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Abstract 

A k-coterie [2] is a family of sets (called quorums) in which any (k+1) quorums contain at least a pair of quorums intersecting each other. K-coteries can be used to develop distributed k-mutual exclusion algorithms that are resilient to node and/or communication link failures. A k-coterie is said to dominate another k-coterie if and only if every quorum in the latter is a super set of some quorum in the former. Obviously, the dominating one has more chance than the dominated one for a quorum to be formed successfully in an error-prone environment. Thus, we should always concentrate on nondominated k-coteries that no k-coterie can dominate. In this paper, we introduce a theorem for checking the nondomination of k-coteries, define a class of special nondominated k-coteries—strongly nondominated (SND) k-coteries, and propose two operations to generate new SND k-coteries from known SND k-coteries.

1. Introduction

A distributed system is a collection of nodes that may communicate with one another by exchanging messages. K-mutual exclusion algorithms concern themselves with controlling the nodes such that at most k nodes can simultaneously access their critical sections. Such algorithms can be used to coordinate the sharing of a resource that can be allocated to no more than k nodes at a time. Several distributed k-mutual exclusion algorithms [2, 4, 7, 8, 12, 14] are proposed in the literature; some of them [2, 4, 7] rely on the concept of k-coteries. A k-coterie [2, 4] is a family of sets (called quorums) in which any (k+1) quorums contain at least a pair of quorums intersecting each other. The concept of k-coteries is an extension of that of coteries [3]; that is, an 1-coterie (the value of k is taken as 1) is exactly a coterie. Algorithms using k-coteries require a node to collect enough permissions (votes) to form a quorum before accessing the critical section; those algorithms are fault-tolerant in the sense that a quorum may still be formed even when some nodes are unavailable due to node and/or communication link failures.

A k-coterie is said to dominate another k-coterie if and only if every quorum in the dominated one is a super set of some quorum in the dominating one. The dominating one obviously has more chance than the dominated one for a quorum to be formed successfully in an error-prone environment. Thus, we should always concentrate on nondominated (ND) k-coteries that no k-coterie can dominate. Theorem 2.1 in [3] can be used to check the nondomination of coteries (1-coteries). On the basis of this theorem, many coteries proposed in the literature have been shown to be ND, such as the majority coterie (proposed in [15] and shown to be ND for some special cases in [3]), the tree coterie (proposed in [1] and shown to be ND in [9]), the composite coterie (proposed and shown to be ND in [9]), the level coterie (proposed and shown to be ND in [13]), the Lovasz coterie (proposed and shown to be ND in [10]), and so on. Several k-coteries have been proposed in the literature, such as the cohorts coterie [4], the k-majority coterie [6], and the k-singleton coterie [6]. The cohorts coterie is dominated (as shown in [11]), the k-majority coterie is ND for some special cases, and the k-singleton coterie is ND. The nondomination of the last two k-coteries will be addressed later.

In this paper, we first introduce a theorem for checking the nondomination of k-coteries. Then, we define a class of special ND k-coteries—strongly nondominated (SND) k-coteries, and propose two operations—union and join—for generating new SND k-coteries from known SND k-coteries. We further show that every ND 1-coterie and every ND 2-coterie are SND. Thus, known ND 1-coteries and ND 2-coteries can be directly applied to the union or join operation to generate new SND k-coteries. We also show that the k-singleton coterie is SND and that under some special conditions, the k-majority coterie is SND as well. An independently developed paper [11] also discussed properties of ND k-coteries; it introduced a theorem about ND k-coteries and two methods to generate ND k-coteries(the weighted voting (similar to the construction method of the k-majority coterie) and the composition (the same as the union operation). However, the theorem introduced in [11] is only partially correct. The correctness proof of the composition method is hence partially correct since it is based on the partially correct theorem. Later, we will point out the mistakes of [11] at proper places.

The remainder of this paper is organized as follows. In Section 2, we introduce some related work. Then, in Section 3, we discuss ND k-coteries: we introduce a theorem for checking the nondomination of k-coteries, give the definition of SND k-coteries, and investigate some properties of SND k-coteries. Next, in Section 4, we introduce the two operations, union and join. The correctness of the two operations is also verified in this section. And finally, we give a conclusion in Section 5.

2. Related Work

In this section, we review some related work about ND k-coteries. Since k-coteries are extended from coteries, below we first introduce the concept of coteries. In the following context we let U be a non-empty set of system nodes. U will be used as the underlying set and we may not specify U wherever there is no ambiguity.

The concept of coteries was first proposed by Garcia-Molina and Barbara [3]. A coterie [3] C under U is a family of non-empty subsets of U; each member of C is called a quorum. The following properties should hold for the quorums in a coterie:

Intersection Property: There are no two quorums Q1 and Q2 in C such that Q1 ( Q2 = (
Minimality Property: There are no two quorums Q1 and Q2 in C such that Q1 is a proper subset of Q2.

For example, C ={{1, 2}, {2, 3}, {2, 3}} is a coterie under U={1, 2, 3} because every pair of quorums have a non-empty intersection, and no quorum is a proper subset set of another quorum.

