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Abstract — In an RFID system a reader requests tags to send their IDs by RF signal 

backscattering for the purpose of identification. When multiple tags respond to the 

request simultaneously, tag collisions occur and the tag identification performance is 

degraded. There are several tag anti-collision protocols proposed for reducing tag 

collisions. The protocols can be categorized into three classes: ALOHA-based, tree-based 

and counter-based. ALOHA-based protocols have the tag starvation problem; tree-based 

protocols have the problem that their performances are influenced by the length and/or 

the distribution of tag IDs. On the contrary, counter-based protocols do not have such 

problems. In this paper, we propose a counter-based tag anti-collision protocol, called 

ASPS, to reduce tag collisions by adaptively splitting tags encountering collisions into 

several groups according to the estimated number of tags to be split, and to reduce the 

number of messages sent between the reader and tags by utilizing a pre-signaling bit. We 

simulate and analyze ASPS and compare it with related ones to show its advantages. 

 

Keywords — Collision resolution, RFID, anti-collision, tag identification 

1 INTRODUCTION 

The RFID (Radio Frequency IDentification) technique attracts a lot of attention 

recently due to its automatic identification capability through RF communication [1]. An 

RFID system consists of a reader and one or more tags. Tags store unique IDs and are 

attached to objects; a reader recognizes an object by issuing RF signals to interrogate the 

ID of the attached tag. According to the source of power supply, tags are classified into 

two types: active tags, which contain a battery and can transmit signals autonomously, 

and passive tags, which contain no battery and derive energy from the RF field generated 

by the reader to transmit signals passively. Most RFID tags are passive; they have the 

advantage over other electronic products that are energized by batteries or other power 

sources. Furthermore, tags are usually of tiny sizes and low costs. The RFID system is 

thus suitable for many applications, such as logistic control, supply chain management, 

and asset tracking, etc. 

When a tag and a reader are close enough, they can communicate with each other. 

For such a situation, we say that the tag is in the interrogation zone of the reader. To 

figure out which tags are within the interrogation zone, a reader initiates an identification 

procedure (or interrogation procedure) to request tags to send back their IDs. When 

multiple tags respond to the reader simultaneously, tag collisions occur and no tag can be 

identified by the reader successful. How to reduce tag collisions to speed up the 
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identification procedure is thus important. There are several tag anti-collision protocols 

proposed for reducing tag collision. According to [2], they can be categorized into two 

classes: ALOHA-based protocols and tree-based protocols that include deterministic 

tree-based and probabilistic counter-based subclasses of protocols. 

In ALOHA-based protocols [3-7], tags respond to the reader by transmitting IDs in 

a probabilistic manner. For example, in slotted ALOHA protocol [4], the whole 

interrogation procedure period is divided into several time slots, and each tag randomly 

chooses a time slot for transmitting its ID to the reader. ALOHA-based protocols are 

simple; however, they have the tag starvation problem that a tag may never be 

successfully identified because its responses always collide with others’. 

The basic idea of the tree-based protocol is to repeatedly split the tags encountering 

collisions into subgroups until there is only one tag in a subgroup to be identified. The 

tree protocols do not have the tag starvation problem. In order to emphasize the different 

mechanisms for performing the tag-splitting based on either static tag IDs or dynamic 

counters, we classify the tree-based protocols into deterministic tree-based [8-11] and 

probabilistic counter-based [12-14] subclasses of protocols. The deterministic tree-based 

protocol relies on tag IDs and thus has the problem that its performance is influenced by 

the tag ID length and/or distribution, while the probabilistic counter-based protocol has 

not. We hence focus on counter-based protocols in this paper. 

This paper presents a novel counter-based tag anti-collision protocol, called ASPS, 

using two schemes, adaptive splitting and pre-signaling, to reduce tag collision. By 

predicting the number k of tags to be split, ASPS adaptively splits tags into k groups. It is 

likely that each group has only one tag to be identified successfully. In this way, 

collision is reduced significantly. Furthermore, ASPS utilizes a pre-signaling bit to 

reduce the number of messages sent between the reader and tags. The tag identification 

delay is thus reduced. We simulate and analyze ASPS and compare it with related ones 

to show its advantages. 

The rest of this paper is organized as follows. Some related work is introduced in 

Section 2. In Section 3, we describe ASPS protocol by elaborating the concepts of 

adaptive splitting and pre-signaling. In Section 4, we simulate and analyze ASPS and 

compare it with related protocols. And finally, conclusion is drawn in Section 5. 
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2 RELATED WORK 

In this section, we introduce some representative ALOHA-based, deterministic 

tree-based and probabilistic counter-based tag anti-collision protocols. 

 

2.1 ALOHA-Based Protocols 

ALOHA-based protocols try to stagger tag response times in a probabilistic manner 

to reduce collisions. Below, we introduce some ALOHA-based protocols: ALOHA [3], 

slotted ALOHA [4], frame slotted ALOHA [5], and dynamic frame slotted ALOHA [6-7] 

protocols. 

