

Adaptive Splitting and Pre-Signaling

for RFID Tag Anti-Collision

Ming-Kuei Yeh, Jehn-Ruey Jiang and Shing-Tsaan Huang

Department of Computer Science and Information Engineering

National Central University

Taiwan, R. O. C.

All correspondence should be addressed to:

Dr. Jehn-Ruey Jiang

Department of Computer Science and Information Engineering

National Central University

Jhongli, Taiwan, R. O. C.

Tel:886-3-4227151

Fax:886-3-4222681

E-mail:jrjiang@csie.ncu.edu.tw

1

Abstract — In an RFID system a reader requests tags to send their IDs by RF signal

backscattering for the purpose of identification. When multiple tags respond to the

request simultaneously, tag collisions occur and the tag identification performance is

degraded. There are several tag anti-collision protocols proposed for reducing tag

collisions. The protocols can be categorized into three classes: ALOHA-based, tree-based

and counter-based. ALOHA-based protocols have the tag starvation problem; tree-based

protocols have the problem that their performances are influenced by the length and/or

the distribution of tag IDs. On the contrary, counter-based protocols do not have such

problems. In this paper, we propose a counter-based tag anti-collision protocol, called

ASPS, to reduce tag collisions by adaptively splitting tags encountering collisions into

several groups according to the estimated number of tags to be split, and to reduce the

number of messages sent between the reader and tags by utilizing a pre-signaling bit. We

simulate and analyze ASPS and compare it with related ones to show its advantages.

Keywords — Collision resolution, RFID, anti-collision, tag identification

1 INTRODUCTION

The RFID (Radio Frequency IDentification) technique attracts a lot of attention

recently due to its automatic identification capability through RF communication [1]. An

RFID system consists of a reader and one or more tags. Tags store unique IDs and are

attached to objects; a reader recognizes an object by issuing RF signals to interrogate the

ID of the attached tag. According to the source of power supply, tags are classified into

two types: active tags, which contain a battery and can transmit signals autonomously,

and passive tags, which contain no battery and derive energy from the RF field generated

by the reader to transmit signals passively. Most RFID tags are passive; they have the

advantage over other electronic products that are energized by batteries or other power

sources. Furthermore, tags are usually of tiny sizes and low costs. The RFID system is

thus suitable for many applications, such as logistic control, supply chain management,

and asset tracking, etc.

When a tag and a reader are close enough, they can communicate with each other.

For such a situation, we say that the tag is in the interrogation zone of the reader. To

figure out which tags are within the interrogation zone, a reader initiates an identification

procedure (or interrogation procedure) to request tags to send back their IDs. When

multiple tags respond to the reader simultaneously, tag collisions occur and no tag can be

identified by the reader successful. How to reduce tag collisions to speed up the

2

identification procedure is thus important. There are several tag anti-collision protocols

proposed for reducing tag collision. According to [2], they can be categorized into two

classes: ALOHA-based protocols and tree-based protocols that include deterministic

tree-based and probabilistic counter-based subclasses of protocols.

In ALOHA-based protocols [3-7], tags respond to the reader by transmitting IDs in

a probabilistic manner. For example, in slotted ALOHA protocol [4], the whole

interrogation procedure period is divided into several time slots, and each tag randomly

chooses a time slot for transmitting its ID to the reader. ALOHA-based protocols are

simple; however, they have the tag starvation problem that a tag may never be

successfully identified because its responses always collide with others’.

The basic idea of the tree-based protocol is to repeatedly split the tags encountering

collisions into subgroups until there is only one tag in a subgroup to be identified. The

tree protocols do not have the tag starvation problem. In order to emphasize the different

mechanisms for performing the tag-splitting based on either static tag IDs or dynamic

counters, we classify the tree-based protocols into deterministic tree-based [8-11] and

probabilistic counter-based [12-14] subclasses of protocols. The deterministic tree-based

protocol relies on tag IDs and thus has the problem that its performance is influenced by

the tag ID length and/or distribution, while the probabilistic counter-based protocol has

not. We hence focus on counter-based protocols in this paper.

This paper presents a novel counter-based tag anti-collision protocol, called ASPS,

using two schemes, adaptive splitting and pre-signaling, to reduce tag collision. By

predicting the number k of tags to be split, ASPS adaptively splits tags into k groups. It is

likely that each group has only one tag to be identified successfully. In this way,

collision is reduced significantly. Furthermore, ASPS utilizes a pre-signaling bit to

reduce the number of messages sent between the reader and tags. The tag identification

delay is thus reduced. We simulate and analyze ASPS and compare it with related ones

to show its advantages.

The rest of this paper is organized as follows. Some related work is introduced in

Section 2. In Section 3, we describe ASPS protocol by elaborating the concepts of

adaptive splitting and pre-signaling. In Section 4, we simulate and analyze ASPS and

compare it with related protocols. And finally, conclusion is drawn in Section 5.

3

2 RELATED WORK

In this section, we introduce some representative ALOHA-based, deterministic

tree-based and probabilistic counter-based tag anti-collision protocols.

2.1 ALOHA-Based Protocols

ALOHA-based protocols try to stagger tag response times in a probabilistic manner

to reduce collisions. Below, we introduce some ALOHA-based protocols: ALOHA [3],

slotted ALOHA [4], frame slotted ALOHA [5], and dynamic frame slotted ALOHA [6-7]

protocols.

