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Abstract—Peer-to-peer (P2P) architectures have become pop-
ular for designing scalable virtual environments (VEs) in recent
years. However, one question that remains is whether a single
overlay can be flexible enough to support different types of
VEs. We present S-VON, a P2P overlay that attempts this goal
by providing spatial publish / subscribe (SPS) services. Besides
flexibility, S-VON also aims to be practical and efficient by
utilizing super-peers and considering the physical topology (i.e.,
network distance) to reduce latencies. Our simulations show that
super-peers provide a unique design space where both bandwidth
usage and latencies can be effectively reduced, such that even a
crowded Second Life region can be hosted with residential ADSL.

I. INTRODUCTION

In recent years, massively multiuser virtual environments
(MMVEs) such as massively multiplayer online games
(MMOG), have demonstrated a growing interest and need for
immersive interactions within virtual environments (VEs). A
networked VE allows global users to assume virtual represen-
tations called avatars and enter a virtual world, to interact with
others for adventure, socialization, or training. Although state-
of-the-art MMOG can host up to a million concurrent users,
such scalability is achieved by heavy content replications and
server-side investments — hosting disjoint clusters of servers,
each serving a few thousands of users maximally. To lower
server costs and increase concurrent users to millions in a
single virtual world, many peer-to-peer (P2P) approaches have
been proposed in recent years [1], [2], [3], [4], [5], [6], [7].
These designs can be mainly categorized as follows:

Overlay management The construction of a P2P overlay
that determines how nodes in a networked VE should connect
and exchange messages [1], [2].

State management The maintenance and distribution of
game states (i.e., the various attributes used by game objects,
such as a player’s health points and equipments) onto many
peers, while handling consistency, load balancing, and fault
tolerance [3], [4], [5], [6], [7].

Content management The utilization of client resources to
distribute game content such as voice [8], or 3D models and
textures [9].

Fundamental to these designs is a robust and efficient P2P
overlay that supports some primitive VE operations, while
considering the reality of P2P networks (e.g., heterogenous
peer resources, fluctuating network conditions, and dynamic
peer presence), alongside with application requirements (e.g.,
latency constrains due to the interactive nature of VEs). In this
paper, we propose a generic overlay design that supports the
different requirements and network considerations for large-
scale networked VE. We first identify the basic primitive in
VEs as a spatial publish / subscribe (SPS) mechanism [10].
That is, the ability to publish or subscribe to an arbitrary
convex virtual area is generic enough to support various
existing VE systems. We then propose S-VON, a P2P overlay
that is designed to be practical, where a super-peer architecture
is used; flexible, where spatial publish / subscribe is supported
via a Voronoi-based Overlay Network (VON) [1]; and efficient,
where the overlay topology is considered during transmission
to reduce latencies. Our analysis and simulations demonstrate
S-VON’s scalability and efficiency to support basic VE re-
quirements, and show how a busy Second Life [7] region can
be hosted under residential ADSL environment.

II. BACKGROUND

VE systems can be seen as state machines where various
game states are updated via application-specific rules called
game logic [5]. User behaviors are captured as event messages,
which are sent to the game state manager for processing. The
manager may then send update messages to notify other users
affected by the actions. An event - process - update cycle thus
is a common design for VEs. The key to building scalable
VEs is then a task of dividing the workload of these cycles
to many separate hosts (e.g., server clusters or peers in a
P2P networks), while maintaining the basic consistency and
interactivity requirements [11]. This division of workload is
possible as even though a system may have a large number of
total users, each user often interacts with only a small number
of spatially nearby users within an area of interest (or AOI)
[1], which is typically circular in shape. As the user’s AOI is
limited, message exchanges thus can be localized.



To distribute state management, spatial publish / subscribe
(SPS) [10] has been identified as a general mechanism.
SPS assumes that all message publications and subscriptions
(pub/sub) occur on a Cartesian coordinate system. For a simple
2D SPS, each user node may perform: 1) point publication:
to send a message at a specific point, receivable by area
subscribers whose areas cover the point; 2) area publication: to
send a message to an area, receivable by any subscribers whose
subscriptions overlap with the area; 3) point subscription:
to receive any publication covering a point; and 4) area
subscription: to receive any messages published within an area.

With SPS as a primitive, it is possible to support state
management with two layers of SPS: one for events and
another for updates. For example, if the entire world is
divided into various regions, a state manager can perform
area subscription over its assigned region at an event layer.
When users send any events as point or area publications
to the event layer, managers whose regions are affected can
receive and process the events naturally. After a manager
modifies the relevant game states, updates can be sent as point
publications at an update layer for each updated object. Users
who have performed area subscriptions over their AOI at the
update layer may then receive the updates in view. Note that
the subscribed areas of managers are often stationary, and
publications occur at point locations, while the pub/sub of the
users move more dynamically.

Fig. 1. S-VON architecture.