In ALOHA protocol [3], on receiving the reader’s interrogation request, each tag in 

the interrogation zone independently chooses a random back-off time and responds its 

tag ID to the reader at that time. If an ID is received by the reader without collision, it 

can be identified properly and acknowledged by the reader. A tag with acknowledged ID 

will stop responding to the reader. On the other hand, an unacknowledged tag will 

repeatedly select a random back-off time to send its ID until it is identified and 

acknowledged by the reader. In slotted ALOHA protocol [4], the random back-off time 

must be a multiple of a pre-specified slot time. If collisions occur in a slot, the reader 

will notify the colliding tags to re-select a response time randomly. As shown in [15], the 

performance of slotted ALOHA protocol is twice that of ALOHA protocol since there is 

no partial collision of tag ID responses in the former protocol. 

Frame slotted ALOHA protocol [5] is similar to slotted ALOHA protocol. However, 

to limit the response time, frame slotted ALOHA protocol divides the whole 

interrogation procedure into a set of frames. Each frame has a fixed number of time slots, 

and a tag sends its ID to the reader in only one randomly chosen slot during a frame 

period. One drawback of frame slotted ALOHA protocol is that its performance will 

degrade when the number of slots in the frame does not properly match with the number 

of tags in the interrogation zone. Dynamic frame slotted ALOHA protocols [6-7] try to 
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eliminate the drawback by dynamically adjusting the frame size according to the 

estimated number of tags. They are therefore have better performance slotted ALOHA 

protocol. But they need many communication rounds to optimize the frame size before 

the identification process [6]. Under the assumption that tag IDs are with the same series 

in production (i.e., tags have the continuous tag ID numbers), paper [16] proposed LoF 

(Lottery Frame) protocol to reduce the number of communication rounds from O(n) to 

O(log n) with the help of the geometric distribution hash function, where n is the total 

number of tags in the interrogation zone. 

In general, ALOHA-based protocols are simple and have fair performance. 

However, some ALOHA-based protocols have the tag starvation problem that a tag may 

never be identified when its responses always collide with others’. 

2.2 Deterministic Tree-Based Protocols 

Deterministic tree-based protocols rely on tag IDs to repeatedly split colliding tags 

into subgroups until there is only one tag in a subgroup to be identified successfully. 

Below, we introduce two representative tree-based protocols: query tree [8] and bit-by-bit 

binary tree [9] protocols. 

In query tree protocol (QT) [8], a reader first broadcasts a bit string S of a specified 

length. The tag with an ID whose prefix matches with S will respond its whole ID to the 

reader. If only one tag responds at a time, the tag is identified successfully. But if 

multiple tags respond simultaneously, the responses collide. In such a case, the reader 

appends string S with bit 0 or 1 and broadcasts again the longer bit string (i.e., S0 or S1). 

In this manner, the colliding tags are divided into two subgroups. If there is only one tag 

in a subgroup, it can be identified successfully. The reader keeps track of the request 

strings needed to broadcast with the help of a stack and perform tag identification 

procedure until all tags are identified. QT protocol is a memory-less protocol because it 

does not require tags to be equipped with additional writable on-chip memory. QT 
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protocol does not have the tag starvation problem and its identification delay is affected 

by the distribution and the length of tag IDs. Specifically, if the tags have long and 

continuous IDs, the request bit string will grow very quickly for identifying all tags. The 

delay time of the identification procedure will then increase significantly. 

In bit-by-bit binary tree (BBT) protocol [9], on receiving a reader’s interrogation 

request, each tag responds with the first bit of its tag ID. The reader then records and 

broadcasts 1 (resp., 0) if the received bit is 1 (resp., 0 or a colliding signal). Only the tags 

with the first bit being 1 (resp., 0) will respond with its next ID bit; other tags will go into 

a sleep mode. The above procedure will repeat bit by bit until the last ID bit is reached. 

The reader can then identify and mute one tag, and reset tags in the sleep mode to go 

through the interrogation procedure from some ID bit position. The bit-by-bit procedure 

is performed recursively and all tags can be identified. BBT protocol requires tags to be 

equipped with writable on-tag memory so that tags can keep track of the inquiring bit 

position. Like QT protocol, BBT protocol has no tag starvation problem and its 

performance is dependent on tag ID distribution and/or length. 

2.3 Probabilistic Counter-Based Protocols 

Probabilistic counter-based protocols rely on dynamically changing counters to split 

colliding tags. Below, we introduce two probabilistic counter-based protocols, ISO/IEC 

18000-6B tag anti-collision protocol [13] and ABS (Adaptive Binary Splitting) protocol 

[12]. 

The well known ISO/IEC 18000-6B standard [13] proposes a probabilistic 

counter-based tag anti-collision protocol (later we just name it ISO/IEC 18000-6B 

protocol for short). In the protocol, each tag maintains a counter which is initially 0. 

Every tag with counter value 0 can transmit its tag ID to respond to the reader’s 

interrogation request. When a collision occurs, the reader will notify all tags of this. And 

the tags with counter values larger than 0 will increase their counters by 1, while the tags 
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with counter value 0 will randomly add 0 or 1 to their counters. In this way, the colliding 

tags (i.e., the tags with counters value 0) are split into two subgroups. The splitting 

procedure will be repeated until there is only one or no tag with counter value 0. In the 

former case, the tag with counter value 0 can be identified successfully. And in both 

cases, the reader sends a command to inform all unidentified tags to decrease their 

counters by 1. In this way, every tag will be the unique one to have counter value 0 and 

be identified successfully. 