In ALOHA protocol [3], on receiving the reader’s interrogation request, each tag in

the interrogation zone independently chooses a random back-off time and responds its

tag ID to the reader at that time. If an ID is received by the reader without collision, it

can be identified properly and acknowledged by the reader. A tag with acknowledged ID

will stop responding to the reader. On the other hand, an unacknowledged tag will

repeatedly select a random back-off time to send its ID until it is identified and

acknowledged by the reader. In slotted ALOHA protocol [4], the random back-off time

must be a multiple of a pre-specified slot time. If collisions occur in a slot, the reader

will notify the colliding tags to re-select a response time randomly. As shown in [15], the

performance of slotted ALOHA protocol is twice that of ALOHA protocol since there is

no partial collision of tag ID responses in the former protocol.

Frame slotted ALOHA protocol [5] is similar to slotted ALOHA protocol. However,

to limit the response time, frame slotted ALOHA protocol divides the whole

interrogation procedure into a set of frames. Each frame has a fixed number of time slots,

and a tag sends its ID to the reader in only one randomly chosen slot during a frame

period. One drawback of frame slotted ALOHA protocol is that its performance will

degrade when the number of slots in the frame does not properly match with the number

of tags in the interrogation zone. Dynamic frame slotted ALOHA protocols [6-7] try to

4

eliminate the drawback by dynamically adjusting the frame size according to the

estimated number of tags. They are therefore have better performance slotted ALOHA

protocol. But they need many communication rounds to optimize the frame size before

the identification process [6]. Under the assumption that tag IDs are with the same series

in production (i.e., tags have the continuous tag ID numbers), paper [16] proposed LoF

(Lottery Frame) protocol to reduce the number of communication rounds from O(n) to

O(log n) with the help of the geometric distribution hash function, where n is the total

number of tags in the interrogation zone.

In general, ALOHA-based protocols are simple and have fair performance.

However, some ALOHA-based protocols have the tag starvation problem that a tag may

never be identified when its responses always collide with others’.

2.2 Deterministic Tree-Based Protocols

Deterministic tree-based protocols rely on tag IDs to repeatedly split colliding tags

into subgroups until there is only one tag in a subgroup to be identified successfully.

Below, we introduce two representative tree-based protocols: query tree [8] and bit-by-bit

binary tree [9] protocols.

In query tree protocol (QT) [8], a reader first broadcasts a bit string S of a specified

length. The tag with an ID whose prefix matches with S will respond its whole ID to the

reader. If only one tag responds at a time, the tag is identified successfully. But if

multiple tags respond simultaneously, the responses collide. In such a case, the reader

appends string S with bit 0 or 1 and broadcasts again the longer bit string (i.e., S0 or S1).

In this manner, the colliding tags are divided into two subgroups. If there is only one tag

in a subgroup, it can be identified successfully. The reader keeps track of the request

strings needed to broadcast with the help of a stack and perform tag identification

procedure until all tags are identified. QT protocol is a memory-less protocol because it

does not require tags to be equipped with additional writable on-chip memory. QT

5

protocol does not have the tag starvation problem and its identification delay is affected

by the distribution and the length of tag IDs. Specifically, if the tags have long and

continuous IDs, the request bit string will grow very quickly for identifying all tags. The

delay time of the identification procedure will then increase significantly.

In bit-by-bit binary tree (BBT) protocol [9], on receiving a reader’s interrogation

request, each tag responds with the first bit of its tag ID. The reader then records and

broadcasts 1 (resp., 0) if the received bit is 1 (resp., 0 or a colliding signal). Only the tags

with the first bit being 1 (resp., 0) will respond with its next ID bit; other tags will go into

a sleep mode. The above procedure will repeat bit by bit until the last ID bit is reached.

The reader can then identify and mute one tag, and reset tags in the sleep mode to go

through the interrogation procedure from some ID bit position. The bit-by-bit procedure

is performed recursively and all tags can be identified. BBT protocol requires tags to be

equipped with writable on-tag memory so that tags can keep track of the inquiring bit

position. Like QT protocol, BBT protocol has no tag starvation problem and its

performance is dependent on tag ID distribution and/or length.

2.3 Probabilistic Counter-Based Protocols

Probabilistic counter-based protocols rely on dynamically changing counters to split

colliding tags. Below, we introduce two probabilistic counter-based protocols, ISO/IEC

18000-6B tag anti-collision protocol [13] and ABS (Adaptive Binary Splitting) protocol

[12].

The well known ISO/IEC 18000-6B standard [13] proposes a probabilistic

counter-based tag anti-collision protocol (later we just name it ISO/IEC 18000-6B

protocol for short). In the protocol, each tag maintains a counter which is initially 0.

Every tag with counter value 0 can transmit its tag ID to respond to the reader’s

interrogation request. When a collision occurs, the reader will notify all tags of this. And

the tags with counter values larger than 0 will increase their counters by 1, while the tags

6

with counter value 0 will randomly add 0 or 1 to their counters. In this way, the colliding

tags (i.e., the tags with counters value 0) are split into two subgroups. The splitting

procedure will be repeated until there is only one or no tag with counter value 0. In the

former case, the tag with counter value 0 can be identified successfully. And in both

cases, the reader sends a command to inform all unidentified tags to decrease their

counters by 1. In this way, every tag will be the unique one to have counter value 0 and

be identified successfully.

Adaptive Binary Splitting (ABS) protocol [12] is proposed to improve ISO/IEC

18000-6B protocol by keeping tags’ counter information of the last interrogation round.