By the intersection property, the coterie can be used to develop mutual exclusion (1-mutual exclusion) algorithms in distributed systems. To enter the critical section, a node is required to receive permissions from all nodes of some quorum. Since any pair of quorums have at least one member in common, mutual exclusion is then guaranteed. The reader should note that the minimality property is not necessary for the correctness of mutual exclusion algorithm but is used to enhance efficiency. Mutual exclusion algorithms using coteries are fault-tolerant because even in the presence of inaccessible nodes, quorums including no inaccessible nodes may still be found.

Let C and D be two coteries. D is said to dominate [3] C if and only if (C ( D) and ((R(C (S(D, S ( R). For example, coterie D = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}} dominates coterie C = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} because for every quorum R in C, we can find a quorum S in D such that S is a subset of R. Coterie D is more resilient to node and/or communication link failures than coterie C. Assuming that a node or a communication link failure occurs to make both node 2 and node 3 unavailable, then no quorum can be formed in C, but one quorum {1, 4} can still be formed in D.

A coterie is said to be nondominated (ND) if no coterie can dominate it. A dominating coterie, such as D in the last paragraph, is superior to a dominated coterie, such as C in the last paragraph because if a quorum can be formed in the dominated one, then a quorum can be formed in the dominating one. Thus, we should always focus on the ND coteries. However, checking the nondomination of a coterie seems to be a hard problem, as mentioned in [3].

The following Theorem 1 is actually Theorem 2.1 developed by Garcia-Molina and Barbara in [3]. This theorem is useful in examining the nondomination of coteries.

Theorem 1. Let C be a coterie under U. Then, C is dominated if and only if there exists a set S(U such that

L1. For any quorum R(C, R(S.

L2.
For any quorum R(C, R(S=(.

By Theorem 1, if there does not exist a set satisfying (L1) and (L2) for a coterie C, then C is ND; otherwise, C is not ND (dominated).

There are many ND coteries proposed in the literature, such as the majority coterie [15], the tree coterie [1], the composite coterie [9], the level coterie [13], the Lovasz coterie[10], and so on. The majority coterie corresponds to the majority quorum consensus algorithm [15], in which each quorum is required to have the majority (over half) of nodes. This coterie is shown to be ND when n is odd [3], where n is the cardinality of the underlying set U. The quorum of the tree coterie is formed by the tree quorum algorithm [1]. By organizing system nodes into a binary tree, the tree-quorum algorithm forms a quorum recursively; it attempts to obtain permissions from nodes along a root-to-leaf path. If the root node fails, then the obtaining should follow two paths: one root-to-leaf path on the left subtree and one root-to-leaf path on the right subtree. The tree coterie is shown to be ND in [9]. The composite coterie [9] is generated by joining two coteries. As shown in [9], if the coteries used for joining are both ND, then the composite coterie is also ND (see Section 4.2 for more details of joining two coteries). By logically organizing nodes into different levels (except the last one, every level should have more than one nodes), a quorum of the level coterie [13] is formed by obtaining permissions from all nodes in some level (say level i) and one node in each of levels i(1, i(2,...,1. The level coterie, as shown in [13], is ND if the last level has exactly one node. If the last level has more than one nodes, then the following steps should be taken to make the level coterie ND: (1) construct an ND coterie C under the set of the last-level nodes, and (2) when the last level is considered, permissions from nodes in any quorum of C (instead of all nodes in the last level) and one node in every level (except the last level) are enough to form a quorum of the level coterie. The Lovasz coterie [10] is based on a partition of the underlying set U. Let P={P1, P2, ... , Pm} be a partition of U (i.e., Pi's are pairwise disjoint and 
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 Pi = U) such that (Pi(=i. A quorum in the Lovasz coterie is formed by obtaining permissions from all the nodes in Pi and one node from each Pj, where i<j(m. The Lovasz coterie has been shown to be ND in [10]. Note that the Lovasz coterie can be regarded as a special case of the level coterie (by reversing the indices of the levels).

Below, we introduce the concept of k-coteries. Two different definitions of k-coteries are given in the literature: the one by Fujita, Yamashita and Ae [2], and the one by Huang, Jiang and Kuo [4]. The former is more restrictive than the latter, and we adopt the more restrictive one (i.e., the one proposed by Fujita, Yamashita and Ae [2]), however.

A k-coterie [2] C under U is a family of non-empty subsets of U; each member Q in C is called a quorum. The following properties should hold for the quorums in a k-coterie C.

Non-intersection Property: For any h (< k) pairwise disjoint quorums Q1,...,Qh in C, there exists one quorum Qh+1 in C such that Q1,...,Qh+1 are pairwise disjoint.

Intersection Property: There are no m, m > k, pairwise disjoint quorums in C (i.e., there are at most k pairwise disjoint quorums in C).

Minimality Property: There are no two quorums Q1 and Q2 in C such that Q1 is a proper subset of Q2.

