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Abstract 

The resource allocation problem is a fundamental 

problem in distributed systems. In this paper, we focus 

on constructing nondominated (ND) local coteries to 

solve the problem. Distributed algorithms using coteries 

usually incur low communication overhead and have 

high degree of fault-tolerance, and ND coteries are 

candidates for the algorithms to achieve the highest 

degree of fault-tolerance. We define a new type of 

coteries, called p-coteries, to aid the construction of 

local coteries. We then develop theorems about the 

nondomination of p-coteries, and propose an operation, 

called pairwise-union (p-union), to help generate ND 

p-coteries from known ND coteries. ND p-coteries can 

then be used to generate ND local coteries for solving 

the distributed resource allocation problem. 

1. Introduction 

The resource allocation problem is a fundamental 

problem in distributed systems. Consider a distributed 

system consisting of a set of processes and a set of 

distinct resources. The processes can communicate with 

each other by exchanging messages, and from time to 

time, a process may request to enter the critical section 

(CS) to access some of the resources. Before entering 

the CS, a process has to wait until all the desired 

resources are acquired. The resource allocation problem 

is concerned with how to ensure that all resources are 

accessed in a mutually-exclusive way and that all 

processes wishing to enter the CS can proceed in finite 

time. 

There are many problems related to the resource 

allocation problem: the mutual exclusion problem [7], 

the k-mutual exclusion problem [9], the h-out of-k 

mutual exclusion problem [25], the dining philosophers 

problem [8] and the drinking philosophers problem [4]. 

The mutual exclusion problem deals with the 

mutually-exclusive sharing of a unique resource among 

all processes. The k-mutual exclusion problem deals 

with the sharing of k identical resources with the 

restriction that one process can access any one resource 

at a time. The h-out of-k mutual exclusion problem deals 

with the sharing of k identical resources with the 

restriction that one process can access any h, h≤k, 

resources at a time. The dining philosophers problem 

and the drinking philosophers problem describe the 

resource sharing relation by conflict graph, in which a 

vertex represents a process and an edge represents the 

resource shared by the two processes incident to the 

edge. In the dining philosophers problem, a process can 

enter the CS when it has acquired all the resources 

represented by the edges incident to it; while in the 

drinking philosophers problem, a process can enter the 

CS when it has acquired a subset of the resources. 

There have been solutions [3, 5, 6, 20, 26] proposed 

for solving the distributed resource allocation problem. 

Among them, solutions in [6, 20] utilize a special 
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structure called local coterie to solve the problem. The 

local coterie is one of the extensions of the coterie 

proposed in [10]. A coterie is a collection of mutually 

disjoint minimal sets, each of which is called a quorum. 

Except the distributed resource allocation problem, the 

coterie and its extensions are applied to solve many 

other problems. For example, the coterie is used to solve 

the mutual exclusion problem [1, 19, 15], and the 

k-coterie, another extension of the coterie, is used to 

solve the k-mutual exclusion problem [11, 13, 14, 17] 

and the h-out of-k mutual exclusion problem [16]. 

The solutions using coterie structures usually incur 

low communication overhead and can tolerate process 

and/or communication link failures. Among coterie 

structures, nondominated (ND) coterie structures are 

candidates for the solutions to achieve the highest 

degree of fault-tolerance. Thus, we should always 

concentrate on ND coterie structures if fault-tolerance is 

significant. There are many researches investigating ND 

coterie structures; for example, researches in [10, 15, 18] 

study ND coteries and researches in [12, 13, 22, 23] 

study ND k-coteries. 

In this paper, we concentrate on constructing ND 

local coteries to solve the distributed resource allocation 

problem. We define a new type of coteries, called 

p-coteries, to aid the construction of local coteries. We 

then develop theorems about the nondomination of 

p-coteries, and propose an operation, called 

pairwise-union (p-union), to help generate ND 

p-coteries from known ND coteries, such as the majority 

coteries [27], the tree coteries [1], the hierarchical 

coteries [19], the Lovasz coteries [21], the crumbling 

walls coteries [24] and the cohorts coteries [15], etc. ND 

p-coteries can then be used to construct ND local 

coteries for solving the distributed resource allocation 

problem. 