A tag in ABS protocol keeps two counters. The first counter (Allocated Slot Counter,

ASC) is similar to that of ISO/IEC 18000-6B protocol, and the second counter

(Progressed Slot Counter, PSC) is to keep track of the number of tags identified

successfully. The two counters are initially 0 in the first round, but only PSC is reset to

be 0 in following rounds. Tags with ASC equal to PSC can transmit their tag IDs to

respond to a reader request. When there is only one response, the responding tag can be

identified and each tag increases PSC by one. When there is no response, all tags with

ASC larger than PSC decrease ASC by one. When collisions occur, the tags with ASC

larger than PSC then increase ASC by 1, while the tags with ASC equal to PSC randomly

generate a random bit, 0 or 1, and add it to ASC. Note that tags with ASC less than PSC

do not increase ASC; they even do not attempt to transmit their IDs until the tag

interrogation round is finished. After all tags are identified in a round, they have unique

and successive ASC values. These values can be reserved for use in the next tag

interrogation round to speed up the interrogation procedure. Even if there are tags joining

or leaving after the last interrogation round, ABS protocol can work properly. As shown

in [12], the performance of ISO/IEC 18000-6B protocol is improved significantly by

ABS protocol.

In general, probabilistic counter-based protocols do not have the problem of tag

starvation. Furthermore, they have the stable property that their performances are not

7

affected by the tag ID distribution or ID length.

3 THE PROPOSED PROTOCOL

In this section, we propose a novel probabilistic counter-based tag anti-collision

protocol, called ASPS, which uses two schemes, adaptive splitting and pre-signaling, to

reduce tag collision and the number of messages sent between a reader and tags. Below,

we introduce the two schemes respectively.

3.1 Adaptive Splitting

In this subsection, we introduce the adaptive splitting scheme for speeding up the

identification procedure. When there are tags whose responses collide, a typical counter

based tag anti-collision protocol, such as ISO/IEC18000-6B protocol, split colliding tags

into two subgroups no matter how many colliding tags are. The idea of adaptive splitting

scheme is to estimate the number k of colliding tags and to split the colliding tags into k

groups to speed up the identification procedure.

There are two phases in the adaptive splitting scheme. In the first phase, the adaptive

splitting scheme obeys ISO/IEC 18000-6B protocol until the first tag is identified

successfully. It then enters the second phase, in which the reader estimates the number of

colliding tags of a specific counter value. Unlike other solutions that estimate the total

number of tags before the identification process (e.g., Kodialam and Nandagopa's protocol

[6]), ASPS scheme needs not go through a separate tag quantity estimation stage. Below, we

explain how a reader does the estimation.

We propose the primitive splitting group (PSG) concept for the adaptive splitting

scheme. As the first tag is identified, the tags having the same counter value are assumed

to be in the same PSG. The PSG groups are indexed by 1, 2, …, max_idx at the end of

the first phase according to the top-to-down and right-to-left order in the counter-based

8

splitting tree (refer to Fig. 1). Note that max_idx is the index of the PSG to which the

first-identified tag belongs.

Figure 1. An example of PSG groups and their associate counter (CNT) values in a counter-based

splitting tree (the first identified tag belongs to PSG5, i.e., max_idx = 5)

As shown in [17], if there are k tags in a group to be identified, then it has the best

performance to directly split the tags into k subgroups. In the second phase, the reader

estimates the number of the tags in each PSG (in the order from index max_idx–1 to index

1) and splits the tags according to the estimated number. The estimation is based on the

observation that there are about the same number of tags associated to the sub-trees

rooted at two sibling nodes in the splitting tree, since colliding tags are expected to be

split into 2 groups of approximately equal sizes. For example, in Fig. 2, the sub-tree

rooted at node PSG3 has two associated tags, and the sub-tree rooted at the sibling node

of node PSG3 also has two associated tags. Therefore, the reader can easily estimate the

number ke of tags in PSGe just by figuring out the number Ne of tags associated with the

sub-tree rooted at the sibling node of PSGe. Actually, Ne equals the total number of tags

in the PSG groups indexed by e+1, e+2, ... , max_idx. We have

CNT=0** CNT=1

CNT=2

CNT=3

CNT=4

PSG1

Internal node

no tag in this subgroup

PSG group

PSG2

PSG3

PSG4PSG5

9

𝑁𝑒 = |𝑃𝑆𝐺𝑖
𝑚𝑎𝑥 _𝑖𝑑𝑥
𝑖=𝑒+1 | (1)

We now can use Ne as an estimation of ke and split tags in PSGe into Ne (instead of 2

in ISO/IEC 18000-6B protocol) subgroups directly. This can be done by making each tag

in PSGe randomly choose a value between 0 and (Ne –1) as its new counter value. At the

same time, unidentified tags, i.e., tags in PSGe –1, PSGe–2,…, PSG1, should add (Ne –1–c)

to their counter values, where c is the counter value of the tags in PSGe before splitting.

By the adaptive splitting scheme, we expect to split tags in PSGe into Ne subgroups

such that each subgroup has exactly one tag (refer to Fig. 2). But it may not be so lucky

due to the probabilistic characteristic of tag splitting and due to the fact that PSGe may

not have exactly Ne tags. If there are two or more tags in one subgroup,

ISO/IEC18000-6B protocol is applied to identify those tags. Fortunately, as shown in

[18], it will not have too many tags in one subgroup if Ne approximates ke. Therefore, it

will be efficient enough to identify tags in a single subgroup by recursively applying

ISO/IEC18000-6B protocol.

Figure 2. An example of the adaptive splitting scheme

3.2 Pre-Signaling

PSG
2

k
1 =7

PSG
1

PSG
3

PSG
4 PSG

5 k
2 =3

k
3 =2

k
4 =1 k

5 =1

10

To enhance the performance of the identification procedure, we propose the idea of

pre-signaling under the assumption that the reader can distinguish three cases of

identical responses from multiple tags by signal strength inspection. The cases are 1)

no-response, 2) one-response and 3) multiple- response. Note that it is possible for a

reader to detect multiple tags responding the same bit at the same time since tags’

response time may be biased (for example, +/-15% in ISO18000-6B standard [13]) and

the superposition of multiple tags’ signals may give some clues [1]. However, we will

not go into the details of the hardware design in this paper.