For example, {{1,2}, {3,4}, {1,3}, {2,4}} is a 2‑coterie because it satisfies all the properties of a 2-coterie—given one quorum Q1, we can always find another quorum Q2 such that Q1 and Q2 are disjoint; there are at most two pairwise disjoint quorums; and every quorum is not a proper subset of another quorum.

K-coteries can be used to develop k-mutual exclusion algorithms [2, 4, 7]. To enter the critical section, a node is required to obtain permissions from all nodes of some quorum. By the intersection property, no more than k nodes can form quorums simultaneously, so no more than k nodes can access the critical section at the same time. The non-intersection property assures that if there exists one unoccupied critical section entry, then some node that waits to enter the critical section may proceed. Again, the minimality property has nothing to do with the correctness of k-mutual exclusion algorithms; it is only for the enhancement of efficiency. K-mutual exclusion algorithms using k-coteries are fault-tolerant in the sense that even though there are inaccessible nodes in the system, quorums not including inaccessible nodes may still be found.

According to the definition of coterie nondomination [3], the nondomination of k-coteries can also be defined identically. We will leave all of problems of ND k-coteries to be discussed in the next section.

3. Nondominated k-coteries

In this section, we address some properties about nondominated k-coteries. We start by giving, according to the definition of coterie domination, the definition of domination of k-coteries:

Definition 1:

Let C and D be two k-coteries. D dominates C if and only if (C(D) and ((R(C (S(D, S(R).

(We say that S is the quorum that dominates R.)

For example, consider the following 2-coteries:

A = { {1,2}, {3,4}, {1,3}, {2,4} }

B = { {1,2}, {3,4}, {1,3}, {2,4}, {1,4}, {2,3} }

C = { {1,2}, {1,3}, {2,3}, {4} }

It is easy to see that A is dominated by both B and C, and B is dominated by C.

The dominating k-coterie (such as C) is superior to the dominated k-coterie (such as A or B) since if a quorum can be formed in the latter then a quorum can be formed in the former. Thus, we should always concentrate on the nondominated (ND) k-coteries that no k-coteries can dominate. In the light of Theorem 1, we introduce Theorem 2 for the examination of k-coterie nondomination. In comparison with Theorem 1, Theorem 2 merely has "only if" part, and (L1) is the same as (L1), and when k is taken as 1, (L2) is the same as (L2).

Theorem 2
. Let C be a k-coterie under U. Then, C is dominated only if there exists a set S(U such that

L1. For any quorum R(C, R ( S.

L2.
For any k pairwise disjoint quorums R1,...,Rk(C, R1,...,Rk  and S are not pairwise disjoint.

Proof: (Refer to [5])

Assume that C is dominated by D. We show that (L1) and (L2) hold by considering two cases: C ( D or C ( D.

For the first case, C ( D. Let S be one of the quorums in D(C. We have S(D and S(C. On one hand, since each quorum R in C is also a quorum in D, and S(R (by S(D and S(C), (L1) must hold or else D would violate the minimality property. On the other hand, since quorums R1,...,Rk in C are also quorums in D, (L2) must hold or else D would violate the intersection property.

For the second case, C ( D. Let R be one of the quorums in C(D. We have R(C and R(D. Further, let S be the member in D that dominates R; i.e., S(D and S(R. Hence, we have S(R (by S(D and R(D) and therefore S(R. On one hand, we assume that (L1) is false for S; i.e., there exists an R' such that R'(C and R'(S. We have R'(S(R, which concludes that C violates the minimality property. This is a contradiction, and thus (L1) must hold for S. On the other hand, we assume that (L2) does not hold for S; i.e., we can find pairwise disjoint quorums R1,...,Rk in C such that R1,...,Rk and S are pairwise disjoint. Let Si, 1(i(k, be the quorum in D that dominates Ri (i.e., Si(D and Si ( Ri). Then, we have that S1,...,Sk and S are pairwise disjoint, which concludes that D violates the intersection property. This is a contradiction, and thus (L2) must hold for S.  �
The contrapositve of Theorem 2—if we can not find any subset of U that satisfies both (L1) and (L2) for a k-coterie C, then C is not dominated—can be used to examine the nondomination of k-coteries. However, the existence of a set satisfying (L1) and (L2) for a k-coterie C does not imply that C is dominated (i.e., C may still be nondominated). Thus, we give the nondominated k-coteries for which we can not find a set satisfying (L1) and (L2) a special name(strongly nondominated (SND) k-coteries. We formally define the SND k-coterie as:
Definition 2:

Let C be a k-coterie. C is strongly nondominated (SND) if and only if we cannot find a set satisfying (L1) and (L2) for C.

Note that an SND k-coterie is also an ND k-coterie, but not vice versa. In Section 4, we will introduce two operations that can generate new SND k-coteries from known SND k-coteries. Below, we discuss some properties about SND k-coteries. W first show the relation between SND and ND k-coteries, and then prove that for some special cases the k-majority coterie [6] is SND and that the k-singleton coterie [6] is SND, too.

Theorem 3. Every ND 1-coterie is SND.

Proof: (Refer to [5])

Let C be an 1-coterie. By Theorem 1, we have that if C is not dominated (i.e., nondominated), then we can not find a set satisfying (L1) and (L2) for C, which means that C is SND.