Adaptive Binary Splitting (ABS) protocol [12] is proposed to improve ISO/IEC 

18000-6B protocol by keeping tags’ counter information of the last interrogation round. 

A tag in ABS protocol keeps two counters. The first counter (Allocated Slot Counter, 

ASC) is similar to that of ISO/IEC 18000-6B protocol, and the second counter 

(Progressed Slot Counter, PSC) is to keep track of the number of tags identified 

successfully. The two counters are initially 0 in the first round, but only PSC is reset to 

be 0 in following rounds. Tags with ASC equal to PSC can transmit their tag IDs to 

respond to a reader request. When there is only one response, the responding tag can be 

identified and each tag increases PSC by one. When there is no response, all tags with 

ASC larger than PSC decrease ASC by one. When collisions occur, the tags with ASC 

larger than PSC then increase ASC by 1, while the tags with ASC equal to PSC randomly 

generate a random bit, 0 or 1, and add it to ASC. Note that tags with ASC less than PSC 

do not increase ASC; they even do not attempt to transmit their IDs until the tag 

interrogation round is finished. After all tags are identified in a round, they have unique 

and successive ASC values. These values can be reserved for use in the next tag 

interrogation round to speed up the interrogation procedure. Even if there are tags joining 

or leaving after the last interrogation round, ABS protocol can work properly. As shown 

in [12], the performance of ISO/IEC 18000-6B protocol is improved significantly by 

ABS protocol. 

In general, probabilistic counter-based protocols do not have the problem of tag 

starvation. Furthermore, they have the stable property that their performances are not 
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affected by the tag ID distribution or ID length. 

3 THE PROPOSED PROTOCOL 

In this section, we propose a novel probabilistic counter-based tag anti-collision 

protocol, called ASPS, which uses two schemes, adaptive splitting and pre-signaling, to 

reduce tag collision and the number of messages sent between a reader and tags. Below, 

we introduce the two schemes respectively. 

3.1 Adaptive Splitting 

In this subsection, we introduce the adaptive splitting scheme for speeding up the 

identification procedure. When there are tags whose responses collide, a typical counter 

based tag anti-collision protocol, such as ISO/IEC18000-6B protocol, split colliding tags 

into two subgroups no matter how many colliding tags are. The idea of adaptive splitting 

scheme is to estimate the number k of colliding tags and to split the colliding tags into k 

groups to speed up the identification procedure. 

There are two phases in the adaptive splitting scheme. In the first phase, the adaptive 

splitting scheme obeys ISO/IEC 18000-6B protocol until the first tag is identified 

successfully. It then enters the second phase, in which the reader estimates the number of 

colliding tags of a specific counter value. Unlike other solutions that estimate the total 

number of tags before the identification process (e.g., Kodialam and Nandagopa's protocol 

[6]), ASPS scheme needs not go through a separate tag quantity estimation stage. Below, we 

explain how a reader does the estimation. 

We propose the primitive splitting group (PSG) concept for the adaptive splitting 

scheme. As the first tag is identified, the tags having the same counter value are assumed 

to be in the same PSG. The PSG groups are indexed by 1, 2, …, max_idx at the end of 

the first phase according to the top-to-down and right-to-left order in the counter-based 
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splitting tree (refer to Fig. 1). Note that max_idx is the index of the PSG to which the 

first-identified tag belongs. 

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of PSG groups and their associate counter (CNT) values in a counter-based 

splitting tree (the first identified tag belongs to PSG5, i.e., max_idx = 5) 

 

As shown in [17], if there are k tags in a group to be identified, then it has the best 

performance to directly split the tags into k subgroups. In the second phase, the reader 

estimates the number of the tags in each PSG (in the order from index max_idx–1 to index 

1) and splits the tags according to the estimated number. The estimation is based on the 

observation that there are about the same number of tags associated to the sub-trees 

rooted at two sibling nodes in the splitting tree, since colliding tags are expected to be 

split into 2 groups of approximately equal sizes. For example, in Fig. 2, the sub-tree 

rooted at node PSG3 has two associated tags, and the sub-tree rooted at the sibling node 

of node PSG3 also has two associated tags. Therefore, the reader can easily estimate the 

number ke of tags in PSGe just by figuring out the number Ne of tags associated with the 

sub-tree rooted at the sibling node of PSGe. Actually, Ne equals the total number of tags 

in the PSG groups indexed by e+1, e+2, ... , max_idx. We have 
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𝑚𝑎𝑥 _𝑖𝑑𝑥
𝑖=𝑒+1 |                               (1)     

                                                        
 

We now can use Ne as an estimation of ke and split tags in PSGe into Ne (instead of 2 

in ISO/IEC 18000-6B protocol) subgroups directly. This can be done by making each tag 

in PSGe randomly choose a value between 0 and (Ne –1) as its new counter value. At the 

same time, unidentified tags, i.e., tags in PSGe –1, PSGe–2,…, PSG1, should add (Ne –1–c) 

to their counter values, where c is the counter value of the tags in PSGe before splitting. 