By the anti-collision rule in ISO/IEC18000-6B protocol, only the tags with counter

value 0 can respond its ID to the reader in the response window. We slightly modify this

to be the pre-signaling scheme that the tags with counter value 1 will respond 1 at the

first bit transmission period of the response window. After the first bit transmission

period, the tag with counter value 0 will then respond its ID bit by bit normally.

The bit transmitted by the tags with counter value 1 is called pre-signaling bit. The

value of pre- signaling bit received by a reader can be null, single_1 and multiple_1,

which correspond to the three tag response cases of no-response, one-response and

multiple-response, respectively. According to the value of pre-signaling bit, the reader

takes one of the following three actions.

(Case 1) The pre-signaling bit is ―null‖

In this case, no tag is with counter value 1. After all tags with counter value 0 are

identified, the reader will inform all unidentified tags to decrease their counters by 2.

This will speed up the original procedure of ISO/IEC18000-6B protocol, in which the

reader informs unidentified tags to decrease their counters by one, waits awhile for tags

to respond (there is certainly no response in that case), and then informs again all

unidentified tags to decrease their counters by one.

(Case 2) The pre-signaling bit is ―single_1‖

In this case, only one tag is with counter value 1, which implies it can be identified

11

successfully without collision in the next iteration of tag identification procedure. The

reader does not take any extra action for this case. It just follows the original procedure

of ISO/IEC 18000-6B.

(Case 3) The pre-signaling bit is―multiple_1‖

In this case, there are multiple tags with counter value 1. The reader can inform

those tags to split into k subgroups just after all the tags with counter value 0 are

identified, where k is the estimated number of tags with counter value 1. To be more

precise, the tags with counter value 1 will then be of counter value 0, 1, …, or k–1

randomly. This will speed up the original procedure of ISO/IEC18000-6B protocol, in

which the reader informs unidentified tags to decrease their counters by one, waits awhile

for tags to respond (there are certainly multiple responses in that case), and then informs

all tags with counter value 0 to increase their counters by 0 or 1, and informs all tags with

counter value greater than 0 to increase their counters by 1.

By the help of pre-signaling scheme, the number of messages sent between a reader

and tags can be significantly reduced, which in turn shortens the identification procedure

latency. Consequently, with both adaptive splitting and pre-signaling schemes, the

performance of tag interrogation can be improved dramatically. We will justify this by

extensive simulation experiments in the next section.

3.3 Operation Details

In this subsection, we elaborate the details of ASPS. The reader operation is

shown in Algorithm1.To start a new interrogation round, the reader first sends an NR

(New Round) command to tags. It then sends an RC (Reader Command) command with

RC.status=Request to ask tags to respond. On receiving the command, the tags with

counter value 1 will respond 1 at the first bit transmission period of the response

window, and the tags with counter value 0 will then respond its whole ID bit by bit.

12

When the reader receives responses from tags, it will extract the first bit as the

pre-signaling bit and other bits as the tag ID.

There are two phases, Phase I and Phase II, in a round. Phase I continues until the

first tag is identified successfully (lines 7-24). In Phase I, the reader follows the

original identification procedure of ISO/IEC 18000-6B protocol to identify tags. At the

end of Phase I, the reader can figure out the maximum index (viz., max_idx), and all

PSG groups’ counter values (viz., PSG[i].cnt), 0 ≤ i  max_idx. It can also find out

the maximum counter value (viz., max_cnt) of tags.

In Phase II, the adaptive splitting scheme is enforced. The reader will send an RC

command with RC.status = Collision, Success, Pre_Split or Pre_Collision according to

the tag responses. The reader keeps track of the maximum counter value max_cnt and

terminates Phase II when max_cnt is zero. Below, we describe the reader operations. It is

noted that we use variable next_idx to keep track of the index of the PSG that will be

next processed by the reader, and we just use ―the next PSG‖ to indicate such a PSG.

■ Lines 28-31: If there is any tag collision, the reader sends an RC command with

RC.status=Collision to notify tags of the collision.

■ Lines 37-42: The reader estimates the tag number k in the next PSG by formulas (1)-(3),

and sends an RC command with RC.status=Pre_Split and RC.no=k to notify tags in

the next PSG to split into k subgroups by setting counters to be between 0 and k–1,

and to notify other tags to increase their counters by k–2 (i.e., k–1– the next PSG

counter value), if both the following conditions hold.

 there is no tag response collision

 the counter value of the next PSG is 1.

■ Lines 45-48: The reader sends an RC command with RC.status=Pre_Collision to notify

that (1) the tag with counter value 0 has been identified successfully, (2) the tags with

13

counter value 1 should be split into 2 subgroups, and (3) others tags should increase their

counters by 1, if all the following conditions hold.

 there is no tag response collision

 the counter value of the next PSG is 2 or more

 the pre-signaling bit is―multiple_1‖

■ Lines 49-52: The reader sends an RC command with RC.status= Success and RC.no=1

to notify that (1) the tag with counter value 0 has been identified successfully, and (2) the

other tags should decrease their counters by 1, if all the following conditions hold.

 there is no tag response collision

 the counter value of the next PSG is 2 or more

 the pre-signaling bit is ―single_1‖

 Lines 53-57: The reader sends an RC command with RC.status= Success and

RC.no=offset to notify that (1) the tag with counter value 0 has been identified

successfully, and (2) other tags should decrease their counters by offset, if all the

following conditions hold.

 there is no tag response collision

 the counter value of the next PSG is 2 or more

 the pre-signaling bit is ―null‖

Note that offset=1 if the counter value of the next PSG is 2; otherwise, offset=2. This is

because tags of the next PSG of counter value 2 should decrease their counters by 1

instead of 2; otherwise they will directly be of counter value 0 and bypass the adaptive

splitting process.