�
As we have shown earlier, there are many ND 1-coteries proposed: the majority coterie [15], the tree coterie [1], the composite coterie [9], the level coterie [13], the Lovasz coterie[10], and so on. As Theorem 3 states, these ND coteries are all SND; they can be used to generate new SND k-coteries with the operations developed in Section 4.

Now, we discuss the relation between ND and SND 2-coteries. Consider a 2-coterie C for which we can find a set S satisfying (L1) and (L2). The following function Reduce can reduce S to S' (S'=Reduce(C, S) ) such that S' still satisfies (L1) and (L2) for C.

Function Reduce(C: 2-coterie, S: Set): Set;

For (every member s in S) Do

For (every two disjoint quorums Q1 and Q2 in C) Do


If (S((Q1(Q2))={s} Then goto Skip;


EndFor


S=S({s};


Skip:

EndFor

Return(S);

End Reduce

Function Reduce checks each element s in S one by one: if there exists a pair of disjoint quorums Q1 and Q2 in C such that (S((Q1(Q2))={s} then s is retained in S; otherwise s is removed from S  (i.e., s is removed from S if for all pairs of disjoint quorums Q1 and Q2 in C, either s((S((Q1(Q2)) or ( s((S((Q1(Q2)) and (S((Q1(Q2)(>1) ). It is obvious that S', S'=Reduce(C,S), still satisfies (L1) and (L2) for C and there exists a pair of disjoint quorums Q1 and Q2 in C such that (S'((Q1(Q2)(=1.

With the aid of function Reduce, we can show the following Lemma 1, by which we can show Theorem 4 — every ND 2-coterie is SND.

Lemma 1. Let C be a 2-coterie. If we can find a set S satisfying (L1) and (L2) then C is dominated.

Proof: (Refer to [5])

Let S'=Reduce(S). Then, S' satisfies (L1) and (L2) and there exist a pair of disjoint quorums Q1 and Q2 such that (S((Q1(Q2)(=1. Since Q1(Q2=(, we have S'(Q1=( or S'(Q2=(; i.e., we can find a set Q (Q=Q1 or Q=Q2) such that Q(S'=(.

Below, we consider two cases: either (1) there are no super set of S in C or (2) there are quorums Q1,...,Qh in C such that Q1,...,Qh(S'.

(1). There is no super set of S in C. Let D=C({S'}. D is a 2-coterie because C is a 2-coterie, S' satisfies (L1) and (L2), and we can find a set Q in C such that Q(S'=(. It is obvious that D dominates C.

(2). There are quorums Q1,...,Qm in C such that Q1,...,Qm(S'. Let D=(C({Q1,...,Qm})({S'}. D is a 2-coterie because C is a 2-coterie, S' satisfies (L1) and (L2), Q1,...,Qm(S' (hence, for any quorum R in C({Q1,...,Qm}, if R(Qi=(, 1(i(m, then R(S'=(), and we can find a set Q in C such that Q(S'=(. It is obvious that D dominates C.�
For example, consider a 2-coterie C={{1, 3}, {1, 4}, {2, 5}}. We can find a set S={3, 4} satisfying (L1) and (L2) for C. Let S'=Reduce(C, S)={3, 4} and D=C({S'}={{1, 3}, {1, 4}, {2, 5}, {3, 4}}. It is obvious that D is a 2-coterie and D dominates C. For another example, consider a 2-coterie C={{1, 2}, {3, 4}}. We can find a set S={1, 3} satisfying (L1) and (L2) for C. Let S'=Reduce(C, S)={3} and D=(C({3, 4})({S'}={{1, 2}, {3}}. It is obvious that D is a 2-coterie and D dominates C.

Theorem 4. Every ND 2-coterie is SND.

Proof: (Refer to [5])

Let C be a 2-coterie. By Lemma 1, we have that if C is not dominated (i.e., nondominated), then we can not find a set satisfying (L1) and (L2) for C, which means that C is SND.



By now, we have shown that every ND 1-coterie and every ND 2-coterie are SND. Thus, we can use the operations provided in Section 4 to generate new SND k-coteries from known ND 1-coteries and ND 2-coteries. However, the problem of whether any ND k-coterie, k>2, is SND remains open.

Below, we show that the k-majority coterie is SND if (n+1) is a multiple of (k+1), where n is the cardinality of U. Note that a k-majority coterie [6] is a k-coterie that consists of quorums with ((n+1)/(k+1)( nodes.

Theorem 5. Let C be a k-majority coterie. If (n+1) is a multiple of (k+1), then C is SND.

Proof: (Refer to [5])

Suppose C is not SND, then we can find a set S that satisfies (L1) and (L2). Let R1,...,Rk be any pairwise disjoint quorums in C. We have 

(1) ((n+1)/(k+1)( = (n+1)/(k+1)


(since (n+1) is a multiple of (k+1) )

(2) (Ri( = (n+1)/(k+1) for 1(i(k



(by (1) and the k-majority coterie definition)

(3) (S( < (n+1)/(k+1)
(by (L1) )

(4) (S( > n(((R1(+...+(Rk()
(by (L2))

(5) (S( >n(k(n+1)/(k+1)=(n+1)/(k+1)(1(by (2) and (4) )

By (3) and (5), we have a contradiction. Therefore, C is SND. 



