
Extending Dijkstra’s Shortest Path Algorithm for

Software Defined Networking

Jehn-Ruey Jiang, Hsin-Wen Huang, Ji-Hau Liao, and Szu-Yuan Chen

Department of Computer Science and Information Engineering

National Central University

Jhongli City, Taiwan

Abstract—This paper extends the well-known Dijkstra’s

shortest path algorithm to consider not only the edge weights but

also the node weights for a graph derived from the underlying

SDN topology. We use Pyretic to implement the extended

Dijkstra’s algorithm and compare it with the original Dijkstra’s

algorithm and the non-weighted Dijkstra’s algorithm under the

Abilene network topology in terms of end-to-end latency with the

Mininet tool. As shown by the comparisons, the extended

Dijkstra’s algorithm outperforms the other algorithms.

Keywords—software defined networking (SDN); shortest path;

Dijkstra’s algorithm; network topology

I. INTRODUCTION

Software Defined Networking (SDN) is a concept to
decouple the control plane and data plane of network devices
[8][14]. Mckeown et al. proposed the OpenFlow protocol to
realize the SDN concept to allow reserachers to experiment
novel network protocols [6]. In SDN, a logically centralized
controller configures the forwarding tables (also called flow
tables) of switches, which are responsible for forwarding the
packets of communication flows. In this way, SDN users can
composite application programs run on top of the controller to
monitor and manage the whole network in a centralized and
real-time manner.

The emergence of the SDN technology brings many new
network applications realized by programming the SDN
controller. Typical examples include load balancing,
multimedia multicast, intrusion detection, and so on. It is also
usefull for realizing network virtualization [2]. Some
researchers developed programming languages, such as
Frenetic [3] and Pyretic [11], to facilitate SDN application
design. Frenetic is a declarative query language for classifying
network traffic and providing a functional reactive combinator
library for describing high-level packet-forwarding policies [3].
Pyretic is a Python-base language that is extended from
Frenetic. Pyretic raises the level of network abstraction and
enables programmers to create modular software for SDN [3].

In this paper, we extend the well-known Dijkstra’s shortest
path algorithm [1] to consider not only the edge weights but
also the node weights for a graph derived from the underlying
SDN topology. We use Pyretic to implement the extended
Dijkstra’s algorithm and compare it with the original Dijkstra’s

algorithm and the non-weighted Dijkstra’s algorithm under the
Abilene network [12] in terms of end-to-end latency with the
Mininet tool. As shown by the comparisions, the extended
Dijkstra’s algorithm outperforms the other algorithms.

We have noticed that the study [4] has addressed the
implementation issues for the modified Dijkstra’s algorithm
[10] and the modified Floyd-Warshall shortest path algorithm
in OpenFlow. However, the modified Dijkstra’s algorithm is
different from the proposed extended Dijkstra’s algorithm in
the sense that the former is modified to solve the multi-source
single-desitination shortest path problem and the latter is
extended from the Dijkstra’s algorithm to consider both edge
weights and node weights for solving the single-source shortest
path problem. Hence, we will not compare the proposed
algorithm with the modified Dijkstra’s algorithm. It is worth
mentioning that the extension concept proposed in this paper
can also be applied to the modified Dijkstra’s algorithm.

The remainder of this paper is organized as follows. In
Section II, we introduce some preliminary knowledge,
including the SDN concept, Pyretic, and Mininet. Section III
describes the extended Dijkstra’s algorithm and its
implementation. Section IV shows the simulation results and
observations. Finally, this paper is concluded with Section V.

II. PRELIMINARIES

A. Software Defined Networking

SDN advocates the separation of control and data planes
(or layers), where underlying switching hardware devices
(called switches) are controlled via software entities (called
applications) that runs in external, decoupled automated
control plane devices (called controllers) [14]. Fig. 1 depicts
the logical view of the SDN architecture. SDN enables
network administrator to write applications to manage network
services, including routing, access control, multicast, and other
traffic engineering tasks.

OpenFlow is one of the first open protocols defined
between the control plane device, the controller, and the data
plane device, the switch, of the SDN architecture [14]. An
OpenFlow switch consists of one or more flow tables and/or
group tables, as shown in Fig. 2. An OpenFlow controller can
update, add and delete flow entries in flow table both
reactively and proactively. Each flow table in the switch

contains a set of flow entries, each of which consists of match
fields, counters, and set of instructions, as shown in Fig. 3.