III. S-VON ARCHITECTURE

We consider a large-scale P2P VE, where avatars (i.e.,
clients) are arbitrarily distributed in the virtual world. Each
avatar may be interested to receive updates from one or
multiple arbitrary convex areas, which constitutes its AOI. An
illustration of the VE is shown in Fig. 1(A), where each avatar
represents a user in the physical world.

Peers in a P2P network can be highly heterogeneous, with
drastically different CPU capacities, bandwidth, and stability.
Practical P2P systems thus often maintain the overlay by utiliz-
ing super-peers, which are peers with higher CPU/bandwidth
capacities and better stability, e.g., ultrapeers in Gnutella
or super-peers in Skype. To address peer heterogeneity and
fully utilize peer resources, we also categorize peers into
super-peers (called relays) and regular peers (called clients),
according to their capacity, stability, and trustworthiness.

In this paper, both state management (i.e., how to maintain
and update game objects given event messages and game logic)
and security (i.e., how to ensure that clients and relays do

not cheat) are beyond our scope. However, we note that state
management is supportable by a basic SPS mechanism (please
refer to [10]), and security issues can be reduced if more
trustworthy hosts are selected as super-peers [12].

In S-VON, every client in the P2P overlay is attached to a
relay. Relays are assumed to have public IP addresses and can
reach each other directly, forming a backbone or a relay mesh.
Clients perform SPS requests, while relays manage overlay
connectivity and message delivery, i.e., relays would help their
clients to forward pub/sub messages via the relay mesh. As
a super-peer may also host an avatar, it too can contain a
client part that performs SPS operations by attaching to itself.
The relation between clients and relays is shown in Fig. 1(B),
where the mapping between the VE and the P2P overlay is
as follows: Avatar a and b map to client a′ and b′ in the P2P
overlay, respectively; if avatar a sends a pub message to avatar
b, the message is passed from client a′ to R1 (its relay), then
forwarded from R1 to R2 (the relay b′ attaches to), and will
be passed on by R2 to b′, eventually reaching avatar b. Note
that the maximum number of hops is three for any client-to-
client communications, and can be two if both clients connect
to the same relay. Additionally, if several clients interested in
a publication are attached to the same relay, only one pub
message needs to be sent from the publisher’s relay to the
subscriber’s, reducing potential inter-ISP traffic.

To be topology-aware, we assume that each host machine
p (client or relay) can be assigned a physical coordinate,
(xp, yp), that represents its relative location to each other
on the physical Internet. The coordinates may represent its
latitude and longitude, or be derived using network positioning
(e.g., Vivaldi [13]). We assume that such physical coordinates
are relatively stable while the corresponding avatar moves in
the VE. The Euclidean distances on this coordinate system
approximate the latencies (or network distance) among the
hosts. Upon joining the system, each peer first determines its
physical coordinate, then connects to the closest available relay
in terms of network distance. As an analogy, the P2P overlay
is like a routing layer for end-to-end messaging between two
avatars, where the relays are analogous to “routers”.

A tracking server (called gateway) is used for bootstrapping,
similar to many practical P2P systems such as BitTorrent
or PPLive. However, to support distribution maximally, the
gateway only performs a minimum number of necessary
bootstrapping tasks (e.g., helping a joining node to identify its
physical coordinate and initial relay), and is not involved in
normal operations. We describe S-VON’s key designs below:

A. Pub/sub relationship discovery

Since each relay in S-VON forwards messages for the
clients connected to itself, it needs to maintain the pub/sub
relationship for all the attached clients. Ideally, when a publi-
cation request reaches the relay, the relay can simply look up
a mapping table to find the subscriber’s relay. How to achieve
this effectively becomes an important challenge. We adopt a
Voronoi-based Overlay Network (VON) [1] and note that it is
possible to support SPS by slightly extending VON.



A VON is a fully-distributed overlay that supports the
discovery of neighbors within an AOI (i.e., the AOI neigh-
bors). Each VON node has a coordinate point and can move
continuously on a 2D plane. A node joins the network by
contacting a gateway to forward its join request to the neighbor
closest to its join location, so that it can learn of some
initial AOI neighbors. To discover new neighbors, each node
organizes the coordinates of itself and its known neighbors in
a Voronoi diagram, so that its boundary neighbors (i.e., AOI
neighbors whose Voronoi regions overlap with the AOI border,
see the triangle and circle nodes in Fig. 2) can check if new
neighbors will enter the AOI as it moves. To ensure overlay
connectivity, each node needs to minimally connect with its
closest enclosing neighbors (squares in Fig. 2). This way, even
though only a few AOI neighbors are known initially, new
neighbors can be discovered without a centralized server.

Fig. 2. Neighbors in VON. Big circle is the AOI of the center star node.

The original VON supports area subscriptions natively, but
not area publications (i.e., VON allows a node to specify an
AOI to receive point publications, but a message cannot be sent
to a specified area unrelated to or beyond a node’s AOI). We
observe that by specifying the subscription area as the AOI,
subscribers can first learn of potential publishers by perform-
ing AOI neighbor discovery. As such knowledge is mutual, the
publishers are also made aware of their potential subscribers
continuously. If each publisher maintains such a subscriber list
of nodes with potential interests in its publications, a publisher
can then send publications directly to subscribers. Our first
extension to VON is thus to let each node, as a publisher, to
maintain a subscriber list.