�
Below, we show that the k-singleton coterie [6] is also SND. Note that a k-singleton coterie is a family {{u1},...,{uk}}, where ui(U, for 1(i(k, and ui's are distinct.

Theorem 6. Let C be a k-singleton coterie, then C is SND.

Proof: (Refer to [5])

Because we can not find a set satisfying (L1) and (L2) for a k-singleton coterie, it is SND by definition. �
By now, we have shown that both the k-majority coterie (for the case of (n+1) being a multiple of (k+1)) and the k-singleton coterie are SND. Thus, they can both be used to generate new SND k-coteries with the operations provided in Section 4.

4. The Join and Union Operations

In this section, we introduce two operations, ( (union) and ( (join), which can generate new SND k-coteries from known SND k-coteries. We first introduce ( (union), and then ( (join).

4.1 Coterie Union Operation

Let U1 and U2 be two non-empty sets of nodes, where U1(U2=(. Also, let X be a k1-coterie under U1, and Y be a k2-coterie under U2. The coterie union operation
 ( is defined as X(Y={Q(Q(X or Q(Y}.

Let U=U1(U2 and Z=X(Y. The following Theorem 7 and Theorem 8 are about properties of Z.

Theorem 7. Z is a (k1+k2)-coterie under U.

Proof: (Refer to [5])

Proof: 

There are at most k1+k2 pairwise disjoint quorums in Z because there are at most k1 pairwise disjoint quorums in X and there are at most k2 pairwise disjoint quorums in Y. Further, every quorum in Z is not a proper subset of any quorum in Z because every quorum in X is not a proper subset of any quorum in X, every quorum in Y is not a proper subset of any quorum in Y, and by U1(U2=(, every quorum in X (resp., Y) is not a proper subset of any quorum in Y (resp., X).

Below, we show that for any h, h<k1+k2, pairwise disjoint quorums Z1,...,Zh in Z, we can find a quorum Zh+1 in Z such that Z1,...,Zh+1 are pairwise disjoint. Since Z=X(Y, we may assume that among Z1,...,Zh, there are h1 quorums (say X1,...,Xh1) coming from X and h2 quorums (say Y1,...,Yh2) coming from Y, where h=h1+h2. Since h<k1+k2, we have (1) h1<k1 or (2) h2<k2 because if not so (i.e., h1(k1 and h2(k2), we have h=h1+h2(k1+k2, which contradicts to h<k1+k2.

Without loss of generality, let h1<k1. Then, we can find a quorum X in X such that X and X1,...,Xh1 are pairwise disjoint since X is a k1-coterie. Moreover, X and Y1,...,Yh2 are pairwise disjoint since U1(U2=(. Hence, X and Z1,...,Zh are pairwise disjoint. Let Zh+1=X; we then have that Zh+1(Z and Z1,...,Zh+1 are pairwise disjoint.

Z satisfies all the properties of a (k1+k2)-coterie and it is obvious that any quorum in Z is non-empty and is contained in U. Hence, Z is a (k1+k2)-coterie under U.

�
Theorem 7 states that if X is a k1-coterie and Y is a k2-coterie, then Z=X ( Y is a (k1+k2)-coterie. For example, let X be a 2-coterie {{a, b},{c, d}, {a, c}, {b, d}} under {a, b, c, d}, and Y be a coterie {{1, 2}, {1, 3}, {2, 3}} under {1, 2, 3}, then Z=X ( Y={{a, b},{c, d}, {a, c}, {b, d}, {1, 2}, {1, 3}, {2, 3}} is a 3-coterie under {a, b, c, d, 1, 2, 3}.

Below, we discuss the nondomination property of Z in Theorem 8.

Theorem 8. If X and Y are SND, then Z is SND.

Proof: (Refer to [5])

On the basis of Theorem 7 and Theorem 8, the following two corollaries exhibit the extension of the coterie union operation combining more than two known SND k-coteries to generate new SND k-coteries.

Corollary 1. Let Z=Z1( ... (Zi, where Z1 is an SND k1-coterie under U1,...,Zi is an SND ki-coterie under Ui, and U1(...(Ui=(. Then, Z is an SND (k1+...+ki)-coterie under U, where U=U1(...(Ui.

�
Corollary 2. Let Z=Z1( ... (Zi, where Z1 is an SND 1-coterie under U1,...,Zi is an SND 1-coterie under Ui, and U1(...(Ui=(. Then, Z is an SND i-coterie under U, where U=U1(...(Ui.

�
4.2 Coterie Join Operation

The coterie join operation, which was first proposed by Neilsen [9], provides a way of combining known 1-coteries to construct new, larger 1-coteries. In this subsection, we will show how to derive new k-coteries from known k-coteries and 1-coteries by the coterie join operation.