The tag operations are shown in Algorithm 2. We can observe that there is an

action corresponding to each command of the reader. If both the reader and tags

comply with the algorithms, all tags can be identified properly.

14

Algorithm 1. ASPS Reader Operation

/* NR stands for New Round command

RC stands for Reader Command, and

RC.status is one of Request, Success,

Collision, Pre_Collision or Pre_Split, and

RC.no indicates the estimated number of

tags for splitting */

1 send NR command to start a new round

2 phase =1 //for starting Phase I

3 max_idx = 0 //the maximum index of PSG groups

4 max_cnt = 0 //the maximum counter value of tags

5 reset PSG[].cnt //reset counter values of all PSG groups to be 0

6 send RC with RC.status = Request //to ask tags to respond

7 while phase = 1 do

8 switch (tag_ response)

9 case tag_collision:

10 + + max_idx; ++ max_cnt

11 + + PSG[i].cnt for i=1..max_idx–1

12 send RC with RC.status = Collision

13 case one_tag_response:

14 record the sole ID responded as an identified one

15 + + max_idx

16 PSG[max_idx].cnt = 0 //set the counter (cnt) of the last PSG to be 0

17 send RC with RC.status = Success and RC.no=1

18 phase = 2 //for starting Phase II

19 case no_tag_response:

20 – – PSG[i].cnt for i=1..max_idx

21 – – max_idx; – – max_cnt

22 send RC with RC.status = Success and RC.no=1

23 end switch (tag_ response)

24 end while (phase = 1)

 // Phase II starts

25 next_idx = max_idx – 1;

 //next_idx stands for the index of the next PSG for processing

26 while phase = 2 do

27 switch (tag_ response)

28 case tag_collision:

29 + + PSG[i].cnt for i=1...next_idx

30 + + max_cnt

15

31 send RC with RC.status = Collision

32 case one_tag_response or no_tag_response:

33 if (only one tag responds ID)

34 record ID as an identified one

35 endif

36 switch (PSG[next_idx].cnt)

37 case 1:

38 estimate the number k of tags in PSG[next_idx]

39 PSG[i].cnt += (k–2) for i=1..next_idx

40 max_cnt += (k–2)

41 – – next_idx

42 send RC with RC.status = Pre_Split and RC.no =k

43 default: // PSG[next_idx] is 2 or more

44 switch (pre_signal)

45 case multiple_1:

46 – – PSG[i].cnt for i=1..next_idx

47 – – max_cnt

48 send RC with RC.status = Pre_Collision

49 case single_1:

50 – – PSG[i].cnt for i=1..next_idx

51 – – max_cnt

52 send RC with RC.status=Success and RC.no=1

53 case null:

54 if (PSG[next_idx]=2) offset=1 else offset=2 endif

55 PSG[i].cnt –= offset for i=1..next_idx

56 max_cnt –= offset

57 send RC with RC.status=Success and RC.no = offset

58 end switch (pre_signal)

59 end switch (PSG[next_idx].cnt)

60 end switch (tag_ response)

61 if (max_cnt =0) phase = 0 endif //for terminating Phase II

62 end while (phase = 2)

Algorithm 2. ASPS operation for a tag

1 receive NR command from the reader to start a new round

2 TC = 0 // initialize tag counter TC for a new round

3 identified=false //set tag to be not identified

4 while (not identified)

5 receive command RC from the reader

6 switch (RC.status)

16

7 case Request: //do nothing for TC modification in this case

8 case Collision:

9 if (TC =0)

10 TC = r (r is a random value of 0 or 1)

11 else

12 TC += 1

13 end if

14 case Pre_Collision:

15 switch (TC)

16 case 0: identified = true //keep silient till next round

17 case 1: TC = r (r is a random value of 0 or 1)

18 default: TC += 1

19 end switch (TC)

20 case Pre_Split:

21 switch (TC)

22 case 0: identified=ture; //keep silent till next round

23 case 1: TC = r (r is a random value of 0, 1,.., or RC.no – 1)

24 default: TC += (RC.no –2)

25 end switch (TC)

26 case Success:

27 if (TC = 0)

28 identified = true //keep silent till next round

29 else

30 TC –= RC.no

31 end if

32 end switch (RC.status)

 //Respond to the RC command

33 if (not identified)

34 if (TC = 1)

35 respond the first bit at the first bit transmission period

36 else if (TC = 0)

37 respond tag ID from the second bit transmission period

38 end if

39 end if

40 end while (not identified)

4 SIMULATION AND ANALYSIS

17

In this section, we show simulation and analysis results. We simulate ASPS and

compare it with ISO/IEC 18000-6B protocol [13] in terms of the number of tag collisions,

the number of messages sent by the reader and the time needed to identify all tags in the

interrogation zone. We also compare the system efficiency of ASPS, query tree, frame

slotted ALOHA and ISO/IEC 18000-6B protocols for the cases of 200, 400,…, and 5000

tags in the interrogation zone are considered, and 1000 simulation experiments are

performed for each case. It may be unreal to identify thousands of passive tags at a time.

But in the scenario of active tag identification, the reader can read up to thousands of tags

simultaneously (for example, the model 227004-9-iQRW reader produced by GAO RFID

Inc. can read 2000 tags at a time). This accounts for the reason we simulate for the cases

of thousands of tags.