The rest of this paper is organized as follows. In 

Section 2, we elaborate some preliminaries of the 

distributed resource allocation problem, including 

coteries and local coteries. In Section 3, we propose the 

definition of p-coteries and develop theorems for 

checking their nondomination. We also show that the 

p-union operation can help generate ND p-coteries for 

the construction of ND local coteries. And finally, we 

conclude this paper in Section 4. 

2. Preliminaries 

2.1.  Distributed Resource Allocation 

Consider a distributed system consisting of a set P 

of processes and a set R of shared resources each of 

which is of a different type and must be accessed in a 

mutually exclusive way. Occasionally, processes may 

request to enter the critical section (CS) to access some 

of the resources. A process pi, pi∈P, enters the CS after it 

acquires all the requested resources. Afterwards, pi 

leaves the CS and releases all the acquired resources. 

Processes are assumed to leave the CS in finite time. The 

resource allocation problem is concerned with how to 

ensure that all resources are accessed in a mutually 

exclusive way and that all processes wishing to enter the 

CS can proceed in a finite time. 

The process-accessing-resource relation in the 

resource allocation problem can be represented by a 

resource allocation graph (RAG). A RAG for the system 

with process set P and resource set R is a bipartite graph 

G=(V, E), where V=P∪R is a set of vertices and E is a 

set of edges. There is an edge e=(p, r)∈E if and only if 

process p requests to access resource r. Let Ri = {r | 

process pi requests to access resource r} be the set of all 

the resources that process pi requests to access. If 

Ri∩Rj≠∅, it means that process pi and process pj 

compete for the same resources. 

Figure-1 is an example of RAG for the system with 

P={p1, p2, p3} and R={r1, r2}. With respect to the RAG, 

R1={r1}, R2={r1, r2} and R3={r2}, which means that 

process p1 requests to access resource r1, process p2 

requests to access resources r1 and r2, and process p3 

requests to access resource r2. 

 

 

 

 

Figure 1. The resource allocation graph (RAG) 

for the system with P={p1, p2, p3} and R={r1, r2}. 

p1 p2 p3 

r r
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In [20], Kakugawa and Yamashita introduced the 

concept of local coteries and proposed an algorithm 

using local coteries to solve the distributed resource 

allocation problem. In [6], Cheng et al. proposed another 

algorithm using local coteries to solve the distributed 

resource allocation problem. Local coteries are the 

extensions of coteries. Below, we introduce the concept 

of coteries first. And then we introduce the concept of 

local coteries. 

2.2.  Coteries 

A coterie C under P is a family of subsets of P. 

Each member in C is called a quorum and should 

observe the following two properties [10]: 

Intersection Property: ∀q1, q2 : q1, q2∈C : q1∩q2≠∅  

Minimality Property: ∀q1, q2 : q1, q2∈C : q1⊄q2 

For example, C ={{p1, p2}, {p1, p3}, {p2, p3}} is a 

coterie under P={p1, p2, p3} because every pair of 

quorums (members) in C have a non-empty intersection, 

and no quorum is a super set of another quorum. 

2.3.  Local Coteries 

Given a RAG of the system with a set P of 

processes and a set R of resources. A local coterie 

LC=(C1,…,C|P|) is a list1 of coteries under P. There is a 

coterie Ci associated with each process pi∈P, 1≤i≤|P| 
and all of the following conditions should hold [20]: 

Non-emptiness Property: ∀pi : pi∈P : Ci≠∅  

Intersection Property: If Ri∩Rj≠∅, then ∀q1, q2: q1∈Ci, 

q2∈Cj : q1∩q2≠∅, where Ri = {r | process pi requests to 

access resource r}. 

Minimality Property: ∀pi, q1, q2 : pi∈P, q1, q2∈Ci : q1 ⊄ 

q2  

 

For example, LC=( {{p1}}, {{p1, p3}}, {{p3}} ) is a 

local coterie for the RAG in Figure-1. The reader can 

check that there is a coterie associated with every 

process (for example, C1={{p1}} for process p1, C2={{p1, 

p3}} for process p2 and C3={{p3}} for process p3) and 

                                                 
1 A local coterie is defined to be a “set” of coteries in paper 
[20]. Since the order of the coteries makes sense, we modify 
the definition of the local coterie to be a “list” of coteries. 

every quorum in C2 intersects with every quorum in C1 

(resp. C3) because p2 and p1 (resp. p3) compete for the 

same resource r1 (resp. r2). 

