of the SDN architecture [14]. An 
OpenFlow switch consists of one or more flow tables and/or 
group tables, as shown in Fig. 2. An OpenFlow controller can 
update, add and delete flow entries in flow table both 
reactively and proactively. Each flow table in the switch 



contains a set of flow entries, each of which consists of match 
fields, counters, and set of instructions, as shown in Fig. 3. 

On receiving a packet, a switch first matches it with entries 
in the flow table(s). The matching process begins in the first 
table and continues subsequently to the additional tables. It is 
prioritized; that is, the first matched entry in each table is to be 
returned. If a matched entry is found, the instructions 
associated with the entry are executed to complete actions, 
such as forwarding the packet to another switch via a certain 
port, matching the packet in another table, dropping the packet, 
etc. If no match is found in any flow table, the outcome 
depends on the configuration of the table, and the packet may 
be forwarded to the controller over the OpenFlow channel, be 
dropped, or be sent to the next flow table for matching [9]. 

Fig. 1. The illustration of the SDN architecture [14] 

 

 

Fig. 2. The OpenFlow controller and the switch [9] 

 

 

Fig. 3. The flow table entry of the OpenFlow switch [9] 

B. Pyretic 

Frenetic is introduced as a high-level language to program 
the controller to manage switches in the SDN network [3]. 
Frenetic provides progrmmers with a declarative query 
interface for classifying and aggregating network traffic as well 

as a functional reactive combinator library for describing high-
level packet-forwarding policies. 

Based on Frenetic and Python, Pyretic is introduced as an 
SDN programming language or platform that raises the level of 
abstraction [11][7]. It allows programmers to focus on how to 
specify a network policy at high-level abstraction. For example, 
Pyretic hides low-level details by allowing programmers to 
express policies as compact, abstract functions that take a 
packet as input, and return a set of new packets. Pyretic also 
facilitates modular design by offering two policy composition 
operators, parallel composition and sequential composition, to 
allow programmers to combine multiple policies together 
without worrying about their conflicts. Pyretic programmers 
can also create a dynamic policy whose behavior will change 
over time. To sum up, Pyretic enables SDN programmers to 
create succinct modular network applications at a high-level of 
abstraction. 

C. Mininet 

Mininet [5][13] is an open source network emulator that 
supports the OpenFlow protocol for the SDN architecture. It is 
one of the most popular tools used by the SDN research 
community. It uses the virtualization approach to create a 
network of virtual hosts, switches, controllers, and links. a 
realistic virtual network. Jus as an operating system virtualizes 
computing resources with process abstraction, Mininet uses 
process-based virtualization to emulate entities on a single OS 
kernel by running real code, including standard network 
applications, the real OS kernel and the network stack. 
Therefore, a design that works properly in Mininet can usually 
move directly to pratical networks composed of real hardware 
devices. 

Mininet provides a ready way to get the SDN network 
behavior and performance for different experimental network 
topologies. It enables complex topology testing without wiring 
up a physical network. It supports not only a basic set of 
parametrized topologies, but also arbitrary custom topologies. 
We can even create custom topologies by writing Python 
scripts in Mininet, since an extensible Python API for network 
creation and experimentation is offered by Mininet, whose 
code is almost entirely in Python. 

III. THE EXTENDED DIJKSTR’S ALGORITHM IMPLEMENTATION 

A. Description of the Extended Dijkstra’s Algorithm 

Given a weighted, directed graph G=(V, E) and a single 
source node s, the classical Dijkstra’s algorithm can return a 
shortest path from the source node s to every other node, 
where V is the set of nodes and E is the set of edges, each of 
which is associated with a non-negative weight (or length). In 
the original Dijkstra’s algorithm, nodes are associated with no 
weight. Below we show how to extend the original algorithm 
to consider both the edge weights and the node weights. 

Fig. 4 shows the extended Dijkstra’s algorithm, whose 
input is a given graph G=(V, E), the edge weight setting ew, 
the node weight setting nw, and the single source node s. The 
extended algorithm uses d[u] to store the distance of the 
current shortest path from the source node s to the destination 
node u, and uses p[u] to store the previous node preceding u 



on the current shortest path. Initially, d[s]=0, d[u]=∞ for uV, 

us, and p[u]=null for uV. 

Note that the extended Dijkstra’s algorithm is similar to 
the original Dijkstra’s algorithm. The difference is that we add 
the node weight in line 6 and line 7 of the algorithm. In light 
of Dijkstra’s work, we can prove that the extended algorithm 
indeed return the shortest path from the single source node to 
every other node with the consideration of the edge weights 
and node weights. To save space, we omit the proof of the 
above statement. 

Also note that the original Dijkstra’s algorithm cannot 
achieve the same result just by adding node weights into edge 
weights. This is because the node weight should be considered 
only at the outgoing edge of an intermediate node on the path. 
Adding node weights into edge weights implies that an extra 
node weight of the destination node is added into the total 
weight of every shortest path, making the algorithm return the 
wrong result. 

Extended Dijkstra’s Algorithm 

Input: G=(V, E), ew, nw, s 

Output: d[|V|], p[|V|] 

1: d[s]←0; d[u]←∞, for each u≠s, uV 

2: insert u with key d[u] into the priority queue Q, for each uV 

3: while (Q) 

4:    u←Extract-Min(Q) 

5:    for each v adjacent to u  

6:       if d[v] > d[u]+ew[u,v]+nw[u] then  

7:          d[v]←d[u]+ew[u,v]+nw[u] 

8:          p[v]←d[u] 

Fig. 4. The extended Dijkstra’s algorithm 

B. The Application of the Eextended Dijkstra’s Algorithm 

The extended Dijkstra’s algorithm is very useful in 
deriving the best routing path to send a packet from a specific 
source node to another node (i.e., the destination node) for the 
SDN environment in which significant latency occurs when 
the packet goes through intermediate nodes and edges (or 
links). Below, we show how to define the edge weights and 
node weights so that the extended Dijkstra’s algorithm can be 
applied to derive routing path for some specific SDN 
environment. 