4.1 The Number of Collisions

In this subsection, we first compare AS (the protocol with only the adaptive splitting

scheme), ASPS (the protocol with both the adaptive splitting and the pre-signaling

schemes) and ISO/IEC 18000-6B protocol in terms of the number of collisions by

simulation experiments. In Fig. 3, there are three curves of each protocol for the best case

result (i.e., the one that has the fewest collisions occurred in the 1000 simulations), the

worst case result (i.e., the one that has the most collisions occurred in the 1000

simulations), and the average result (i.e., the average number of collisions occurred in the

1000 simulations). As shown in Fig. 3, ASPS outperforms ISO/IEC 18000-6B protocol.

For example, the number of collisions of the former is only 20% of the latter’s when the

number of tags is 5000. Furthermore, the following observations are worth mentioning.

 The worst case results of ASPS are better than the best case results of ISO/IEC

18000-6B protocol.

 Without using the pre-signaling scheme, AS still has fewer collisions than ISO/IEC

18000-6B protocol.

18

Figure 3. The comparison between ASPS and ISO/IEC 18000-6B protocol in terms of the

number of collisions

4.2 The Number of Messages Sent by the Reader

In ISO/IEC 18000-6B protocol, a reader sends a command when it is ready to

interrogate tags and listen to the responses from them. The tags with counter value 0 will

respond their tag IDs to the reader. The reader will send another command to notify tags

of the response status. As we have shown, with the help of the pre-signaling scheme, a

single reader command can carry more tag statuses. Therefore, the number of messages

sent by the reader is reduced dramatically.

By Fig. 4, we can observe that the number of messages sent by the reader in ASPS

is only 55.5% of that in ISO/IEC 18000-6B protocol for 5000 tags. If we disregard

essential commands (i.e., we count only the commands caused by tag collisions or no tag

responses, but not those for informing successful identification), the number of messages

0

1000

2000

3000

4000

5000

6000

7000

8000
2

0
0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

4
6

0
0

4
8

0
0

5
0

0
0

T
h

e
n

u
m

b
er

 o
f

co
ll

is
io

n
s

The number of tags

ISO/IEC 18000 6B Best ASPS Best AS Best

ISO/IEC 18000 6B ASPS AS

ISO/IEC 18000 6B Worst ASPS Worst AS Worst

19

sent by the reader of ASPS is only 31.9% of that in ISO/IEC 18000-6B protocol for

5000 tags. This is because the adaptive splitting and pre-signaling schemes together cut

down the number of messages sent by the reader. Similar to Fig. 3, Fig. 4 has there

curves for ASPS and ISO/IEC 18000-6B protocol, and the worst case results of the

former are better than the best case results of the latter.

Figure 4. The comparison between ASPS and ISO/IEC18000-6B protocol in terms of the number of

messages sent by the reader

4.3 The Tag Identification Delay

We compare ASPS with ISO/IEC 18000-6B protocol in terms of the tag identification

delay, which is the elapsed time for a reader to identify all tags in the interrogation zone. The

delay time Td is de fined to be:

Td = (NC + NNC) × TID + NCMD × TM + NNULL × TW (2)

0

2000

4000

6000

8000

10000

12000

14000

16000

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

4
6

0
0

4
8

0
0

5
0

0
0

Th
e

n
u

m
b

er
 o

f
m

es
sa

ge
s

se
n

t
b

y
re

ad
er

The number of tags

ISO/IEC 18000 6B Best ASPS Best AP Best

ISO/IEC 18000 6B ASPS AS

ISO/IEC 18000 6B Worst ASPS Worst AS Worst

20

The notations used in Eq. 2 are explained in Table I. And we follow the parameters

suggested by ISO/IEC 18000-6B protocol [13], shown in Table II, to calculate Td. By Table

II, we set the time for a reader to transmit a command to be 1.5 ms, set the time for a tag to

transmit tag ID to be 2.7 ms, and set the elapsed time for a reader to be aware of the null

response to be 0.5 ms. Table III demonstrates the delay time to identify all tags in ASPS and

ISO/IEC 18000-6B protocol for different numbers of tags. By Table III, we can observe that

the delay time of ASPS is only about 60% of that of ISO/IEC 18000-6B protocol.

Table I. The notations used in Eq. 2

NC The number of cases with tag collisions

NNC The number of cases with no tag collisions

NCMD The number of commands sent by the reader

NNULL The number of cases of no tag response (null response)

TID The elapsed time for a tag to transmit its ID

TM The elapsed time for the reader to transmit a command

TW The elapsed time for a reader to be aware of null response

Table II. The parameters adopted by ISO/IEC 18000-6B protocol [13]

Reader forward transmission Tag backward transmission

Data rate 40 kbps* 40 kbps

Tag identifier N/A 64 bits

Error detection 16 bit CRC 16 bit CRC

Preamble 25 bits 16 bits

Delimiter 11 bits N/A

Quiet N/A 15 bits**

Command set 8 bits N/A

Tag receiving-to-transmitting

turn around time
N/A ranging from 85 to 460 μs

* 10 or 40 kbps according to local regulations (we assume 40kbps)

** Tags shall not respond for 16 × TB － 0.75 × TF, where TB (resp., TF) is one symbol

period for backward (resp., forward) transmission, which depends on the transmission

data rate. We assume TB and TF are both 25 μs.