By the adaptive splitting scheme, we expect to split tags in PSGe into Ne subgroups 

such that each subgroup has exactly one tag (refer to Fig. 2). But it may not be so lucky 

due to the probabilistic characteristic of tag splitting and due to the fact that PSGe may 

not have exactly Ne tags. If there are two or more tags in one subgroup, 

ISO/IEC18000-6B protocol is applied to identify those tags. Fortunately, as shown in 

[18], it will not have too many tags in one subgroup if Ne approximates ke. Therefore, it 

will be efficient enough to identify tags in a single subgroup by recursively applying 

ISO/IEC18000-6B protocol. 

 

 

Figure 2. An example of the adaptive splitting scheme 

3.2 Pre-Signaling 
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To enhance the performance of the identification procedure, we propose the idea of 

pre-signaling under the assumption that the reader can distinguish three cases of 

identical responses from multiple tags by signal strength inspection. The cases are 1) 

no-response, 2) one-response and 3) multiple- response. Note that it is possible for a 

reader to detect multiple tags responding the same bit at the same time since tags’ 

response time may be biased (for example, +/-15% in ISO18000-6B standard [13]) and 

the superposition of multiple tags’ signals may give some clues [1]. However, we will 

not go into the details of the hardware design in this paper. 

By the anti-collision rule in ISO/IEC18000-6B protocol, only the tags with counter 

value 0 can respond its ID to the reader in the response window. We slightly modify this 

to be the pre-signaling scheme that the tags with counter value 1 will respond 1 at the 

first bit transmission period of the response window. After the first bit transmission 

period, the tag with counter value 0 will then respond its ID bit by bit normally. 

The bit transmitted by the tags with counter value 1 is called pre-signaling bit. The 

value of pre- signaling bit received by a reader can be null, single_1 and multiple_1, 

which correspond to the three tag response cases of no-response, one-response and 

multiple-response, respectively. According to the value of pre-signaling bit, the reader 

takes one of the following three actions. 

 

(Case 1) The pre-signaling bit is ―null‖ 

In this case, no tag is with counter value 1. After all tags with counter value 0 are 

identified, the reader will inform all unidentified tags to decrease their counters by 2. 

This will speed up the original procedure of ISO/IEC18000-6B protocol, in which the 

reader informs unidentified tags to decrease their counters by one, waits awhile for tags 

to respond (there is certainly no response in that case), and then informs again all 

unidentified tags to decrease their counters by one. 

(Case 2) The pre-signaling bit is ―single_1‖ 

In this case, only one tag is with counter value 1, which implies it can be identified 
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successfully without collision in the next iteration of tag identification procedure. The 

reader does not take any extra action for this case. It just follows the original procedure 

of ISO/IEC 18000-6B. 

(Case 3) The pre-signaling bit is―multiple_1‖ 

In this case, there are multiple tags with counter value 1. The reader can inform 

those tags to split into k subgroups just after all the tags with counter value 0 are 

identified, where k is the estimated number of tags with counter value 1. To be more 

precise, the tags with counter value 1 will then be of counter value 0, 1, …, or k–1 

randomly. This will speed up the original procedure of ISO/IEC18000-6B protocol, in 

which the reader informs unidentified tags to decrease their counters by one, waits awhile 

for tags to respond (there are certainly multiple responses in that case), and then informs 

all tags with counter value 0 to increase their counters by 0 or 1, and informs all tags with 

counter value greater than 0 to increase their counters by 1. 

 

By the help of pre-signaling scheme, the number of messages sent between a reader 

and tags can be significantly reduced, which in turn shortens the identification procedure 

latency. Consequently, with both adaptive splitting and pre-signaling schemes, the 

performance of tag interrogation can be improved dramatically. We will justify this by 

extensive simulation experiments in the next section. 

3.3 Operation Details 

In this subsection, we elaborate the details of ASPS. The reader operation is 

shown in Algorithm1.To start a new interrogation round, the reader first sends an NR 

(New Round) command to tags. It then sends an RC (Reader Command) command with 

RC.status=Request to ask tags to respond. On receiving the command, the tags with 

counter value 1 will respond 1 at the first bit transmission period of the response 

window, and the tags with counter value 0 will then respond its whole ID bit by bit. 
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When the reader receives responses from tags, it will extract the first bit as the 

pre-signaling bit and other bits as the tag ID. 

 

There are two phases, Phase I and Phase II, in a round. Phase I continues until the 

first tag is identified successfully (lines 7-24). In Phase I, the reader follows the 

original identification procedure of ISO/IEC 18000-6B protocol to identify tags. At the 

end of Phase I, the reader can figure out the maximum index (viz., max_idx), and all 

PSG groups’ counter values (viz., PSG[i].cnt), 0 ≤ i  max_idx. It can also find out 

the maximum counter value (viz., max_cnt) of tags. 