On receiving a packet, a switch first matches it with entries
in the flow table(s). The matching process begins in the first
table and continues subsequently to the additional tables. It is
prioritized; that is, the first matched entry in each table is to be
returned. If a matched entry is found, the instructions
associated with the entry are executed to complete actions,
such as forwarding the packet to another switch via a certain
port, matching the packet in another table, dropping the packet,
etc. If no match is found in any flow table, the outcome
depends on the configuration of the table, and the packet may
be forwarded to the controller over the OpenFlow channel, be
dropped, or be sent to the next flow table for matching [9].

Fig. 1. The illustration of the SDN architecture [14]

Fig. 2. The OpenFlow controller and the switch [9]

Fig. 3. The flow table entry of the OpenFlow switch [9]

B. Pyretic

Frenetic is introduced as a high-level language to program
the controller to manage switches in the SDN network [3].
Frenetic provides progrmmers with a declarative query
interface for classifying and aggregating network traffic as well

as a functional reactive combinator library for describing high-
level packet-forwarding policies.

Based on Frenetic and Python, Pyretic is introduced as an
SDN programming language or platform that raises the level of
abstraction [11][7]. It allows programmers to focus on how to
specify a network policy at high-level abstraction. For example,
Pyretic hides low-level details by allowing programmers to
express policies as compact, abstract functions that take a
packet as input, and return a set of new packets. Pyretic also
facilitates modular design by offering two policy composition
operators, parallel composition and sequential composition, to
allow programmers to combine multiple policies together
without worrying about their conflicts. Pyretic programmers
can also create a dynamic policy whose behavior will change
over time. To sum up, Pyretic enables SDN programmers to
create succinct modular network applications at a high-level of
abstraction.

C. Mininet

Mininet [5][13] is an open source network emulator that
supports the OpenFlow protocol for the SDN architecture. It is
one of the most popular tools used by the SDN research
community. It uses the virtualization approach to create a
network of virtual hosts, switches, controllers, and links. a
realistic virtual network. Jus as an operating system virtualizes
computing resources with process abstraction, Mininet uses
process-based virtualization to emulate entities on a single OS
kernel by running real code, including standard network
applications, the real OS kernel and the network stack.
Therefore, a design that works properly in Mininet can usually
move directly to pratical networks composed of real hardware
devices.

Mininet provides a ready way to get the SDN network
behavior and performance for different experimental network
topologies. It enables complex topology testing without wiring
up a physical network. It supports not only a basic set of
parametrized topologies, but also arbitrary custom topologies.
We can even create custom topologies by writing Python
scripts in Mininet, since an extensible Python API for network
creation and experimentation is offered by Mininet, whose
code is almost entirely in Python.

III. THE EXTENDED DIJKSTR’S ALGORITHM IMPLEMENTATION

A. Description of the Extended Dijkstra’s Algorithm

Given a weighted, directed graph G=(V, E) and a single
source node s, the classical Dijkstra’s algorithm can return a
shortest path from the source node s to every other node,
where V is the set of nodes and E is the set of edges, each of
which is associated with a non-negative weight (or length). In
the original Dijkstra’s algorithm, nodes are associated with no
weight. Below we show how to extend the original algorithm
to consider both the edge weights and the node weights.

Fig. 4 shows the extended Dijkstra’s algorithm, whose
input is a given graph G=(V, E), the edge weight setting ew,
the node weight setting nw, and the single source node s. The
extended algorithm uses d[u] to store the distance of the
current shortest path from the source node s to the destination
node u, and uses p[u] to store the previous node preceding u

on the current shortest path. Initially, d[s]=0, d[u]=∞ for uV,

us, and p[u]=null for uV.

Note that the extended Dijkstra’s algorithm is similar to
the original Dijkstra’s algorithm. The difference is that we add
the node weight in line 6 and line 7 of the algorithm. In light
of Dijkstra’s work, we can prove that the extended algorithm
indeed return the shortest path from the single source node to
every other node with the consideration of the edge weights
and node weights. To save space, we omit the proof of the
above statement.

Also note that the original Dijkstra’s algorithm cannot
achieve the same result just by adding node weights into edge
weights. This is because the node weight should be considered
only at the outgoing edge of an intermediate node on the path.
Adding node weights into edge weights implies that an extra
node weight of the destination node is added into the total
weight of every shortest path, making the algorithm return the
wrong result.

