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Abstract 

This paper extends the concept of coterie into k‑coterie for k entries to a critical section. A structure named Cohorts is proposed to construct quorums in a k‑coterie. Our solution is resilient to node failures and/or network partitioning and needs low communication cost. The Cohorts structure is further improved to increase the availabilities of 1‑entry critical sections. 

1. Introduction 

In this paper, we propose a fault-tolerant solution to the access control of multiple entries to a critical section in distributed systems. Consider a distributed system with N nodes, which are identified with 1, 2, ... ,N and can communicate with one another by exchanging messages. The system may have shared resources which must be accessed in a mutually exclusive way. A node is said to be in its critical section when it is accessing a shared resource. How to control the access of a shared resource such that there is at most one node in the critical section is an important problem; it is called the mutual exclusion problem in the literature. In addition to the access control of shared resources, the solution for mutual exclusion may also be applied in solving many problems, such as replicated data consistency [4], [6], [18], atomic commitment [1], distributed shared memory [16], and so on. 

If a shared resource allows multiple nodes to access it simultaneously, we say multiple entries to the critical section are allowed. There are two papers (Raymond [11], Srimani and Reddy [15]) discussing multiple-entry critical sections. Nevertheless, in those solutions any node failure and/or network partitioning [2] caused by communication link failure may reduce the number of entries allowed to the critical section. This stimulates us to search for a fault-tolerant solution for multiple-entry critical sections, where fault-tolerance means resilience to node failures and/or network partitioning.
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In 1981, Ricart and Agrawala proposed a distributed algorithm [12] which needs 2((N-1) messages for a node to enter the critical section. When a node wants to enter the critical section, it broadcasts a request message to all other nodes. On receiving a request message, a node sends back a reply message if it does not want to enter the critical section; otherwise it may defer sending the reply message. Logical timestamps [6] are attached to request messages for nodes to decide whether they should defer replying or not. Only the node whose timestamp is earlier than that of the received request message should defer replying. When a node receives reply messages from all other N-1 nodes, it may then enter the critical section. Although this algorithm is deadlock-free and starvation-free, it is vulnerable to node and communication failures and is expensive in communication cost because it requires a node to communicate with all other nodes to enter the critical section. 

Based on Ricart and Agarwala's algorithm, Raymond [11] proposed a distributed algorithm which allows k nodes to access the critical section simultaneously. This algorithm resembles Ricart and Agarwala's except that only N-k reply messages are sufficient for a node to enter the critical section. So, the lower bound of the communication cost for each entrance of the critical section is 2(N-k-1. However, each request message will incur a reply message, and thus 2((N-1) is the upper bound of the communication cost. Raymond's algorithm also suffers the same drawbacks as Ricart and Agrawala's. 

There is a large class of algorithms using the token passing concept for the access control of the critical section. The basic idea of this type of algorithms is simple — a node must own the unique token (named privilege message in some papers) before entering the critical section. So, in the best case, if a node has already owned the token, it can enter the critical section immediately without any communication overhead. Otherwise, a mechanism is needed to locate the token. In Suzuki and Kasami's algorithm [17], a node sends out N‑1 request messages to all other nodes and waits until the token is received. Raymond [10] utilized a spanning tree of the network to locate the token and showed that the average communication cost is O(log N). Singhal [14] tried to reduce the communication cost by using heuristics to locate the token. The degree of fault-tolerance for token-based algorithms is low. If the token is lost, complex token-loss detection and token regeneration algorithms must be executed [9]. 

Based on Suzuki and Kasami's algorithm, Srimani and Reddy [15] proposed another distributed algorithm which can allow k nodes to access the critical section simultaneously. There are k tokens in the system; if a node owns the token, it may enter the critical section directly. Thus, the lower bound of the communication cost per critical section of this algorithm is 0 in the case of the token being present locally. If a node does not own the token, it sends out request messages to all other N-1 nodes. When none of the nodes wants to enter the critical section and each token is resident at a different node, the requesting node will receive all the k tokens. Thus, N+k-1 is the upper bound of communication cost for this algorithm. Like Suzuki and Kasami's algorithm, Srimani and Reddy's algorithm has low degree of fault-tolerance. 