The local coterie can be used to develop algorithms 

solving the distributed resource allocation problem. To 

enter the critical section, a process is required to form a 

quorum, that is, to receive the permissions from all the 

processes of some quorum of its associated coterie. If 

we restrict that every process can grant its permission to 

only one process at a time, then the mutually exclusive 

access of resources is guaranteed because any two 

quorums q1 and q2, q1∈Ci and q2∈Cj, must intersect 

when pi and pj compete for the same resources. The 

reader should note that the minimality property is not 

necessary for the correctness of resource allocation but 

is used to enhance efficiency. 

Kakugawa and Yamashita proposed an algorithm 

[20] to construct local coteries. In the algorithm, for 

each process pi, its associated coterie Ci is {qi}, where 

qi={pj|Ri∩Rj≠∅} (i.e., Ci has only one quorum 

containing all the processes competing resources with 

pi). For example, with respect to the RAG in Figure-1, a 

local coterie constructed by the Kakugawa and 

Yamashita’s algorithm is ( {{p1, p2}}, {{p1, p2, p3}}, 

{{p2, p3}} ). The local coterie is not so efficient since 

each Ci has only one quorum. It also has the drawback 

that it prohibits the concurrent CS entrances of the 

processes not competing for the same resources. For 

example, for the RAG in Figure-1, process p1 and 

process p3 should be able to enter the CS concurrently 

since they use no common resource. However, when we 

apply the local coterie ( {{p1, p2}}, {{p1, p2, p3}}, {{p2, 

p3}} ) constructed by the Kakugawa and Yamashita’s 

algorithm to solve the distributed resource allocation 

problem, process p1 and p3 are not allowed to enter the 

CS concurrently. 

Cheng et al. proposed another algorithm [6] to 

construct local coteries, which are  more efficient than 

the ones constructed by the Kakugawa and Yamashita’s 

algorithm and can allow no-competing processes to 

enter the CS concurrently. Below, we describe the Cheng 

et al.’s algorithm briefly. For each resource rj, the 

algorithm first finds out Pj={p| process p accesses 
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resource rj}, the set of all processes that access resource 

rj. Then, for each resource rj, the algorithm constructs a 

coterie Crj under Pj (note that in this paper, we use the 

term “the coterie for resource rj” to refer to Crj). 

Afterwards, for each process pi, a set Qi of quorums is 

derived, where  

Qi={q| q=U
m

j
jq

1=

, qj∈Crj and rj∈Ri}. 

To be more precise, if process pi accesses resources 

r1,…,rm, m>1, then each member q of Qi is of the form 

q=q1∪…∪qm, where q1∈Cr1,…, qm∈Crm. At last, the 

coterie Ci associated with pi is derived by removing 

every non-minimal quorum of Qi (note that a quorum is 

non-minimal if it is a superset of another quorum).  

We observe that the Cheng et al.’s algorithm can 

be improved. For example, for the RAG in Figure-2, 

below is a possible local coterie construction by the 

Cheng et al.’s algorithm: 

 

P={p1, p2, p3, p4, p5}. 

R={r1, r2}. 

R1=R2=R3= R4=R5={r1, r2}. 

Cr1={{p1, p2}, {p1, p3}, {p1, p4}, {p1, p5}, {p2, p3, p4, 

p5}}.  

Cr2={{p1, p2, p4}, {p1, p2, p5}, {p1, p3, p4}, {p1, p3, p5}, 

{p2, p3, p4}, {p2, p3, p5}, {p4, p5}}. 

C1=C2=C3=C4=C5={{p1, p2, p4}, {p1, p2, p5}, {p1, p3, p4}, 

{p1, p3, p5}, {p1, p4, p5}, {p2, p3, p4, p5}}. 

 

Since resources r1 and r2 are accessed by the same 

set and only the same set of processes, we can regard 

them as a virtual resource r3. For the virtual resource r3, 

we can derive Cr3 by letting Cr3=Cr1 or Cr3=Cr2. Thus, 

we have C1=C2=C3=C4=C5=Cr3=Cr1 or 

C1=C2=C3=C4=C5=Cr3=Cr2. We can check that in either 

case, the corresponding local coterie is better than the 

original one. Thus, we can conclude that if some 

resources are accessed by the same set and only the 

same set of processes, then we should regard those 

resources as one virtual resource. Note that we will refer 

to the concept just mentioned the “virtual resource” 

concept. 