Extended Dijkstra’s Algorithm

Input: G=(V, E), ew, nw, s

Output: d[|V|], p[|V|]

1: d[s]←0; d[u]←∞, for each u≠s, uV

2: insert u with key d[u] into the priority queue Q, for each uV

3: while (Q)

4: u←Extract-Min(Q)

5: for each v adjacent to u

6: if d[v] > d[u]+ew[u,v]+nw[u] then

7: d[v]←d[u]+ew[u,v]+nw[u]

8: p[v]←d[u]

Fig. 4. The extended Dijkstra’s algorithm

B. The Application of the Eextended Dijkstra’s Algorithm

The extended Dijkstra’s algorithm is very useful in
deriving the best routing path to send a packet from a specific
source node to another node (i.e., the destination node) for the
SDN environment in which significant latency occurs when
the packet goes through intermediate nodes and edges (or
links). Below, we show how to define the edge weights and
node weights so that the extended Dijkstra’s algorithm can be
applied to derive routing path for some specific SDN
environment.

Assume that we can derive from the SDN topology a graph
G=(V, E), which is weighted, directed, and connected. For a

node vV and an edge eE, let Flow(v) and Flow(e) denote
the set of all the flows passing through v and e, respectively,
let Capacity(v) be the capacity of v (i.e., the number of bits
that v can process per second), and let Bandwidth(e) be the
bandwidth of e (i.e., the number of bits that e can transmit per
second). The node weight nw[v] of v is defined according to
Eq. (1), and the edge weight ew[e] of e is defined according to
Eq. (2).

 []
∑

where Bits(f) stands for the number of f’s bits processed by
node v per second.

 []
∑

where Bits(f) stands for the number of f’s bits passing through
edge e per second.

Note that we can easily obtain the number of a flow’s bits
processed by a node or passing through an edge with the help
of the “counters field” of the OpenFlow switches’ flow tables.
Also note that the numerators in Eq. (1) and Eq. (2) are of the
unit of “bits”, and the denominators are of the unit of “bits per
second”. Therefore, the node weight nw[v] and the edge
weight ew[e] are of the unit of “seconds”. When we
accumulate all the node weights and all the edge weights
along a path, we can obtain the end-to-end latency from one
end to the other end of the path.

IV. SIMULATION

A. Simulation Setting

We use Mininet [5][13] and adopt the topology of the
Abilene network [12] to perform simulation. The Abilene
network is a high-performance backbone network suggested by
the Internet2 project. Fig. 5 shows a historical Abilene
(network) core topology [15], connecting 11 regional sites or
nodes across the United States. The Abilene network has 10
Gbps connectivity between neighboring nodes and 100 Mbps
connectivity between a host and a node.

Fig. 5. The Abilene network core topology [15]

Based on the Abilene core topology, we set up in Mininnet
an SDN/OpenFlow network with one controller and 11
switches as nodes, where each switch is linked to the controller
logically and is attached with one host, as shown in Fig. 6. The
simulation parameter settings are shown in TABLE I.

We use Iperf as a testing tool to generate TCP data stream
in our simulation. The testing time for every testing case is
1000 seconds. In the Abilene topology generated in Mininet, as
shown in Fig. 6, the host 1 with a red circle is set as a Iperf
server per, and all other 10 hosts are set as Iperf clients. When
the simulation starts, all clients use the Iperf client command to
link to host 1, the Iperf server, at the same time, while host 1
uses the Iperf server command to listen to requests from all
clients. The Iperf tool reports the average TCP bandwidth
between a client and the server, and we use the packet size of
53 bytes to dervide the average latecy time. We set the packet
size as 53 bytes for calculating end-to-end latency. There are
10 Iperf clients in our simulation. We focus on measuring one
representative host, namely, the host 10 with a green circle, as
shown in Fig. 6.