There is another class of algorithms using an elegant concept – quorum – to achieve mutually exclusive access of the critical section. They are usually called quorum-based algorithms. Quorum-based algorithms are resilient to node failures and/or network partitioning and usually have lower communication cost. The basic idea of this type of algorithms is "to collect enough permissions (votes) to form a quorum to enter the critical section". Mutual exclusion is guaranteed if we can assure that only one quorum can be formed at any instance. Garciar-Molina and Barbara have proposed "coterie" to generalize the concept of quorums [3]. A coterie is a set of sets with the property that any two members of a coterie have a non-empty intersection. By the intersection property, the members in a coterie can be used as quorums to guarantee mutual exclusion in distributed systems.

The majority quorum algorithm [4, 18], the
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 algorithm [8], the tree quorum algorithm [1] and the hierarchical quorum algorithm [6] are all quorum-based algorithms. The communication cost of the quorum-based algorithm is proportional to the quorum size, so all of the quorum-based algorithms try to reduce the quorum size while keeping the high degree of fault-tolerance. 

To form a quorum in the majority quorum algorithm requires permissions from over half of the nodes. It is easy to show that any two quorums in the majority quorum algorithm have a non empty intersection and the size of a quorum is ((N+1)/2(. In the 
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 algorithm, Maekawa used the concept of finite projective plane to assure the intersection property and the fully distributed property — every quorum is of the same size and every node bears an equal amount of responsibility for mutual exclusion control. As the title of the algorithm suggests, the quorum in 
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 algorithm is of size 
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.

Some algorithms utilize logical structures to assist in forming quorums. Assuming the system is logically organized into a binary tree, the tree-quorum algorithm can have the size (log N( in the best case for a quorum. The quorum forming in this algorithm is recursive. It can be regarded as attempting to obtain permissions from nodes along a root-to-leaf path. If the root fails, then the obtaining should follow two paths: one root-to-leaf path on the left subtree and one root-to-leaf path on the right subtree.  The   largest   tree-quorum,   which  is   of   size ((N+1)/2(, is the one comprising all leaf nodes. The hierarchical quorum algorithm uses multilevel tree to aid the quorum forming. The concept is simple – a quorum of a node at level i is formed only if enough (over half) quorums of its child nodes at level i+1 are formed. As shown in [6], the hierarchical-quorums may have size N0.63. 

In this paper, we first extend the concept of coterie to suit to the access control of multiple entries to a critical section. We name the extended one "k‑coterie" because it can allow k quorums to be formed simultaneously. The k‑coterie concept sustains the advantages of the coterie concept — fault-tolerance and low communication cost. We then propose a structure named Cohorts for the constructions of quorums in a k‑coterie. Later, we will show that, by the Cohorts structure, we can form quorums in a k‑coterie properly and thus achieve a fault-tolerant multiple-entry critical section. It is worthwhile mentioning that the quorum size of the k‑coterie derived form the Cohorts structure is constant in the best case. 

The Cohorts structure can also be applied on problems of single-entry critical sections. By taking advantage of such a specific situation (single-entry), the Cohorts structure can be improved to increase the availability of the critical section. The quorum size of the k‑coterie derived from the improved Cohorts structure is also constant in the best case. 

This paper is organized as follows. In section 2, we elaborate the ideas of coterie and k‑coterie. Then, we propose the Cohorts structure and prove that by utilizing the structure, we can form quorums in a k-coterie properly. In section 3, we analyze the availabilities and the communication costs when the Cohorts structure is applied to achieve multiple-entry critical sections. The analyzed results are then compared with those of Raymond's and Srimani and Reddy's algorithms. In section 4, the Cohorts is improved to suit to the cases of 1-entry critical sections. The correctness of the improved Cohorts is also shown in this section. In section 5, we analyze the availabilities and the communication costs when the improved Cohorts is applied. The analyzed results are also compared with those of the majority-quorum algorithm and the tree-quorum algorithm. Finally, we give some concluding remarks in section 6.

2. Coterie , k-coterie and Cohorts 

2.1 Coterie 

A coterie C is a set of sets where each set Q in C is called a quorum. The following properties hold for the quorums in a coterie C.

[Intersection Property]: There are no two quorums Q1and Q2 in C such that Q1 ( Q2 = (.