21

Table III. The tag identification delay comparison

The number of

tags

100 200 300 400 500

ISO/IEC

18000-6B
1108.6 2221.4 3340.4 4454.7 5559.8

ASPS 717.7 1390.1 2066.7 2722.9 3391.1

* The delay is measured by ms

4.4 The Error on the Estimated Number of Tags

In this subsection, we analyze the error on the estimated number of tags in a PSG group

for the adaptive splitting scheme. As described in Section 3.1, a reader in ASPS estimates

the number of the tags in each PSG and splits the tags according to the estimated number

during the identification process. The estimated number ke of tags in PSGe is the

summation of the number of tags in the PSG groups indexed by e+1, e+2, ..., max_idx,

where the actual number of tags in PSGe+1, PSGe+2, …, PSGmax_idx are known before

tags in PSGe are to be identified. That is, the estimated number ke of tags in PSGe is Ne,

where 𝑁𝑒 = |𝑃𝑆𝐺𝑖|
𝑚𝑎𝑥 _𝑖𝑑𝑥
𝑖=𝑒+1 , as defined in Eq. (1). Let Ve be the value of Ne+|PSGe| (i.e.,

the actual number of tags in PSGe, PSGe+1,…, PSGmax_idx). In the case of Ne=x, we have ke

= x, |PSGe| = Ve–x, and the estimation error between ke and |PSGe| is ‖(Ve–x)–x‖. We

assume that when the tag-splitting procedure splits tags in PSGe into two groups, a tag will

be in either of the two split groups with equal probability. The expected estimation error

ERRe between ke and the actual number of tags in PSGe is thus given by

 𝐸𝑅𝑅e = ‖𝑘𝑒 − 𝑃𝑆𝐺𝑒‖ = ‖𝑉𝑒 − 2𝑥‖ C𝑥
𝑉𝑒𝑉𝑒

𝑥=1
1

2

𝑥

 1 −
1

2

𝑉𝑒−𝑥

 (3)

In Table IV, we show the expected estimation error ERRe and the estimation error ratio

(i.e., ERRe / Ve) when the actual number of tags is 200, 600, …, 5000. We also show in

Protocols

22

Table IV the simulation results of estimation errors, which are derived by averaging

outcomes of 1000 experiments for each case. By Table IV, we can see that the simulation

and the analysis results are very close and that an estimation error of the number of tags in a

PSG group is existent, but not too large. It is good enough for tags to be split into subgroups

of 0, 1 or few tags, in which ISO/IEC18000-6B protocol is applied to identify the tags. As

shown in Fig. 3, ASPS indeed reduces the collisions effectively.

Table IV. The estimation errors (ERRe) and their ratios for different number (Ve) of tags in PSGe

Ve 200 600 1000 1400 1800 2200 2600

ERRe (simulation) 11 20 25 30 33 36 41

ERRe (analysis) 11 20 25 30 34 37 41

Estimation error ratio (%)

(analysis)
5.5 3.3 2.5 2.1 1.9 1.7 1.6

Ve 3000 3400 3800 4200 4600 5000

ERRe (simulation) 44 46 48 50 54 55

ERRe (analysis) 44 47 49 52 54 56

Estimation error ratio (%)

(analysis)
1.5 1.4 1.3 1.2 1.2 1.1

4.5 The Effect of Pre-signaling Scheme

The pre-signaling (PS) scheme helps reduce the traffic messages between the reader and

tags at the expense of sending one more bit from tags to the reader. In order to evaluate the

effect of the PS scheme, we run simulations of AS (without PS) and ASPS (i.e., AS along

with PS) for the cases of 100, 200, 300, 400 and 500 tags in the interrogation zone. The

number of the commands sent, the number of cases of multiple responses, the number of

cases of successful (unique) responses and the number of cases of no response are shown

in Table V. We can see that with the help of the PS scheme, the number of the cases of

multiple responses and the number of cases of no response can be reduced by half. The

commands needed to handle the above cases can be saved, and therefore the number of

23

commands sent is reduced significantly.

Assuming the tag ID is 96 bits long and the command sent by the reader is 8 bits long,

we show the numbers of the extra bits used and the bits saved by the PS scheme in Table VI.

By Table VI, we can find that the number of extra bits is much smaller than the number of

saved bits, which means the PS scheme indeed can improve performance.

Table V. The numbers of different cases and commands sent in the AS and the ASPS schemes

 AS (without PS) ASPS (with PS)

Multiple

response

Unique

response

No

response

Commands

Sent
Multiple

response

Unique

response

No

response

Commands
Sent

100 73 100 68 242 36 100 32 169

200 142 200 136 479 67 200 63 330

300 210 300 204 714 96 300 93 490

400 278 400 271 950 125 400 124 650

500 343 500 337 1,180 155 500 155 811

Table VI. The comparison of the numbers of the extra bits used and the bits saved by the PS scheme

The number of tags 100 200 300 400 500

The number of extra bits 168 330 489 649 810

The number of saved bits 7,592 15,400 23,392 31,200 38,472

4.6 System Efficiency

We compare ASPS, query tree (QT) [9], ISO/IEC 18000-6B [13], and frame slotted

ALOHA [6] protocols for 100, 200,…, and 1000 tags in terms of system efficiency. In

[11], system efficiency is defined as the ratio of the number n of tags to the number s of

slots required to identify all the tags for ALOHA-based protocols. To compare

different classes of protocols, the number s of slots is assumed to be the number of

Cases

The

number

of tags

Schemes

24

iterations for some protocols, where an iteration is for a reader to send a command and

for tags to perform corresponding actions. For example, for counter-based protocols, an

iteration is for a reader to send a command and for tags to increase/decrease counters or

to respond tag IDs. For QT protocol, an iteration is for a reader to send a command

with some ID prefix and for tags to perform ID prefix matching and ID responding. We

perform simulations under the assumption that a frame has s time slots initially for

frame slotted ALOHA protocol and that tag IDs are uniformly distributed. Fig. 5 shows

the simulation results. By Fig. 5, we can see that ASPS apparently outperforms the

others in terms of system efficiency.