Fig. 6. Setting up the Abilene topology in Mininet

TABLE I. SIMULATION SETTINGS

Parameter Setting

Bandwidth on edges 100Mbps ~ 1Gbps

Capability of nodes 3Gbps ~ 7Gbps
Number of hosts 10

Number of switches 11
Number of edges 25

Controller POX 2.0 supporting Pyretic

Testing tool Iperf
Testing time per case 1000 sec

B. Simulation Resutls

When the Iperf testing runs, three shortest path algorithms,
namely, the original Dijkstra’s algorithm, the extended
Dijkstra’s algorithm, and the non-weighted Dijkstra’s
algorithm, are used to generate routing paths between the Iperf
server and clients. By the non-weighted Dijkstra’s algorithm,
we mean the original Dijkstra’s algorithm taking all edge
weights as 1. Hence, the non-weighted Dijkstra’s algorithm
will return the path with the minimum hop counts for a pair of
a source node and a destination node.

Fig. 7. The end-to-end latency of an Iperf server and a client

We have two simulation cases. For either case, the

bandwidth of an edge and the capacity of a node are set

randomly to be within the range shown in TABLE I. The

simulation results are shown in Fig. 7. By the simulation

results, we can see that the Extended Dijkstra’s algorithm has

smaller end-to-end latency than the original Dijkstra’s

algorithm, which in turn has smaller end-to-end latency than

the non-weighted Dijkstra’s algorithm does. This is because

the extended Dijkstra’s algorithm considers both the edge

weights and node weights, and the original Dijkstra’s

algorithm only considers the edge weights, and the non-

weighted Dijkstra’s only considers the number of hops to

generate the shortest path between a pair of hosts.

V. CONCLUSION

In this paper, we have extended the well-known Dijkstra’s
shortest path algorithm to consider both edge weights and node
weights for a graph derived from the underlying SDN topology.
We have implemented the extended Dijkstra’s algorithm in
Pyretic and compared it with the original Dijkstra’s algorithm
and the non-weighted Dijkstra’s algorithm under the Abilene
network topology in terms of end-to-end latency with the
Mininet tool. As shown by the comparisions, the extended
Dijkstra’s algorithm outperforms the other algorithms. In the
future, we plan to conduct more comprehensive simulation
experiments for more simulation cases under more SDN
topologies by using more simulation tools to show the
advantages of the extended Dijkstra’s algorithm.

REFERENCES

[1] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no.1, 1959, pp. 269-271.

[2] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
2013, pp. 20-27.

[3] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker, “Frenetic: A Network Programming Language”, in Proc.
of the 16th ACM SIGPLAN International Conference on Functional
Programming, 2011, pp 279-291.

[4] A. Furculita, M. Ulinic, A. Rus, and V. Dobrota, “Implementation issues
for Modified Dijkstra's and Floyd-Warshall algorithms in OpenFlow,” in

0

5

10

15

20

25

Case1 Case2

(ms)

Extended Dijkstra's Algorithm
non-weigthed Dijkstra's Algorithm
Dijkstra's Algorithm

Proc. of 2013 RoEduNet International Conference 12th Edition:
Networking in Education and Research, 2013, pp. 141-146

[5] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in Proc. of ACM
Hotnets’10, 2010.

[6] N. McKeown, et. al., “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication, 2008.

[7] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing Software-Defined Networks,” in Proc. of NSDI, 2013.

[8] B. Nunes, M. Mendonça, X. Nguyen, K. Obraczk, and T. Turletti, “A
survey of software-defined networking: Past, present, and future of
programmable networks,” to appear in IEEE Communications Surveys &
Tutorials, 2014.

[9] Open Networking Foundation, “OpenFlow Switch Specification version
1.4.0,” October 14, 2013.

[10] A. Rus, V. Dobrota, A. Vedinas, G. Boanea, and M. Barabas, “Modified
Dijkstra’s algorithm with cross-layer QoS,” ACTA TECHNICA
NAPOCENSIS, Electronics and Telecommunications, vol. 51, no. 3,
2010, pp. 75-80.

[11] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN Programming with Pyretic”, Technical Reprot of USENIX,
available at http://www.usenix.org, 2013.

[12] Abilene Network, http://en.wikipedia.org/wiki/Abilene_Network-
#cite_note-line-1, last accessed on March 4, 2014.

[13] Mininet Website, http://mininet.org/, last accessed on May 2014.

[14] Open Network Foundation (ONF) Website (SDN white paper),
https://www.opennetworking.org/sdn-resources/sdn-definition, last
accessed on January 2014.

[15] Historical Abilene Connection Traffic Statistics,
http://stryper.uits.iu.edu/abilene/, last accessed in March 2014.

[16] Iperf, http://iperf.fr/, last accessed in May 2014.

http://mininet.org/