Let U1 and U2 be two non-empty sets of nodes, x(U1 and U1(U2=(. Also, let U=(U1({x})(U2. The coterie join operation (x is defined by

X (x Y={CTx(X,Y)( X(X, Y(Y}

where X is a family of subsets of U1, Y is a family of subsets of U2, and

CTx(X,Y)=
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Let X be an 1-coterie under U1, Y be an 1-coteries under U2, and Z=X (x Y. In other words, given a coterie X under U1 and a coterie Y under U2, X (x Y returns a collection Z of quorums by replacing each occurrence of x in quorums of X by nodes in a quorum of Y. Neilsen [9] has shown that Z is an 1-coterie under U and also that Z inherits some properties (e.g., nondomination and domination properties) from X and Y. Below, we discuss the properties of the join operation when its first operand and second operand are a k-coterie and an 1-coterie, respectively.

Let X be a k-coterie under U1, Y be an 1-coterie under U2, and Z=X (x Y. On the basis of Theorem 3.1 and Theorem 3.3 in [9] by Neilsen, we introduce the following Theorem 9 and Theorem 10 about properties of Z.

Theorem 9. Z is a k-coterie under U.

Proof: (Refer to [5])

Proof:

First, it is obvious that Z(( and Z(U for any quorum Z(Z.

Next, we will show that Z satisfies the intersection property; i.e., there exist at most k mutually disjoint quorums in Z. For any Z1,...,Zk+1 (Z, we show that Z1,...,Zk+1 are not pairwise disjoint by considering the following three cases:

(1). Z1,...,Zk+1 are all of type 2; i.e., Z1=X1,...,Zk+1=Xk+1 for certain quorums X1,...,Xk+1(X.

Since X is a k-coterie, there are at most k pairwise disjoint quorums in X. Thus, X1,...,Xk+1 are not pairwise disjoint. Therefore, Z1,...,Zk+1 are not pairwise disjoint.

(2). One of Z1,...,Zk+1 is of type 1 and the others are of type 2.

Without loss of generality, we let Zi=Xi, where 1(i(k, Xi(X and x(Xi, and let Zk+1=(Xk+1({x})(Y, where Xk+1(X, x(Xk+1 and Y(Y. Since X is a k-coterie, there are at most k pairwise disjoint quorums in X. Thus, X1,...,Xk+1 are not pairwise disjoint. Since x(Xi, for 1(i(k, and x(Xk+1, we have that x will not be in the intersection of any pair of quorums among X1,...,Xk+1. Thus, X1,...,Xk and (Xk+1({x}) are not pairwise disjoint. So, X1,...,Xk and (Xk+1({x}) (Y are not pairwise disjoint. Hence, Z1,...,Zk+1 are not pairwise disjoint.

(3). More than one quorum of Z1,...,Zk+1 is of type 1 and the others are of type 2.

Without lost of generality, we let Z1=(X1({x})(Y1, where X1(X and Y1(Y, and let Z2=(X2({x})(Y2, where X2(X and Y2(Y (note that we leave Z3,...,Zk+1 unspecified). Since Y is a coterie, Y1 and Y2 are not disjoint. So, Z1 and Z2 are not disjoint. Hence, Z1,...,Zk+1 are not pairwise disjoint.

Next, we will show that Z satisfies the non-intersection property. Let Z1,...,Zh, h<k, be any pairwise disjoint quorums in Z. We show that we can still find a quorum Zh+1 in Z such that Z1,...,Zh+1 are pairwise disjoint. Note that any pair of type 1 quorums are not disjoint because every type 1 quorum contains a quorum of Y, and no two quorums of Y are disjoint. Thus, for pairwise disjoint quorums Z1,...,Zh+1, we only have to consider the following two cases:

(1). All of Z1,...,Zh are of type 2; i.e., Zi=Xi, 1(i(h, for some quorum Xi(X.

Since X is a k-coterie, we can find a quorum Xh+1 such that X1,...,Xh+1 are pairwise disjoint. If x(Xh+1, then we let Zh+1=(Xh+1({x})(Y for some quorum Y in Y. Then Zh+1(Z. Since X1,...,Xh+1(U1, Y(U2, U1(U2=(, and X1,...,Xh+1 are pairwise disjoint, Z1,...,Zh+1(Z are pairwise disjoint. On the other hand, if x(Xh+1, we let Zh+1=Xh+1. Then Zh+1(Z. Since X1,...,Xh+1 are pairwise disjoint, Z1,...,Zh+1 (Z1,...,Zh+1(Z) are pairwise disjoint.

(2). One of Z1,...,Zh is of type 1, and the others are of type 2.