 

 

 

 

 

 

 

 

Figure 2. The RAG for a special case of the system in which 

some resources are accessed by the same set and only the same 

set of processes. 

 

In addition to the improvement by the virtual 

resource concept, we also find that there may be another 

improvement for the Cheng et al.’s algorithm. The 

improvement is based on the concept of nondominated 

(ND) coteries. A coterie is always better than the coterie 

it dominates in the sense that if a quorum can be formed 

in the dominated one then a quorum can be formed in 

the dominating one. Thus, we should always concentrate 

on the nondominated (ND) coteries that no coterie can 

dominate. 

In the next section, we introduce the coterie 

domination concept. We define a new type of coteries, 

called p-coteries, to aid the construction of local coteries. 

We then develop theorems about the nondomination of 

p-coteries, and propose an operation, called 

pairwise-union (p-union), to help generate ND 

p-coteries from known ND coteries. ND p-coteries can 

then be used to generate ND local coteries for solving 

the distributed resource allocation problem. 

3. Theorems for Local Coterie Domination 

In this section, we give definition of the 

nondominated local coteries and develop theorems about 

the nondomination of local coteries. We first introduce 

the concept of coterie domination. 

Definition 1. (coterie domination) [10] 

Let C and D be two distinct coteries. C is said to 

dominate D iff ∀q, ∃q′: q∈D, q′∈C: q′⊆q. (We say that 

q′ is the set that dominates q.) 

For example, coterie C={{p1, p2}, {p1, p3}, {p1, p4}, 

{p2, p3, p4}} dominates coterie D={{p1, p2, p3}, {p1, p2, 

p1    p2     p3     p4    p5   

r1           r2   
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p4}, {p1, p3, p4}, {p2, p3, p4}} because for every quorum 

q in D we can find a quorum q′ in C such that q is a 

super set of q′. A dominating coterie, such as C, is 

always better than a dominated coterie, such as D, since 

if a quorum can be formed in the dominated one then a 

quorum can be formed in the dominating one. A coterie 

is nondominated (ND) if no other coterie can dominate it. 

ND coteries are candidates to achieve the highest 

availability, which is the probability that a quorum can 

be formed in an error-prone environment. Thus, we 

should always concentrate on ND coteries if 

fault-tolerance is one of the main concerns. Some 

classes of coteries, such as the majority coteries [27], the 

tree coteries [1], the hierarchical coteries [19], the 

Lovasz coteries [21], the crumbling walls coteries [24] 

and the cohorts coteries [15] have been shown to be ND. 

Theorem 1 in the following is developed by 

Garcia-Molina and Barbara in [10]. This theorem is 

useful to check if a coterie is dominated or not. 

Theorem 1. Let C be a coterie under P. Then, C is 

dominated iff there exists a set x⊆P such that  

L1. ∀q : q∈C: q⊄x.  

L2. ∀q : q∈C: q∩x≠∅.  

Following the definition of coterie domination, we 

give the definition of local coterie domination below. 

Definition 2. (local coterie domination) 

Let C=(C1,…,Cn) and D=(C1′,…,Cn′) be two distinct 

local coteries. C is said to dominate D iff Ci=Ci′ or Ci 

dominates Ci′, for 1≤i≤n (i.e., every coterie in C equals 

or dominates its corresponding coterie in D). 

For example, let local coterie C be ( {{p1}}, {{p1, 

p3}}, {{p3}} ) and local coterie D be ( {{p1, p2}}, {{p1, 

p2, p3}}, {{p3}} ). We can see that C dominates D since 

{{p1}} dominates {{p1, p2}}, {{p1, p3}} dominates {{p1, 

p2, p3}}, and {{p3}} equals {{p3}}. 

By Definition 2, the domination of two distinct 

local coteries is based on the domination (or equality) of 

each pair of corresponding coteries. When a process 

accesses only one resource, we can apply Theorem 1 to 

check the domination of the coterie associated with the 

process since the coterie is exactly the same as defined 

in [10]. However, when a process accesses more than 

one resource, the coterie associated with the process has 

inter-coterie quorum intersection relation with other 

coteries. Below, we define a new type of coteries, called 

p-coteries, to capture the inter-coterie quorum 

intersection relation. 