In Phase II, the adaptive splitting scheme is enforced. The reader will send an RC 

command with RC.status = Collision, Success, Pre_Split or Pre_Collision according to 

the tag responses. The reader keeps track of the maximum counter value max_cnt and 

terminates Phase II when max_cnt is zero. Below, we describe the reader operations. It is 

noted that we use variable next_idx to keep track of the index of the PSG that will be 

next processed by the reader, and we just use ―the next PSG‖ to indicate such a PSG. 

 

■ Lines 28-31: If there is any tag collision, the reader sends an RC command with 

RC.status=Collision to notify tags of the collision. 

 

■ Lines 37-42: The reader estimates the tag number k in the next PSG by formulas (1)-(3), 

and sends an RC command with RC.status=Pre_Split and RC.no=k to notify tags in 

the next PSG to split into k subgroups by setting counters to be between 0 and k–1, 

and to notify other tags to increase their counters by k–2 (i.e., k–1– the next PSG 

counter value), if both the following conditions hold. 

 there is no tag response collision 

 the counter value of the next PSG is 1. 

■ Lines 45-48: The reader sends an RC command with RC.status=Pre_Collision to notify 

that (1) the tag with counter value 0 has been identified successfully, (2) the tags with 
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counter value 1 should be split into 2 subgroups, and (3) others tags should increase their 

counters by 1, if all the following conditions hold. 

 there is no tag response collision 

 the counter value of the next PSG is 2 or more 

 the pre-signaling bit is―multiple_1‖ 

■ Lines 49-52: The reader sends an RC command with RC.status= Success and RC.no=1 

to notify that (1) the tag with counter value 0 has been identified successfully, and (2) the 

other tags should decrease their counters by 1, if all the following conditions hold. 

 there is no tag response collision 

 the counter value of the next PSG is 2 or more 

 the pre-signaling bit is ―single_1‖ 

 Lines 53-57: The reader sends an RC command with RC.status= Success and 

RC.no=offset to notify that (1) the tag with counter value 0 has been identified 

successfully, and (2) other tags should decrease their counters by offset, if all the 

following conditions hold. 

 

 there is no tag response collision 

 the counter value of the next PSG is 2 or more 

 the pre-signaling bit is ―null‖ 

 

Note that offset=1 if the counter value of the next PSG is 2; otherwise, offset=2. This is 

because tags of the next PSG of counter value 2 should decrease their counters by 1 

instead of 2; otherwise they will directly be of counter value 0 and bypass the adaptive 

splitting process. 

 

The tag operations are shown in Algorithm 2. We can observe that there is an 

action corresponding to each command of the reader. If both the reader and tags 

comply with the algorithms, all tags can be identified properly.  
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Algorithm 1. ASPS Reader Operation 

/* NR stands for New Round command 

RC stands for Reader Command, and 

RC.status is one of Request, Success, 

Collision, Pre_Collision or Pre_Split, and 

RC.no indicates the estimated number of 

tags for splitting */ 

1   send NR command to start a new round 

2   phase =1 //for starting Phase I 

3   max_idx = 0 //the maximum index of PSG groups 

4   max_cnt = 0 //the maximum counter value of tags 

5   reset PSG[ ].cnt //reset counter values of all PSG groups to be 0 

6   send RC with RC.status = Request   //to ask tags to respond 

7   while phase = 1 do 

8     switch (tag_ response) 

9           case tag_collision: 

10             + + max_idx; ++ max_cnt 

11             + + PSG[i].cnt for i=1..max_idx–1 

12             send RC with RC.status = Collision 

13          case one_tag_response: 

14                  record the sole ID responded as an identified one 

15                  + + max_idx 

16                  PSG[max_idx].cnt = 0   //set the counter (cnt) of the last PSG to be 0 

17                  send RC with  RC.status = Success and RC.no=1 

18                  phase = 2  //for starting Phase II 

19          case no_tag_response: 

20              – – PSG[i].cnt for i=1..max_idx 

21             – – max_idx; – – max_cnt 

22                 send RC with RC.status = Success and RC.no=1 

23        end switch (tag_ response) 

24  end while (phase = 1) 

 // Phase II starts 

25  next_idx = max_idx – 1; 

 //next_idx stands for the index of the next PSG for processing 

26  while phase = 2 do 

27       switch (tag_ response) 

28             case tag_collision: 

29                 + + PSG[i].cnt for i=1...next_idx 

30                 + + max_cnt 
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31                 send RC with RC.status = Collision 

32             case one_tag_response or no_tag_response: 

33                 if (only one tag responds ID) 

34                   record ID as an identified one 

35                 endif 

36              switch (PSG[next_idx].cnt) 

37                    case 1: 

38                       estimate the number k of tags in PSG[next_idx] 

39                       PSG[i].cnt += (k–2) for i=1..next_idx 

40                       max_cnt += (k–2) 

41                       – – next_idx 

42                       send RC with RC.status = Pre_Split and RC.no =k 

43                     default:  // PSG[next_idx] is 2 or more 

44                          switch (pre_signal) 

45                               case multiple_1: 

46                                  – – PSG[i].cnt for i=1..next_idx 

47                                  – – max_cnt 

48                                  send RC with RC.status = Pre_Collision 

49                               case single_1: 

50                                  – – PSG[i].cnt for i=1..next_idx 

51                                  – – max_cnt 

52                                  send RC with RC.status=Success and RC.no=1 

53                               case null: 