Without loss of generality, we let Zi=Xi, where 1(i(h(1, Xi(X and x(Xi, and let Zh=(Xh({x})(Y, where Xh(X, x(Xh and Y(Y. Since Z1,...,Zh are pairwise disjoint, X1,...,Xh(1 and ((Xh({x})(Y) are pairwise disjoint, hence X1,...,Xh(1 and (Xh({x}) are pairwise disjoint. Thus, X1,...,Xh are pairwise disjoint since x(X1,...,x(Xh(1. Since X is a k-coterie, we can find a quorum Xh+1 in X such that X1,...,Xh+1 are pairwise disjoint. Since x(Xh, we have that x(Xh+1 or else X1,....,Xh+1 would not be pairwise disjoint. Let Zh+1=Xh+1. Then Zh+1(Z. Thus, we have that Z1,...Zh+1(Z and Z1,...,Zh+1 are pairwise disjoint because X1,...,Xh+1(U1, Y(U2, U1(U2=( and X1,...,Xh+1 are pairwise disjoint.

Finally, we will show that Z satisfies the minimality property. Let Z1, Z2(Z. We will show that Z1(Z2. There are four cases to consider:

(1). Z1=X1 and Z2=X2, where X1(X, X2(X, x(X1 and x(X2.

Since X is a k-coterie, X1(X2, and hence Z1(Z2.

(2). Z1=X1 and Z2=(X2({x})(Y, where X1(X, x(X1, X2(X, x(X2 and Y(Y.

Since X is a k-coterie, we have X1(X2. So, there must exists x'(U1 such that x'(X1, and x'(X2. By U1(U2=(, we have x'(Y. Thus, x'(Z2 because x'(X2 and x'(Y. So, Z1(Z2 because x'(Z1(=X1), but x'(Z2.

(3). Z1=(X1({x})(Y and Z2=X2, where X1(X, x(X1, X2(X, x(X2 and Y(Y.

Assume Z1(Z2, i.e., (X1({x})(Y(X2. Since (X1({x})(U1, X2(U1, Y(U2 and U1(U2=(, we have Y=(. This is a contradiction because Y is a coterie having non-empty quorums. Therefore, we have Z1(Z2.

(4). Z1=(X1({x})(Y1 and Z2=(X2({x})(Y2, where X1(X, Y1(Y, x(X1, X2(X, Y2(Y, x(X2.

Assume Z1(Z2; i.e., ((X1({x})(Y1) ( ((X2({x})(Y2). Since X1({x}(U1, X2({x}(U1, Y1(U2, Y2(U2, and U1(U2=(, we have either (a) X1({x}(X2({x} or (b) Y1(Y2. For both cases, we show a contradiction to conclude that Z1(Z2.

(a). X1({x}(X2({x} means X1(X2, which contradicts to the minimality property of k-coterie X.

(b). Y1(Y2 contradicts to the minimality property of coterie Y.

�
Theorem 9 states that if X is a k-coterie and Y is an 1-coterie, then Z=X (x Y is a k-coterie. For example, let X be a 2-coterie {{a, b},{c, d}, {a, c}, {b, d}} under {a, b, c, d}, and Y be an 1-coterie {{1, 2}, {1, 3}, {2, 3}} under {1, 2, 3}, then Z=X (a Y={{1, 2, b}, {1, 3, b}, {2, 3, b}, {c, d}, {1, 2, c}, {1, 3, c}, {2, 3, c},{b, d}} is a 2-coterie under {b, c, d, 1, 2, 3}. However, if X is an 1-coterie and Y is a k-coterie, then Z may or may not be k-coterie. For example, let X be an 1-coterie { {1, 2}, {1, 3}, {2, 3}} under {1, 2, 3}, and Y be a 2-coterie {{a, b},{c, d}, {a, c}, {b, d}} under {a, b, c, d}, then Z=X (3 Y={{1, 2}, {1, a, b}, {1, c, d}, {1, a, c}, {1, b, d} {1, 3}, {2, a, b}, {2, c, d}, {2, a, c}, {2, b, d}} is not a 2-coterie.

Below, let us discuss the nondomination property of Z in Theorem 10.

Theorem 10. If X and Y are SND, then Z is SND.

Proof: (Refer to [5])

Proof: (The proof is by contradiction)

Assume that Z is not SND; i.e., there exists a set S(U such that Z(S for any quorum Z in Z, and Z1,...,Zk and S are not pairwise disjoint for any k pairwise disjoint quorums Z1,...,Zk in Z.

We will consider the relation between S and the quorums in Y. There are two cases to consider: either (1) (Y(Y, Y(S(( or (2) (Y(Y, Y(S=(.

In either case, we show that we can obtain a contradiction.

(1). (Y(Y, Y(S((.

Let S1=(S({x})(U1 and X1,...,Xk be any k pairwise disjoint quorums in X. Below, we want to show that X1,...,Xk and S1 are not pairwise disjoint. There are two cases to consider: either (a) none of X1,...,Xk involves x or (b) only one quorum of X1,...,Xk involves x (note that if more than one quorums of X1,...,Xk involves x, then X1,...,Xk would not be pairwise disjoint).

(a). None of X1,...,Xk involves x.

Since x(X1,...,x(Xk, we have X1,...,Xk(Z. So, X1,...,Xk and S are not pairwise disjoint. Hence, X1,...,Xk and S1 are not pairwise disjoint.

(b). Only one quorum of X1,...,Xk involves x.

Without loss of generality, we suppose only X1 involves x. It is obvious that X1,...,Xk and S1 are not pairwise disjoint, for S1(X1({x}.