Figure 5. The comparison of ASPS, query tree (QT), ISO/IEC 18000-6B, and frame slotted
ALOHA protocols in terms of system efficiency

5 CONCLUSION

In this paper, we have proposed a novel counter-based tag anti-collision protocol,

called ASPS, based on two schemes: adaptive splitting and pre-signaling. By estimating

0

0.1

0.2

0.3

0.4

0.5

0.6

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

Sy
st

em
 e

ff
ic

ie
n

cy

The number of tags

ASPS QT ISO/IEC 18000 6B Frame Slotted ALOHA

25

the number k of colliding tags, the adaptive splitting scheme tries to directly distribute the

tags into k subgroups. This will reduce the number of tag collisions effectively. And the

pre-signaling scheme is applied to further reduce the number of messages sent between

the reader and tags. We have performed simulations for ASPS and compared it with

other anti-collision protocols. Simulation results show that ASPS outperforms related

protocols in terms of the number of collisions, the number of messages sent by the reader,

the tag identification delay, and system efficiency. However, ASPS needs to modify the

random number generator design on the tag circuit. Furthermore, the ASPS reader also

needs to process a more complex algorithm, as described in Algorithm 1. These are

negative points of ASPS.

Both ASPS and ABS protocol [12] are proposed to improve ISO/IEC 18000-6B

protocol, ASPS makes improvement within a tag interrogation round; ABS, between

interrogation rounds. Therefore, ASPS and ABS can be combined together to further

improve ISO/IEC 18000-6B protocol. We are now planning to integrate the two protocols

and perform some preliminary simulation experiments to show the integration

advantages.

Acknowledgment

This work was supported in part by the National Science Council of the Republic of

China (Taiwan) under the grant NSC-96-2221-E-008-007.

REFERENCES

[1] K. Finkenzeller, RFID handbook: Fundamentals and Applications in Contactless Smart
Cards and Identi- fication, John Wiley & Sons, 2003.

[2] Jehn-Ruey Jiang and Ming-Kuei Yeh, ―Anti-collision protocols for the RFID system,‖
Book Chapter of RFID and Sensor Networks, Ed. Yan Zhang et al., Auerbach Publications,
Taylor&Francis Group, USA, 2009.

[3] N. Abramson, ―The ALOHA System-Another Alternative for Computer Communications,‖
Proc. of AFIPS Spring Joint Computer Conf., Vol. 37, pp. 281-285, 1970.

[4] Leian Liu, Shengli Lai, ―ALOHA-Based Anti-Collision Algorithms Used in RFID System,‖
Proc. of In- ternational Conf. on Wireless Communications, Networking and Mobile
Computing (WiCOM 2006), pp.1 – 4, Sep. 2006.

[5] H. Vogt, ―Efficient Object Identification with Passive RFID Tags,‖ Proc. of 1st

26

International Conf. on Pervasive Computing, pp.98–113, 2002.

[6] M. Kodialam and Thyaga Nandagopal, ―Fast and Reliable Estimation Schemes in RFID

Systems,‖ Proc. of ACM Mobicom, Sep. 2006.

[7] S. Lee, S.D. Joo, and C.W. Lee, ―An enhanced dynamic framed slotted aloha algorithm for
RFID tag identification, ‖ Proc. of Mobiquitous 2005, pp.166-172, 2005.

[8] Feng Zhou et al., ―Evaluating and optimizing power consumption of anti-collision

protocols for applications in RFID systems,‖ Proc. of the 2004 international symposium on

Low power electronics and design, 2004.

[9] H. Choi, J. R. Cha and J. H. Kim, ―Fast wireless anti-collision algorithm in ubiquitous ID

system,‖ Proc. of IEEE VTC '04, 2004.

[10] M. A. Bonuccelli, F. Lonetti, F. Martelli. ―Tree Slotted Aloha: a New Protocol for Tag
Identification in RFID Networks,‖ Proc. of the 4th IEEE International Workshop on Mobile
Distributed Computing (MDC'06), 2006.

[11] Ji Hwan Choi, Dongwook Lee, and Hyuckjae Lee, ―Bi-slotted tree based anti-collision

protocols for fast tag identification in RFID systems, ‖ IEEE Communications Letters, Vol.

10, Issue 12, pp. 861-863, 2006.

[12] J. Myung et al., ―Tag-Splitting: Adaptive Collision Arbitration Protocols for RFID Tag

Identification,‖ IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 6, Jun. 2007.

[13] ISO, Information Technology Automatic Identification and Data Capture Techniques –

Radio Frequency Identification for Item Management Air Interface - Part 6: Parameters

for Air Interface Communications at 860-960 MHz, International Standard ISO 18000-6,

Nov. 2003.

[14] Philips Semiconductors, UCODE, http://www.semiconductors.philips.com.

[15] L. G. Roberts, ―Extensions of Packet Communication Technology to a Hand Held

Personal Terminal,‖ Proc. of AFIPS Spring Joint Computer Conf., vol. 40, pp. 295-298,

1972.

[16] C. Qian, H. Ngan, and Y. Liu, ―Cardinality Estimation for Large-scale RFID Systems,‖

Proc. of IEEE Int’l Conf. on Perv. Comp. and Comm. (PerCom), pp. 30–39, Mar. 2008.

[17] Jae-Ryong Cha and Jae-Hyun Kim, ―Novel Anti-collision Algorithms for Fast Object

Identification in RFID System,‖ Proc. of 11th International Conf. Parallel and Distributed

Systems (ICPADS'05), pp. 63- 67, Jul. 2005.

[18] A. Micic et al., ―A hybrid randomized protocol for RFID tag identification,‖ Proc. of First
IEEE International Workshop on Next Generation Wireless Networks (WoNGeN ’05), Dec.
2005

http://www.cs.utexas.edu/~lili/classes/F06/reading/rfid.pdf
http://www.cs.utexas.edu/~lili/classes/F06/reading/rfid.pdf
http://www.semiconductors.philips.com/