54                                  if (PSG[next_idx]=2) offset=1 else offset=2 endif 

55                                      PSG[i].cnt –= offset for i=1..next_idx 

56                                    max_cnt –= offset 

57                                    send RC with RC.status=Success and RC.no = offset 

58                          end switch (pre_signal) 

59                end switch (PSG[next_idx].cnt) 

60     end switch (tag_ response) 

61       if (max_cnt =0) phase = 0 endif //for terminating Phase II 

62  end while (phase = 2) 
 

 
 

Algorithm 2. ASPS operation for a tag 

1  receive NR command from the reader to start a new round 

2  TC = 0 // initialize tag counter TC for a new round 

3  identified=false //set tag to be not identified 

4  while (not identified) 

5      receive command RC from the reader 

6      switch (RC.status) 
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7           case Request:    //do nothing for TC modification in this case 

8           case Collision: 

9              if (TC =0) 

10               TC = r (r is a random value of 0 or 1) 

11              else 

12               TC += 1 

13              end if 

14            case Pre_Collision: 

15               switch (TC) 

16                    case 0: identified  = true //keep silient till next round 

17                    case 1: TC =  r (r is a random value of 0 or 1) 

18                    default: TC += 1 

19               end switch (TC) 

20            case Pre_Split: 

21               switch (TC) 

22                    case 0: identified=ture; //keep silent till next round 

23                    case 1: TC =  r (r is a random value of 0, 1,.., or RC.no – 1) 

24                    default:  TC += (RC.no –2) 

25               end switch (TC) 

26            case Success: 

27               if (TC = 0) 

28                identified = true //keep silent till next round 

29               else 

30                TC –= RC.no 

31               end if 

32       end switch (RC.status) 

      //Respond to the RC command 

33       if (not identified) 

34        if (TC = 1) 

35         respond the first bit at the first bit transmission period 

36        else if (TC = 0) 

37         respond tag ID from the second bit transmission period 

38        end if 

39       end if 

40  end while (not identified) 
 

 

4 SIMULATION AND ANALYSIS 
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In this section, we show simulation and analysis results. We simulate ASPS and 

compare it with ISO/IEC 18000-6B protocol [13] in terms of the number of tag collisions, 

the number of messages sent by the reader and the time needed to identify all tags in the 

interrogation zone. We also compare the system efficiency of ASPS, query tree, frame 

slotted ALOHA and ISO/IEC 18000-6B protocols for the cases of 200, 400,…, and 5000 

tags in the interrogation zone are considered, and 1000 simulation experiments are 

performed for each case. It may be unreal to identify thousands of passive tags at a time. 

But in the scenario of active tag identification, the reader can read up to thousands of tags 

simultaneously (for example, the model 227004-9-iQRW reader produced by GAO RFID 

Inc. can read 2000 tags at a time). This accounts for the reason we simulate for the cases 

of thousands of tags. 

4.1 The Number of Collisions 

In this subsection, we first compare AS (the protocol with only the adaptive splitting 

scheme), ASPS (the protocol with both the adaptive splitting and the pre-signaling 

schemes) and ISO/IEC 18000-6B protocol in terms of the number of collisions by 

simulation experiments. In Fig. 3, there are three curves of each protocol for the best case 

result (i.e., the one that has the fewest collisions occurred in the 1000 simulations), the 

worst case result (i.e., the one that has the most collisions occurred in the 1000 

simulations), and the average result (i.e., the average number of collisions occurred in the 

1000 simulations). As shown in Fig. 3, ASPS outperforms ISO/IEC 18000-6B protocol. 

For example, the number of collisions of the former is only 20% of the latter’s when the 

number of tags is 5000. Furthermore, the following observations are worth mentioning. 

 The worst case results of ASPS are better than the best case results of ISO/IEC 

18000-6B protocol.  

 Without using the pre-signaling scheme, AS still has fewer collisions than ISO/IEC 

18000-6B protocol. 
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Figure 3. The comparison between ASPS and ISO/IEC 18000-6B protocol in terms of the 

number of collisions 

4.2 The Number of Messages Sent by the Reader 

In ISO/IEC 18000-6B protocol, a reader sends a command when it is ready to 

interrogate tags and listen to the responses from them. The tags with counter value 0 will 

respond their tag IDs to the reader. The reader will send another command to notify tags 

of the response status. As we have shown, with the help of the pre-signaling scheme, a 

single reader command can carry more tag statuses. Therefore, the number of messages 

sent by the reader is reduced dramatically. 

By Fig. 4, we can observe that the number of messages sent by the reader in ASPS 

is only 55.5% of that in ISO/IEC 18000-6B protocol for 5000 tags. If we disregard 

essential commands (i.e., we count only the commands caused by tag collisions or no tag 

responses, but not those for informing successful identification), the number of messages 
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sent by the reader of ASPS is only 31.9% of that in ISO/IEC 18000-6B protocol for 

5000 tags. This is because the adaptive splitting and pre-signaling schemes together cut 

down the number of messages sent by the reader. Similar to Fig. 3, Fig. 4 has there 

curves for ASPS and ISO/IEC 18000-6B protocol, and the worst case results of the 

former are better than the best case results of the latter. 