So, we have shown that X1,...,Xk and S1 are not pairwise disjoint for any pairwise disjoint quorums X1,...,Xk(X. We conclude that there must exist a quorum X*(X such that X*(S1 or else S1 would satisfy both (L1) and (L2), and X would not be SND.

Let S2=S(U2. Then, we have (Y(Y, Y(S2((; hence (L2) holds. Therefore, there must exist a quorum Y*(Y such that Y*(S2 or else S2 would satisfy both (L1) and (L2), and Y would not be SND.

By now, we have shown that ((X*(X, X*(S1) and ((Y*(Y, y*(s2). we further consider the following two cases: (a) x(X* or (b) x(X*. For case (a), let Z*=(X*({x})(Y* and for case (b), let Z*=X*. It is obvious that Z*(Z and Z*(S. A contradiction occurs since we assume that Z(S for any quorum Z in Z.

(2). (Y(Y, Y(S=(.

Let S1=S(U1 and X1,...,Xk be any pairwise disjoint quorums in X. We want to show that X1,...,Xk and S1 are not pairwise disjoint. There are two cases to consider: either (a) none of X1,...,Xk involves x or (b) only one quorum of X1,...,Xk involves x (note that if more than one quorums of X1,...,Xk involves x, then X1,...,Xk would not be pairwise disjoint).

(a). None of X1,...,Xk involves x.

Since x(X1,...,x(Xk, we have X1,...,Xk(Z. Therefore, X1,...,Xk and S are not pairwise disjoint. Hence X1,...,Xk and S1 are not pairwise disjoint.

(b). Only one quorum of X1,...,Xk involves x.

Without loss of generality, suppose x(X1,x(X2,...,x(Xk. Let Z1=(X1({x})(Y where Y(Y and Y(S=( (we can find such a Y because we have assumed (Y(Y, Y(S=(), and let Z2=X2,...,Zk=Xk. Then Z1,...,Zk(Z. Since Z1,...,Zk and S are not pairwise disjoint, (X1({x})(Y and X2,...,Xk are not pairwise disjoint. Since Y(S=(, it follows that X1,...,Xk and S1 are not pairwise disjoint.

By now, we have shown that X1,...,Xk and S1 are not pairwise disjoint for any pairwise disjoint quorums X1,...,Xk(X. We conclude that ((X*(X, X*(S1) or else S1 would satisfy (L1) and (L2) for X and X would not be SND. Since S(U, U=(U1({x})(U2 and S1=S(U1, we have x(S1. It follows that x(X* because x(S1 and X*(S1. Let Z*=X*. Then Z*(Z. Since Z*=X*, X*(S1 and S1(S (by S1=S(U1), it follows that Z*(S. A contradiction occurs since we assume that Z(S for any quorum Z in Z.

Therefore, we have shown that a contradiction occurs for both cases of (1) (Y(Y, Y(S(( and (2) (Y(Y, Y(S=(. Hence, Z is SND.






�
5. Conclusion

K-coteries can be used to develop k-mutual exclusion algorithms that are resilient to node and/or communication link failures. A k-coterie is superior to any k-coterie it dominates; thus, we should always concentrate on the ND k-coteries that no k-coterie can dominate. In this paper, we have introduced a theorem for examining the nondomination of k-coteries, and define a class of special ND k-coteries—SND k-coteries. We have also shown that the k-singleton coterie is SND and that the k-majority coterie is SND for some special cases. Further, we have shown that every ND 1-coterie and every ND 2-coterie are SND. However, the problem of whether any ND k-coterie, k>2, is SND remains open.

We have also proposed two operations, union and join, by which we can generate new SND k-coteries form known SND k-coteries, such as the k-singleton coterie [6], the k-majority coterie [6], the tree coterie [1], the composite coterie [9], the level coterie [13], the Lovasz coterie [10], and so forth. It is obvious that by mixing and repeating union and join operations, we can generate a large number of SND k-coteries.
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�A theorem (Theorem 2.1 in [11]) similar to Theorem 2 has been independently developed. Theorem 2 and Theorem 2.1 in [11] are identical except that the latter has "if" and "only if" parts and the former just asserts the "only if" part. Theorem 2.1 in [11] is partially correct because part of its proof depends on the following incorrect assertion that if there exists a set satisfying (L1) and (L2) for a k-coterie C and there is no super set of S in C, then C({S} is a k-coterie that dominates C. Note that C({S} indeed satisfies the intersection and the minimality properties but it may not fulfill the non-intersection property and hence C({S} may not be a k-coterie. For example, let C={{1, 2}, {3, 4}} be a 2-coterie. Then, S={1, 3} is a set satisfying (L1) and (L2) for C, and there is no super set of S in C. It is easy to see that C({S}={{1, 2}, {3, 4}, {1, 3}} is not a 2-coterie since it violates the non-intersection property.


�Paper [11] has also proposed the union operation (called composite operation in [11]) to produce new k-coteries from known k-coteries. However, part of its correctness proving is based on Theorem 2.1 in [11], which is incorrect as mentioned earlier.
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