Assume that we can derive from the SDN topology a graph 
G=(V, E), which is weighted, directed, and connected. For a 

node vV and an edge eE, let Flow(v) and Flow(e) denote 
the set of all the flows passing through v and e, respectively, 
let Capacity(v) be the capacity of v (i.e., the number of bits 
that v can process per second), and let Bandwidth(e) be the 
bandwidth of e (i.e., the number of bits that e can transmit per 
second). The node weight nw[v] of v is defined according to 
Eq. (1), and the edge weight ew[e] of e is defined according to 
Eq. (2). 
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where Bits(f) stands for the number of f’s bits processed by 
node v per second.  
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where Bits(f) stands for the number of f’s bits passing through 
edge e per second. 

 

Note that we can easily obtain the number of a flow’s bits 
processed by a node or passing through an edge with the help 
of the “counters field” of the OpenFlow switches’ flow tables. 
Also note that the numerators in Eq. (1) and Eq. (2) are of the 
unit of “bits”, and the denominators are of the unit of “bits per 
second”. Therefore, the node weight nw[v] and the edge 
weight ew[e] are of the unit of “seconds”. When we 
accumulate all the node weights and all the edge weights 
along a path, we can obtain the end-to-end latency from one 
end to the other end of the path. 

IV. SIMULATION 

A. Simulation Setting 

We use Mininet [5][13] and adopt the topology of the 
Abilene network [12] to perform simulation. The Abilene 
network is a high-performance backbone network suggested by 
the Internet2 project. Fig. 5 shows a historical Abilene 
(network) core topology [15], connecting 11 regional sites or 
nodes across the United States. The Abilene network has 10 
Gbps connectivity between neighboring nodes and 100 Mbps 
connectivity between a host and a node.  

 

Fig. 5. The Abilene network core topology [15] 

 

Based on the Abilene core topology, we set up in Mininnet 
an SDN/OpenFlow network with one controller and 11 
switches as nodes, where each switch is linked to the controller 
logically and is attached with one host, as shown in Fig. 6. The 
simulation parameter settings are shown in TABLE I. 



We use Iperf as a testing tool to generate TCP data stream 
in our simulation. The testing time for every testing case is 
1000 seconds. In the Abilene topology generated in Mininet, as 
shown in Fig. 6, the host 1 with a red circle is set as a Iperf 
server per, and all other 10 hosts are set as Iperf clients. When 
the simulation starts, all clients use the Iperf client command to 
link to host 1, the Iperf server, at the same time, while host 1 
uses the Iperf server  command to listen to requests from all 
clients. The Iperf tool reports the average TCP bandwidth 
between a client and the server, and we use the packet size of 
53 bytes to dervide the average latecy time. We set the packet 
size as 53 bytes for calculating end-to-end latency. There are 
10 Iperf clients in our simulation. We focus on measuring one 
representative host, namely, the host 10 with a green circle, as 
shown in Fig. 6. 

 

 

Fig. 6. Setting up the Abilene topology in Mininet 

 

TABLE I. SIMULATION SETTINGS 

Parameter Setting 

Bandwidth on edges 100Mbps ~ 1Gbps 

Capability of nodes 3Gbps  ~ 7Gbps 
Number of hosts 10 

Number of switches 11 
Number of edges 25 

Controller POX 2.0 supporting Pyretic 

Testing tool Iperf 
Testing time per case 1000 sec 

 

B. Simulation Resutls 

When the Iperf testing runs, three shortest path algorithms, 
namely, the original Dijkstra’s algorithm, the extended 
Dijkstra’s algorithm, and the non-weighted Dijkstra’s 
algorithm, are used to generate routing paths between the Iperf 
server and clients. By the non-weighted Dijkstra’s algorithm, 
we mean the original Dijkstra’s algorithm taking all edge 
weights as 1. Hence, the non-weighted Dijkstra’s algorithm 
will return the path with the minimum hop counts for a pair of 
a source node and a destination node. 

 
Fig. 7. The end-to-end latency of an Iperf server and a client 

 

We have two simulation cases. For either case, the 

bandwidth of an edge and the capacity of a node are set 

randomly to be within the range shown in TABLE I. The 

simulation results are shown in Fig. 7. By the simulation 

results, we can see that the Extended Dijkstra’s algorithm has 

smaller end-to-end latency than the original Dijkstra’s 

algorithm, which in turn has smaller end-to-end latency than 

the non-weighted Dijkstra’s algorithm does. This is because 

the extended Dijkstra’s algorithm considers both the edge 

weights and node weights, and the original Dijkstra’s 

algorithm only considers the edge weights, and the non-

weighted Dijkstra’s only considers the number of hops to 

generate the shortest path between a pair of hosts.  
 

V. CONCLUSION 

In this paper, we have extended the well-known Dijkstra’s 
shortest path algorithm to consider both edge weights and node 
weights for a graph derived from the underlying SDN topology. 
We have implemented the extended Dijkstra’s algorithm in 
Pyretic and compared it with the original Dijkstra’s algorithm 
and the non-weighted Dijkstra’s algorithm under the Abilene 
network topology in terms of end-to-end latency with the 
Mininet tool. As shown by the comparisions, the extended 
Dijkstra’s algorithm outperforms the other algorithms. In the 
future, we plan to conduct more comprehensive simulation 
experiments for more simulation cases under more SDN 
topologies by using more simulation tools to show the 
advantages of the extended Dijkstra’s algorithm. 
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