 
Figure 4. The comparison between ASPS and ISO/IEC18000-6B protocol in terms of the number of 

messages sent by the reader 

4.3 The Tag Identification Delay 

We compare ASPS with ISO/IEC 18000-6B protocol in terms of the tag identification 

delay, which is the elapsed time for a reader to identify all tags in the interrogation zone. The 

delay time Td is de fined to be: 

 

Td = (NC + NNC) × TID + NCMD × TM + NNULL × TW              (2)    
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The notations used in Eq. 2 are explained in Table I. And we follow the parameters 

suggested by ISO/IEC 18000-6B protocol [13], shown in Table II, to calculate Td. By Table 

II, we set the time for a reader to transmit a command to be 1.5 ms, set the time for a tag to 

transmit tag ID to be 2.7 ms, and set the elapsed time for a reader to be aware of the null 

response to be 0.5 ms. Table III demonstrates the delay time to identify all tags in ASPS and 

ISO/IEC 18000-6B protocol for different numbers of tags. By Table III, we can observe that 

the delay time of ASPS is only about 60% of that of ISO/IEC 18000-6B protocol. 

 

Table I. The notations used in Eq. 2 

NC The number of cases with tag collisions 

NNC The number of cases with no tag collisions 

NCMD The number of commands sent by the reader 

NNULL The number of cases of no tag response (null response) 

TID The elapsed time for a tag to transmit its ID 

TM The elapsed time for the reader to transmit a command 

TW The elapsed time for a reader to be aware of null response 

 
 

Table II. The parameters adopted by ISO/IEC 18000-6B protocol [13] 

 
Reader forward transmission Tag backward transmission 

Data rate 40 kbps* 40 kbps 

Tag identifier N/A 64 bits 

Error detection 16 bit CRC 16 bit CRC 

Preamble 25 bits 16 bits 

Delimiter 11 bits N/A 

Quiet N/A 15 bits** 

Command set 8 bits N/A 

Tag receiving-to-transmitting 

turn around time 
N/A ranging from 85 to 460 μs 

* 10 or 40 kbps according to local regulations (we assume 40kbps) 

** Tags shall not respond for 16 × TB － 0.75 × TF, where TB (resp., TF) is one symbol 

period for backward (resp., forward) transmission, which depends on the transmission 

data rate. We assume TB and TF are both 25 μs. 
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Table III. The tag identification delay comparison 

The number of 

tags 

 
100 200 300 400 500 

ISO/IEC 

18000-6B 
1108.6 2221.4 3340.4 4454.7 5559.8 

ASPS 717.7 1390.1 2066.7 2722.9 3391.1 

* The delay is measured by ms 

 

4.4 The Error on the Estimated Number of Tags 

In this subsection, we analyze the error on the estimated number of tags in a PSG group 

for the adaptive splitting scheme. As described in Section 3.1, a reader in ASPS estimates 

the number of the tags in each PSG and splits the tags according to the estimated number 

during the identification process. The estimated number ke of tags in PSGe is the 

summation of the number of tags in the PSG groups indexed by e+1, e+2, ..., max_idx, 

where the actual number of tags in PSGe+1, PSGe+2, …, PSGmax_idx are known before 

tags in PSGe are to be identified. That is, the estimated number ke of tags in PSGe is Ne, 

where 𝑁𝑒 =   |𝑃𝑆𝐺𝑖|
𝑚𝑎𝑥 _𝑖𝑑𝑥
𝑖=𝑒+1 , as defined in Eq. (1). Let Ve be the value of Ne+|PSGe| (i.e., 

the actual number of tags in PSGe, PSGe+1,…, PSGmax_idx ). In the case of Ne=x, we have ke 

= x, |PSGe| = Ve–x, and the estimation error between ke and |PSGe| is ‖(Ve–x)–x‖. We 

assume that when the tag-splitting procedure splits tags in PSGe into two groups, a tag will 

be in either of the two split groups with equal probability. The expected estimation error 

ERRe between ke and the actual number of tags in PSGe is thus given by 

 𝐸𝑅𝑅e  = ‖𝑘𝑒 − 𝑃𝑆𝐺𝑒‖ =   ‖𝑉𝑒 − 2𝑥‖ C𝑥
𝑉𝑒𝑉𝑒

𝑥=1  
1

2
 
𝑥

 1 −
1

2
 
𝑉𝑒−𝑥

         (3) 

               

In Table IV, we show the expected estimation error ERRe and the estimation error ratio 

(i.e., ERRe / Ve) when the actual number of tags is 200, 600, …, 5000. We also show in 

Protocols 
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Table IV the simulation results of estimation errors, which are derived by averaging 

outcomes of 1000 experiments for each case. By Table IV, we can see that the simulation 

and the analysis results are very close and that an estimation error of the number of tags in a 

PSG group is existent, but not too large. It is good enough for tags to be split into subgroups 

of 0, 1 or few tags, in which ISO/IEC18000-6B protocol is applied to identify the tags. As 

shown in Fig. 3, ASPS indeed reduces the collisions effectively. 