[Minimality Property]: There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2.
By the intersection property, the coterie can be used to develop algorithms for mutual exclusion in a distributed system. To enter the critical section, a node is required to receive permissions from all the members of some quorum in the system. Since any pair of quorums have at least one member in common, mutual exclusion is then guaranteed. The reader should note that the minimality property is not necessary for the correctness of mutual exclusion but can be used to enhance efficiency. 

2.2 k-coterie 

A k-coterie C, extended from the definition of coterie, is a set of sets where each set Q in C is called a quorum. The following properties should hold for the quorums in a k-coterie C. The reader should note that a 1-coterie (the value of k is taken 1) is exactly the coterie mentioned above.

[Intersection Property]: There are k quorums Q1 , Q2 , ... , Qk in C such that ( i,j: 1( i,j ( k, i( j : Qi ( Qj = ( (i.e., there exist k mutually disjoint quorums).  But, there are no k+1 quorums Q1, Q2, ... , Qk, Qk+1 in C such that ( i,j: 1 ( i,j ( k+1, i( j : Qi ( Qj = ( (i.e., there are no k+1 mutually disjoint quorums).

[Minimality Property]: There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2.
For example, { {1,3}, {1,4}, {2,3}, {2,4} } is a 2‑coterie because we can find two mutually disjoint quorums (such as {1,3}, {2,4} or {1,4}, {2,3} ), but no three or four mutually disjoint quorums. 

By the intersection property, the k‑coterie can be used to develop algorithms to achieve k‑entry critical sections. To enter the critical section, a node is required to receive permissions from all the members of some quorum in the system. Since no more than k nodes can form quorums simultaneously, no more than k nodes can access the critical section at the same time. The reader should note that the minimality property for a k‑coterie is also for the enhancement of efficiency. 

There may exist many approaches to construct k‑coteries. Below, we propose a structure named Cohorts for the constructions of k‑coteries.

2.3 Cohorts

A Cohorts Ck,n({ C1 , C2 , ... , Cn } is a set of sets satisfying three properties [P1], [P2], and [P3]. Each set C of Ck,n is called a cohort. The three properties are:

[P1]: n ( k.

[P2]: (i:: ( Ci ( > k.

[P3]: (i,j: i(j : Ci ( Cj= (.

For example, C2,3({ {1,2,3}, {4,5,6}, {7,8,9} } satisfies the above three properties. 

In this paper, a member of a cohort is assumed as a physical node in the system, and henceforth, the words "node" and "member" are used exchangeably. 

With respect to a specific set Q, we define two types of cohorts in Ck,n:

i).  A cohort C is Q's primary cohort if (Q ( C(=(C(-k+1.

ii). A cohort C is Q's supporting cohort if (Q ( C(=1.

The reader can check, by the above definition and the property [P3], that a cohort C can not be both Q's primary cohort and Q's supporting cohort. As a primary cohort, C must yield at least two members to Q; while as a supporting cohort, C needs to yield only one member to Q. The distinction between the roles of a cohort C is the basis of our correctness proving (theorem 3) and availability analysis (section 3.1).

A set Q is said to be a quorum under Ck,n if it has one primary cohort Ci, and all the cohorts Cj, 1 ( j < i, being its supporting cohorts. 

The reader should note that the lower the primary cohort's index (subscript) is, the fewer the number of necessary supporting cohorts is. No supporting cohort is necessary when C1 is the primary cohort.

Quorums under Ck,n can form a k coterie. For example, the following sets are quorums under C2,2 ( {{1,2,3}, {4,5,6} }.

Q1={1,2}, Q2={1,4,5}, Q3={1,4,6}, Q4={1,5,6},

Q5={1,3}, Q6={2,4,5}, Q7={2,4,6}, Q8={2,5,6},

Q9={2,3}, Q10={3,4,5}, Q11={3,4,6}, Q12={3,5,6},

where the under line of each quorum indicates the members from its primary cohort. The reader can check that those 12 quorums form a 2‑ coterie.

The theorems in the next section show that quorums under Ck,n form a k coterie. 

2.4 Correctness 

Theorem 1. (Safety property) There are at most k mutually disjoint k quorums under Ck,n.