Definition 3. (p-coterie)  

Given m, m>1, coteries Cr1,…,Crm, a p-coterie C from 

Cr1,…,Crm is defined to be a coterie satisfying ∀q∀q′∀j: 

q∈C, q′∈Crj, 1≤j≤m : q∩q′≠∅. 

In the Cheng et al.’s algorithm, if coteries 

Cr1,…,Crm are selected respectively to be the coteries 

for resources r1,…,rm, then we can easily check that a 

p-coterie from Cr1,…,Crm can be used as a coterie 

associated with the process accessing resources r1,…,rm. 

With the inference similar to that in [10] for 

Theorem 1, we have the following theorem for checking 

the domination of a p-coterie. Note that by definition a 

p-coterie is also a coterie, which is a fact used in the 

proof of Theorem 2. 

Theorem 2. Let C be a p-coterie from coteries 

Cr1,…,Crm, m>1. C is dominated if and only if there 

exists a set x such that  

L1. ∀q: q∈C: q⊄x  

L2. ∀q: q∈C: q∩x≠∅  

L3. ∀q∀j : q∈Crj, 1≤j≤m: q∩x≠∅ 

Proof : 

(if part) 

We first show that L1, L2 and L3 imply C is 

dominated. There are two cases to consider. Case 1: If 

there are one or more q1,...,ql∈C such that x⊂q1,…,x⊂ql, 

then construct set S=(C−q1−…−ql)∪{x}. It is easy to see 

that S is a p-coterie from Cr1,…,Crm and S dominates C. 

Case 2: If there are no supersets of x in C, then S=C∪{x} 

is a p-coteries from Cr1,…,Crm and S dominates C. 

(only if part) 

Now, assume that C is dominated by D, we show 

that conditions L1, L2 and L3 hold by considering two 

cases. Case 1: C⊂D. Let x be one of the elements in 

D−C. Set x must satisfy conditions L1, L2 and L3 or else 

D would not be a valid p-coterie from Cr1,…,Crm. Case 

2: C⊄D. In such a case, there must be a set q∈C and a 

set x∈D such that x⊂q (see Definition 1). If condition 

L1 is false for x, then q′⊆x for some q′∈C and C is not a 

coterie because q′ ⊆ x ⊂ q. Similarly, if condition L2 
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doesn’t hold for x, then D would not be a coterie 

because ¬L2 implies ∃q′: q′∈C: q′∩x=∅, which in turn 

implies x∩x′=∅, where x′ is the set in D that dominates 

q′. If condition L3 doesn’t hold for x, then D would not 

be a p-coterie from Cr1,…,Crm because ¬L3 implies ∃q′: 

q′∈Crj: q′∩x=∅ for some Crj, 1≤j≤m, which in turn 

implies x∩x′=∅, where x′ is the set in D that dominates 

q′. We can see that either in case 1 or in case 2, the 

conditions L1, L2 and L3 should hold.   ■ 

 

Inspired by the Cheng et al.’s algorithm, we 

propose an operation, denoted by ⊗ and called 

pairwise-union (p-union, for short), to generate 

p-coteries from coteries. As will be shown later, we can 

apply p-union operation on ND coteries to generate ND 

p-coteries for the construction of ND local coteries. 

Definition 4. (pairwise-union operation)  

Let P1 and P2 be two non-empty sets of processes. 

Also let G be a coterie under P1, and H be a coterie 

under P2. The pairwise-union (p-union) operation ⊗ of 

G and H is defined to be 

G⊗H={g∪h |g∈G, h∈H}. 

For example, let G={{p1, p2},{p2, p3},{p1, p3}} be a 

coterie under P1={p1, p2, p3} and H={{p2, p3},{p3, 

p4},{p2, p4}} be a coterie under P2={p2, p3, p4}. Then 

G⊗H={ {p1, p2, p3}, {p1, p2, p3, p4}, {p1, p2, p4}, {p2, p3}, 

{p2, p3, p4}, {p2, p3, p4}, {p1, p2, p3}, {p1, p3, p4}, {p1, p2, 

p3, p4} }. 