 

Table IV. The estimation errors (ERRe) and their ratios for different number (Ve) of tags in PSGe 

Ve 200 600 1000 1400 1800 2200 2600 

ERRe (simulation) 11 20 25 30 33 36 41 

ERRe (analysis) 11 20 25 30 34 37 41 

Estimation error ratio (%) 

(analysis) 
5.5 3.3 2.5 2.1 1.9 1.7 1.6 

Ve 3000 3400 3800 4200 4600 5000  

ERRe (simulation)  44 46 48 50 54 55  

ERRe (analysis) 44 47 49 52 54 56  

Estimation error ratio (%) 

(analysis) 
1.5 1.4 1.3 1.2 1.2 1.1  

 

4.5 The Effect of Pre-signaling Scheme 

The pre-signaling (PS) scheme helps reduce the traffic messages between the reader and 

tags at the expense of sending one more bit from tags to the reader. In order to evaluate the 

effect of the PS scheme, we run simulations of AS (without PS) and ASPS (i.e., AS along 

with PS) for the cases of 100, 200, 300, 400 and 500 tags in the interrogation zone. The 

number of the commands sent, the number of cases of multiple responses, the number of 

cases of successful (unique) responses and the number of cases of no response are shown 

in Table V. We can see that with the help of the PS scheme, the number of the cases of 

multiple responses and the number of cases of no response can be reduced by half. The 

commands needed to handle the above cases can be saved, and therefore the number of 
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commands sent is reduced significantly. 

Assuming the tag ID is 96 bits long and the command sent by the reader is 8 bits long, 

we show the numbers of the extra bits used and the bits saved by the PS scheme in Table VI. 

By Table VI, we can find that the number of extra bits is much smaller than the number of 

saved bits, which means the PS scheme indeed can improve performance.  

 

 

Table V. The numbers of different cases and commands sent in the AS and the ASPS schemes 

 

 AS (without PS) ASPS (with PS) 

Multiple 

response 

Unique 

response 

No 

response 

Commands 

Sent 
Multiple 

response 

Unique 

response 

No 

response 

Commands 
Sent 

100 73 100 68 242 36 100 32 169 

200 142 200 136 479 67 200 63 330 

300 210 300 204 714 96 300 93 490 

400 278 400 271 950 125 400 124 650 

500 343 500 337 1,180 155 500 155 811 

 

Table VI. The comparison of the numbers of the extra bits used and the bits saved by the PS scheme 

The number of tags 100 200 300 400 500 

The number of extra bits 168 330 489 649 810 

The number of saved bits 7,592 15,400 23,392 31,200 38,472 

 

4.6 System Efficiency 

We compare ASPS, query tree (QT) [9], ISO/IEC 18000-6B [13], and frame slotted 

ALOHA [6] protocols for 100, 200,…, and 1000 tags in terms of system efficiency. In 

[11], system efficiency is defined as the ratio of the number n of tags to the number s of 

slots required to identify all the tags for ALOHA-based protocols. To compare 

different classes of protocols, the number s of slots is assumed to be the number of 

Cases 

 

The  

number  

of tags 

Schemes 
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iterations for some protocols, where an iteration is for a reader to send a command and 

for tags to perform corresponding actions. For example, for counter-based protocols, an 

iteration is for a reader to send a command and for tags to increase/decrease counters or 

to respond tag IDs. For QT protocol, an iteration is for a reader to send a command 

with some ID prefix and for tags to perform ID prefix matching and ID responding. We 

perform simulations under the assumption that a frame has s time slots initially for 

frame slotted ALOHA protocol and that tag IDs are uniformly distributed. Fig. 5 shows 

the simulation results. By Fig. 5, we can see that ASPS apparently outperforms the 

others in terms of system efficiency. 

 
 

Figure 5. The comparison of ASPS, query tree (QT), ISO/IEC 18000-6B, and frame slotted 
ALOHA protocols in terms of system efficiency 

 

5 CONCLUSION 

In this paper, we have proposed a novel counter-based tag anti-collision protocol, 

called ASPS, based on two schemes: adaptive splitting and pre-signaling. By estimating 
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the number k of colliding tags, the adaptive splitting scheme tries to directly distribute the 

tags into k subgroups. This will reduce the number of tag collisions effectively. And the 

pre-signaling scheme is applied to further reduce the number of messages sent between 

the reader and tags. We have performed simulations for ASPS and compared it with 

other anti-collision protocols. Simulation results show that ASPS outperforms related 

protocols in terms of the number of collisions, the number of messages sent by the reader, 

the tag identification delay, and system efficiency. However, ASPS needs to modify the 

random number generator design on the tag circuit. Furthermore, the ASPS reader also 

needs to process a more complex algorithm, as described in Algorithm 1. These are 

negative points of ASPS. 

Both ASPS and ABS protocol [12] are proposed to improve ISO/IEC 18000-6B 

protocol, ASPS makes improvement within a tag interrogation round; ABS, between 

interrogation rounds. Therefore, ASPS and ABS can be combined together to further 

improve ISO/IEC 18000-6B protocol. We are now planning to integrate the two protocols 

and perform some preliminary simulation experiments to show the integration 

advantages. 
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