Proof:

Suppose there are m, m > k, mutually disjoint quorums under Ck,n. Let C be the primary cohort of quorum Q and have the smallest index among those chosen as primary cohorts. Then, C must yield (C(-k+1 members to Q; that is, C has only k-1 members left. Those k-1 members are not sufficient to support all the other m-1((k) quorums. (
Theorem 2. (Liveness property) There exist k mutually disjoint k quorums under Ck,n.
Proof:

One possible way to construct k mutually disjoint quorums (Q1 , Q2 , ..., Qk ) under Ck,n is as follows. Let Ci , 1 ( i ( k, be the primary cohort of Qi and a supporting cohort of Qi+1, Qi+2, ..., Qk. That is, each Ci yields (Ci(-k+1 members to quorum Qi and one member to Qi+1, Qi+2, ..., Qk. Then [P1], [P2] and [P3] assures such a construction:

[P1] assures that each Qi has a primary cohort.

[P2] assures that each cohort has a sufficient number of members in the construction.

[P3] then guarantees that quorums constructed in the above way are mutually disjoint.
 

   (
Theorem 3. (Minimality property) There are no two quorums Q1 and Q2 under Ck,n such that Q1 is a super set of Q2 

Proof: 

This is a direct consequence of the construction of quorums under Ck,n. Suppose Q is a quorum involving members from C1, C2, ... , Ci. Then, Q must be of the form with Ci being the primary cohort, and C1, C2, ... , Ci-1 all being the supporting cohorts. It is obvious that taking member(s) from Q will make Q no longer of the form.





   (
3. Analysis and comparison

3.1 Availability 
The availability of a coterie is defined as the probability that a quorum can be successfully formed. Similarly, the availability of a k‑coterie is defined as the probability that k quorums can be successfully formed simultaneously. In this paper, we construct a k‑coterie from Cohorts Ck,n, so "the availability of Ck,n" is used as the abbreviation of "the availability of a k‑coterie constructed from Cohorts Ck,n".

We say a node is up if this node is available. The probability that a node is up is named the up-probability (of the node) in this paper. For homogeneous systems, we assume all the nodes have the same up-probability p. Also, to simplify the expression of the analysis, we assume all the cohorts in Ck,n are of the same size. Analysis of Ck,n whose cohorts do not have equal size can be derived accordingly. Later, we use "Ck,n(S)" to emphasize that all the cohorts of Ck,n have the same size S.

The availability of Ck,n(S) can be derived recursively. To express and explain the formulas, we define the following terms and notations. 

A primary cohort is called the first primary cohort if it's index is smaller than that of any other primary cohort; a primary cohort is called the second primary cohort if it's index is larger than that of the first primary cohort and smaller than that of any other k primary cohort; ... and so forth. Under Ck,n, the first primary cohort C must yield all its members to k quorums: (C(-k+1 members to the quorum taking C as the primary cohort and one member to other k‑1 quorums taking C as the supporting cohort. A cohort C may serve as the first primary cohort if all its members are up; as the second primary cohort if at least (C(-1 members are up; ... and so forth.

Let Av(n,k) be a function evaluating the availability of Ck,n(S). The Av function is recursive and the values of n and k change dynamically in the recursive calls of the Av function, so we use kinit to denote the initial value of k when Av(n,k) is first evoked.

Suppose the first primary cohort is Ci(i(1), then each Cj, 1 ( j < i, must be the supporting cohorts of all the quorums. All the members (S members) in Ci must be up, and each cohort Cj must contain k or k+1 or ... or (Cj(-1 (=S‑1) up members. The reader should note that we expel Cj from having S up members; otherwise C is sufficient to be the first primary cohort, which overlaps with the cases where Cj is treated as the first primary cohort. The analyses of cohorts after Ci can be handled by Av(n-i,k-1). In effect, Av(n-i,k-1) handles the second primary cohort. To be the second primary cohort, a cohort must contain at least S-1 up members. And the cohorts between the second primary cohort and the first primary cohort must contain k-1 or k or ... or S-2 up members. The Av function is called recursively as mentioned above. The environments (events) which have different positions at the first primary cohort or the second primary cohort or ... or the kth primary cohort are disjoint, so we can sum up the probabilities of those environments' occurrences. The recursive form of Av(n,k) is given as follows:

If  k=0   then  Av(n,k) = 1     else  Av(n,k)=

[Pr(k,S-kinit+k-1)]n-k(Pr(S-kinit+k,S)(Av(k-1,k-1)+ 

[Pr(k,S-kinit+k-1)]n-k-1(Pr(S-kinit+k,S)(Av(k,k-1)+

[Pr(k,S-kinit+k-1)]n-k-2(Pr(S-kinit+k,S)(Av(k+1,k-1)+ ...+

[Pr(k,S-kinit+k-1)]0(Pr(S-kinit+k,S)(Av(n-1,k-1)=


[image: image5.wmf]i

1

n

k

1

=

-

+

S

[[Pr(k,S-kinit+k-1)]i-1(Pr(S-kinit+k,S)(Av(n-i,k-1)]=
Pr(S-kinit+k,S)(
[image: image6.wmf]i

1

n

k

1

=

-

+

S

[[Pr(k,S-kinit+k-1)]i-1(Av(n-i,k-1)],
where Pr(( ,()= the probability that there exist ( or (+1 or ... or ( up nodes in a cohort =
[image: image7.wmf]j

=

a

b

S

 [C(S,j)(pj ( (1-p)s-j ].
Figure 1 shows the availability of Ck,n(S) in a 120-node system for different cohort sizes. Under a fixed k, there are two factors to k influence the availability of a k‑coterie constructed from Ck,n(S): the cohort size S and the up probability p. So, we can tune our solution by justifying the cohort size and/or the up probability (if possible) according to Figure 1. We have analyzed and tuned 24-, 48-, 72-, and 96-node systems; but for brevity, we do not depict those results.
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Figure 1.  The availability of the 144-node system under different cohort sizes.

3.2 Quorum size

For a k‑coterie constructed from Ck,n(S), the smallest quorum size is (S - k + 1) when the index of the primary cohort is 1; i.e., the quorum size is a constant (S - k + 1) in the best case. On the other hand, the largest quorum size is (S - k + n) when the index of the primary cohort is n. If we substitute n with N/S, then (S - k +  n) = (S - k + N/S), which has the minimum value when S=
[image: image12.wmf]N

. In other words, for the worst case, the quorum size is (S - k + n), which may be as low as 2 (
[image: image13.wmf]N

 - k. Figure 2 illustrates the largest quorum size in a 144-node system for different cohort sizes.
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Figure 2. The quorum size of the 144‑node system for different cohort sizes.

3.3 Comparison 

We compare our solution with Raymond's algorithm and Srimani and Reddy's algorithm; both of those two algorithms are devised for multiple-entry critical sections. In Raymond's algorithm, not all the k entries are available under any node failure. In Srimani and Reddy's algorithm, if a token is lost due to node or communication failure, some entries are not available. Complex token-loss detection and token regeneration algorithm must be executed for error-recovery. On the contrary, our solution is resilient to node failures and/or network partitioning. 

The lower bound of communication cost of our solution is twice the smallest quorum size: for each member of a quorum, one request k message and one grant message are necessary. For Ck,n(S), the lower bound of communication cost is thus 2((S- k + 1) per critical section. The upper bound of communication cost of our solution is 2((N-1) per critical section. It occurs when a node has to send permission requests to all the other N-1 nodes to form a quorum. Corresponding to each permission request there is a grant message no matter when the requesting node is in the critical section or not. 

Table 1 summarizes the communication costs and fault-tolerant  abilities of Raymond's algorithm, Srimani and Reddy's algorithm and our solution.


Raymond's
Srimani  &
Cohorts Ck,n(S)

Algorithm 
Reddy's Algorithm 
Solution 

((((((((((((((((((((((
Comm. Cost

(lower bound)
2(N-k-1
0 
2((S-k+1)

Comm. Cost

(upper bound)
2((N-1)
N+k-1
2((N-1)

Fault-tolerance
None
None
High

((((((((((((((((((((((
Table 1. Comparison among solutions achieving multiple entry critical sections.