Let F=Min(G⊗H), where Min(Q) is a function to 

eliminate non-minimal quorums from a collection Q of 

quorums. The following Theorem 3, Theorem 4 and 

Theorem 5 are about properties of F. 

Theorem 3. Let P1 and P2 be two non-empty sets of 

processes. If G is a coterie under P1 and H is a coterie 

under P2, then F=Min(G⊗H) is a p-coterie from G and 

H under P1∪P2. 

Proof: 

The minimality property is satisfied after Min() 

function is applied. Thus, to prove the theorem, we only 

have to show (F1)∀f, ∀f′ : f, f′ ∈F: f∩f′≠∅ (F2) ∀f, ∀g: 

f∈F, g∈G: f∩g≠∅ (F3) ∀f, ∀h: f∈F, h∈H: f∩h≠∅. 

Let f and f′ be two sets in F. We have f=(g∪h) for 

some g∈G and some h∈H, and f′=(g′∪h′) for some 

g′∈G and some h′∈H. Assume f∩f′=∅. It follows that 

(g∪h)∩(g′∪h′)=∅. And hence, we have g∩g′=∅ and 

h∩h′=∅, which contradicts the fact that G and H are 

coteries. So, the condition (F1) holds. 

Let f be a set in F. We have f=(g∪h) for some g∈G 

and some h∈H. Assume f∩g′=∅ for some g′∈G. It 

follows that (g∪h)∩g′=∅. We have g∩g′=∅, which 

contradicts the fact that G is a coterie. Thus, the 

condition (F2) holds. 

Let f be a set in F. We have f=(g∪h) for some g∈G 

and some h∈H. Assume f∩h′=∅ for some h′∈H. It 

follows that (g∪h)∩h′=∅. We have h∩h′=∅, which 

contradicts the fact that H is a coterie. Thus, the 

condition (F3) holds.        ■ 

 

In Theorem 3, G and H are taken to be coteries. 

However, G and H in Theorem 3 can also be taken to be 

p-coteries because a p-coterie is also a coterie. Below, 

we apply Theorem 3 with G being a p-coterie to prove 

the following Theorem 4. 

Theorem 4. Let P1,…,Pm , m>1, be non-empty sets of 

processes. If Crj is a coterie under Pj, 1≤j≤m, then 

Min(Cr1⊗…⊗Crm) is a p-coterie from Cr1,…,Crm under 

P1∪…∪Pm. 

Proof : (by induction on the value of m)  

(1) Basis: (m=2)  

By Theorem 3, the basis case holds. 

(2) Induction hypothesis:  

Assume that if Crj is a coterie under Pj for 1≤j≤m, 

then G=Min(C1⊗…⊗Cm) is a p-coterie from Cr1,…,Crm 

under P1∪…∪Pm. 

(3) Induction step:  

On the basis of the induction hypothesis, below we 

show that if Crj is a coterie under Pj for 1≤j≤m+1, then 

F=Min(Cr1⊗…⊗Crm+1) is a p-coterie from Cr1,…,Crm+1 

under P1∪…∪Pm+1. 

Let G be Min(Cr1⊗…⊗Crm). Then 

F=Min(G⊗Crm+1). Since G is a p-coterie from 

Cr1,…,Crm under P1∪…∪Pm (by the induction 

hypothesis) and Crm+1 is a coterie under Pm+1, we have F 

is a p-coterie from G and Crm+1 under P1∪…∪Pm+1 by 

Theorem 3. Because G is a p-coterie from Cr1,…,Crm, 

each quorum in G intersects every quorum in Cr1,…,Crm. 
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And because F=Min(G⊗Crm+1), any quorum f in F must 

be of the form f=g∪q, where g∈G and q∈Crm+1. It 

follows that each quorum in F intersects every quorum 

in Cr1,…,Crm+1. Hence, we have that F is a p-coterie 

from Cr1,…,Crm+1 under P1∪…∪Pm+1. 

Therefore, by the induction principle, we have 

Min(C1⊗…⊗Cm) is a p-coterie from Cr1,…,Crm under 

P1∪…∪Pm for m>1.        ■ 

 

The following Theorem 5 is about the 

nondomination of the p-coteries generated by the 

p-union operation. 