4. Improvement of Cohorts for one-entry critical section 

4.1 1-coterie

We have shown that Cohorts Ck,n can be used to construct a k‑coterie. If the value of k is taken 1, then Cohorts Ck,n can be used to construct a 1‑coterie, which is actually the conventional coterie. In other words, the Cohorts can also be utilized to develop solutions for the access control of a single entry to the critical section. By taking advantage of the special case (1‑entry critical section), we can adapt the Cohorts to reduce the communication cost and to increase the availability. 

Quorums in a 1‑coterie need not be mutually disjoint, so [P3] (for k ensuring mutually disjoint quorums under Ck,n) can be relaxed, which causes the supporting cohort to be redefined. The following are two modifications for Cohorts C1,n.

[M1]. Adapted [P3]: ( i,j : i( j : Ci ( Cj.

[M2]. A cohort C is Q's supporting cohort if C yields at least one but as less as possible member(s) to Q. The reader should note that "as less as possible" is for the minimality property.

For example, C4,1 = { {1,2}, {3,4}, {5,6}, {6,7} } satisfies [P1], [P2], and the adapted [P3]; and the following sets are quorums under it:

Q1={1,2}, Q2 ={1,3,4}, Q3 ={2,3,4}, Q4 ={1,3,5,6},

Q5={2,3,5,6},Q6={1,4,5,6},Q7={2,4,5,6}, Q8={1,3,6,7},

Q9 ={2,3,6,7}, Q10 ={1,4,6,7}, Q11 ={2,4,6,7},

where the under line of each quorum indicates the members from its primary cohort. The reader should note that a cohort C must yield all its members to Q for being Q's primary cohort and that a member in the primary cohort can also serve as a member in a supporting cohort (for example, node 6 in Q7, Q8, ... Q11). 

4.2 The correctness 

The following theorems show that C1,n can be used to form quorums in coteries, viz., to achieve 1‑entry critical sections.

Theorem 4. (Safety property) There are at most one quorum under C1,n

Proof:

Suppose there exist 2 disjoint quorums Q1 , Q2 under C1,n. And let, without loss of generality, Ci and Cj , i<j, be the primary cohorts for Q1 and Q2 respectively. Then Ci must be the supporting cohort of Q2 , which is impossible because all the members of Ci are yielded to Q1.





   (
Theorem 5. (Liveness property) There exists one quorum under C1,n.

The proof of this theorem is trivial because we can always form a quorum under C1,n.


   (
As to the minimality property of the coterie constructed from C1,n, [M2] assures it.

5. Analysis and comparison of the improved Cohorts 

5.1 Availability 

On account of the adapted [P3], there are numerous legal structures for C1,n. Among our analyses, the following Cohorts structure is easy to derive, most uniform and highly available: { C1={1,...,S}, C2={2,...,S+1}, ... , Cn={N,1,...,S-1} }, where S, S < N, is the cohort size. Later, we denote this structure by C1,n(S). For example, C1,5(3) = { {1,2,3}, {2,3,4}, {3,4,5}, {4,5,1}, {5,1,2} }. The reader should note that in C1,n(S), n equals N.

The availability analysis for C1,n(S) is not trivial because a cohort may intersect with others and thus can not be considered independently. In practice, we calculate the availability of the system by examining all the possibilities of the system environments  which amount up to 2N cases. For any specified environment, if a quorum under C1,n(S) can be formed, then the probability of such an environment occurrence is accumulated into the availability.

Figure 3 illustrates the availability of C1,n(S) in a 15‑node system for different cohort sizes. We can also tune our solution by justifying the cohort size and/or the up probability (if possible) according to Figure 3.
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Figure 3. The availability of the 15-node system for different cohort sizes.

5.2 Quorum size 

When the primary cohort is C1 or C2 or ... or CS , the quorum under C1,n(S) has the smallest size S. This is because a node u, u ( s, of a quorum Q makes cohorts C1, C2, ... and Cu be the supporting cohorts of Q. In other words, under C1,n(S) the lower bound of quorum size is a constant S. As to the upper bound of quorum size under C1,n (S), the following theorem addresses it.

Theorem 6. Under C1,n(S), the upper bound of quorum size is S+(N/S(-1.

Proof:

The size of a quorum Q is the largest if the following worst case environment occurs: Q takes {N, 1, ... S-1} (note that n=N) as its primary cohort and all other n-1 cohorts as its supporting cohorts. Members 1, 2, ..., S-1 make C1 , C2 , ..., CS-1 be the Q's supporting cohort naturally. So, there are still n-S cohorts needing yielding members to Q for being Q's supporting cohorts. Under C1,n(S), S cohorts can become Q's supporting cohorts with one common member. So, ((n-S)/S( members are required to be yielded to Q. We can conclude that Q has S+( (n-S)/S (= S+( (N-S)/S (-1 = S+(N/S(-1 members. (
5.3 Comparison

Figure 4 shows the availabilities in 7- and 15-node systems with the tree quorum algorithm, the majority quorum algorithm and our solution, where the results of our solution are the tuned outcomes. When up probability is less than 0.5, our solution has higher availabilities. And when up probability is larger than 0.5, the availabilities of our solution approximate those of the tree quorum algorithm. 
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Figure 4.  Availability of the majority quorum algorithm, the tree quorum algorithm and our solution.

Many algorithms aim to reduce the number of messages needed to form a quorum because the communication cost is directly proportional to the quorum size. As mentioned earlier, under C1,n(S), when the primary cohort is C1 or C2 or ... or CS , the quorum has the smallest size S. In other words, our solution has a constant communication cost in the best case. Table 2 shows the quorum sizes of some quorum based algorithms and our solution. 
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Table 2. Quorum sizes under different algorithms.

6. Conclusion 

In this paper, we have first extended the concept of coterie to k‑coterie to fit with the requirement of access control for multiple-entry critical sections. We have then proposed the Cohorts structure to form quorums of k‑coteries. We have shown the correctness, availability analysis and communication cost analysis of our solution. As compared with other algorithms, our solution has low communication cost while keeping a distinguishing characteristic — resilience to node failures and/or network partitioning. 

When Raymond's algorithm or Srimani and Reddy's algorithm is applied to achieve k-entry critical sections, any node failure may reduce the number of entries allowed to the critical section. On the contrary, when Ck,n(S) is applied, k quorums can be simultaneously formed even though there are unavailable nodes. The following is the ideal case to form k quorums: C1 is the first primary cohort; C2 , the second primary cohort, ... ; Ck , the kth primary cohort. In such a case, C1 must have S up nodes, C2 must have (S-1) up nodes, ... Ck must have (S-k+1) up nodes. That the system has S + (S-1) + ... + (S-k+1) up nodes is hence the minimum requirement to form k quorums. In other words, our solution can tolerate up to 
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 node failures. But if each cohort has an unavailable node, then the number of quorums which can be formed simultaneously is reduced. That is, n node failures may reduce the number of entries allowed to the critical section in our solution. 

When the 1-entry critical section is considered, our solution can be improved further by adapting the Cohorts structure. As compared with other algorithms, the improved solution has fair availability and constant communication cost in the best case. Furthermore, the improved solution suits the heterogeneous system with nodes of different up-probabilities well. For heterogeneous systems, in the tree-quorum algorithm the most reliable node is used as the root and the least reliable nodes are used as the leaves; i.e., the nodes should be arranged so that their up-probabilities decrease from the root to leaves. Such an arrangement makes the tree-quorum algorithm work well in heterogeneous systems. In our solution, we may arrange nodes according to their up-probabilities in descending order. If any attempt of forming a quorum always tries the lower-ordered nodes first, our solution also works well in heterogeneous systems. 

We now discuss the fault-tolerance of our solution for one-entry critical sections and other related algorithms.    The majority quorum can tolerate up to any   ((N+1)/2( node failures.  The 
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 algorithm can tolerate up to N-
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 node failures, but 
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 node failures may prohibit the quorum forming. In the tree-quorum algorithm, a quorum can still be formed even when there are N-(log N( node failures, but (log N( node failures may ruin every quorum. The hierarchical quorum algorithm may tolerate up to N-N0.63 node failures , but N0.63 node failures may do harm in every quorum. In our solution, under C1,n(S), if all the nodes in the cohort C1 or C2 or ... or CS are up, then we can form a quorum of the minimum size S. That is, only S available nodes can successfully form a quorum, so up to N-S node failures are tolerable in our solution. But when all of the nodes in cohort C1 are unavailable, no quorum can be formed. So, S node failures may prohibit the forming of any quorum in our solution.
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