Theorem 5. Let P1,…,Pm , m>1, be non-empty sets of 

processes. Also let Crj be a coterie under Pj for 1≤j≤m, 

and F=Min(Cr1⊗…⊗Crm) be a p-coterie from 

Cr1,…,Crm under P1∪…∪Pm. Then, F is ND if 

Cr1,…,Crm are all ND. 

Proof:  

Assume F is dominated, then by Theorem 2, there 

must exist a set x⊆(P1∪…∪Pm) such that (L1) ∀f : f∈F : 

f⊄x, (L2) ∀f : f∈F : f∩x≠∅, (L3) ∀q∀j : q∈Crj, 1≤j≤m: 

q∩x≠∅. 

Let x1=x∩P1, x2=x∩P2, …, and xm=x∩Pm. Then, we 

have ∀q: q∈Cr1: q∩x1≠∅ because q∩x1=q∩x∩P1≠∅ by 

(L3) and (q∩x)⊆P1. Similarly, we have ∀q: q∈Cr2: 

q∩x2≠∅ because q∩x2=q∩x∩P2≠∅ by (L3) and 

(q∩x)⊆P2. … And we have ∀q: q∈Crm: q∩xm≠∅ 

because q∩xm=q∩x∩Pm≠∅ by (L3) and (q∩x)⊆Pm. To 

sum up, we have ∀q∀j: q∈Crj, 1≤j≤m: q∩xj≠∅. 

Suppose ∀q: q∈Cr1: q⊄x1. Then, we have 

Cr1∪{x1} is a coterie dominating Cr1, which contradicts 

the fact that Cr1 is ND. It follows that ∃q1: q1∈Cr1: 

q1⊆x1. We can proceed with the same inference to have 

∃q2: q2∈Cr2: q2⊆x2, …, and ∃qm: qm∈Crm: qm⊆xm. It 

follows that (q1∪…∪qm)⊆x since 

(q1∪…∪qm)⊆(x1∪…∪xm)=(x∩P1)∪…∪(x∩Pm)⊆x. 

Because F=Min(Cr1⊗…⊗Crm), we have ∃f: f∈F: 

f⊆(q1∪…∪qm) by ⊗ operation definition. We then have 

∃f: f∈F: f⊆(q1∪…∪qm)⊆x, which contradicts (L1). 

The assumption that F is dominated cannot stand. 

Hence, the theorem holds.        ■ 

 

Note that we do not know whether the “only if” 

part of Theorem 5 (i.e., F is ND only if Cr1,…,Crm are 

all ND) is true or not; we leave it as an open problem. 

Fortunately, Theorem 5 itself is sufficient to guide us to 

derive ND p-coteries for the construction of ND local 

coteries. 

4. Concluding Remarks  

In this paper, we have defined a new type of 

coteries, called p-coteries, to aid the construction of 

local coteries. We have developed theorems about the 

nondomination of p-coteries, and proposed an operation, 

called pairwise-union (p-union), to help generate ND 

p-coteries from known ND coteries. By the virtual 

resource concept discussed in Section 2 and all the 

theorems developed in Section 3, we now have the 

following 3 steps to construct an ND local coterie 

LC=(C1,…,C|P|) to solve the distributed resource 

allocation problem for the system with process set P and 

resource set R: 

Step 1. Treat a set S of resources that are accessed by the 

same set and only the same set of processes as a virtual 

resource v and let R=(R-S)∪{v}. This step should be 

repeated until no S exists. 

Step 2. For each resource rj in R, construct an ND 

coterie Crj. Note that Crj may be a majority coterie [27], 

a tree coterie [1], a hierarchical coterie [19], a Lovasz 

coterie [21], a crumbling walls coterie [24] or a cohorts 

coterie [15].  

Step 3. For each process pi in P, construct an ND 

p-coterie Ci as follows. If pi accesses only one resource, 

say rj, then Ci=Crj. Otherwise, pi accesses two or more 

resources, say r1,…,rm, m>1. In such a case, Ci= 

Min(Cr1⊗…⊗Crm). 

In the future, we plan to study the availability of 

local coteries constructed with the aid of p-union 

operation, where the availability means the probability 

that a quorum can be successfully formed in an 

error-prone environment. We also plan to apply the 

p-union operation to ND k-coteries to solve the 

distributed multiple instance resource allocation problem, 

which is similar to the distributed resource allocation 

problem except that there are multiple instances for each 

shared resource. 
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