To add relays to the picture, we define a VON peer as a
virtual client entity stored and managed by a relay. Relays
thus act as proxies for the clients in forming a VON composed
of the clients’ corresponding VON peers. All VON-specific
functions then are performed by VON peers (e.g., neighbor
discovery, message publications), and actual clients only send
pub/sub requests to their relays, and receive publications. S-
VON thus can be seen as a logical layer of VON, running on
top of the relay mesh. Instead of representing a client machine,
a VON peer represents a client’s interest (i.e., its subscription
area), and many VON peers can physically be at the same
relay. To support the proper discovery of other relays, each
VON peer also keeps the contact info (e.g., IP and port) of
its currently residing relay, and exchanges this info with other
VON peers during neighbor discovery among the VON peers.

So the following differences exist between the original
VON and S-VON: 1) VON assumes that any client can send
messages directly to another client, while S-VON assumes
only relays can do so; 2) VON is mainly a method for
distributed neighbor discovery, while S-VON is designed to
support spatial publish subscribe. VON thus only supports area
subscriptions, but not area publications; 3) In VON, only one
Voronoi diagram is maintained by a client host; however, for
S-VON, several distinct ones are kept at a relay host, one for
each VON peer, and none at the clients.

B. Spatial Publish Subscribe

We now describe how subscriptions and publications are
supported. For simplicity, we will discuss SPS logically with-
out mentioning the underlying relays.
Subscriptions When a client subscribes, it specifies its sub-
scription as an area with a reference point inside. The reference
point becomes the position of a VON peer managed by the
client’s relay. For point subscriptions, we simply use a small
area. The VON peer joins the VON at the reference point with
the subscription area as its AOI. After joining, the subscription
is learnt by all other VON peers whose Voronoi regions
are covered by the subscription area (i.e., the joiner’s AOI
neighbors). As the knowledge on neighbors is mutual, this
effectively notifies these AOI neighbor to build up a unique
subscriber list of the VON peers interested in its publications.
Publications Whenever a publication occurs, the pub request
is first sent from the publishing client to its relay, then pro-
cessed by the client’s corresponding VON peer. The VON peer
looks up its subscriber list and determines if any subscribers
should receive the message. Note that this function is not
natively supported by VON. The publication is then sent
directly to those subscribing VON peers (via their associated
relays physically), and forwarded to the VON peers’ associated
clients. If no subscribers are found, the publication will have
no effect. To support area publications, when a publication
spans more than one Voronoi regions, it is first forwarded to
each VON peer whose Voronoi regions are partially covered
by the publication, and the above process is repeated at each
affected VON peer. Note that the VON peers affected may or
may not reside at the same relay physically, so the publisher’s
relay may need to forward the message. Contacting the af-
fected relays is possible as the contact of the physical relay
is stored with the VON peer. To avoid redundant forwarding,
mechanisms such as VoroCast [14] can be utilized.
Movements When clients move continuously in the VE, their
subscriptions are also updated. This is done by the clients first
notifying their respective relays, who will then update the AOI
of the clients’ VON peer. VON’s move procedure [1] is then
followed so that all AOI neighbors can learn of the updated
AOI, and update the contents of their subscriber lists to reflect
the change in subscription interests. To ensure consistency,
VON peers at the relays hold the authoritative versions of the
client positions, all others are considered as replicas (e.g., at
clients, or in the subscriber lists kept by the VON peers at
other relays).



C. Fault Tolerance

Nodes on a P2P network tend to join and leave continuously.
If a client fails, the associated relay simply removes the
respective VON peer, and the change is handled by VON’s
leave procedure [1]. For a relay failure, the clients of the failed
relay can simply find a new relay to join, and initiates the VON
join procedure, similar to how it joins the system originally. As
VON itself is designed to be fault tolerant, its fault tolerance
is passed to relays, which are simply VON peer proxies.

IV. EVALUATION

We try to answer the following questions: 1) How practical
can S-VON be deployed? 2) How does topology-awareness
affect the performance? and 3) How fault-tolerant is it?

We simulate a 256x256 meter Second Life region, where the
maximum concurrent users is about 100 [7]. Although only
one region is simulated, many regions jointly can support a
large total user size, as commonly done by today’s MMOGs.
If the workload of a single region can be practically reduced,
the entire system may also scale better. We set the AOI radius
as 64 meters (same as a Second Life avatar). To study the
steady state behaviors, nodes need to join the system first,
before moving at a speed of 5 meters per step for 1000 time-
steps, where each time-step is set to 100 ms. Note that this
a relatively fast movement, akin to the fly mode in Second
Life. Nodes move in a clustering pattern to mimic real world
users with about 6 clusters. Each node publishes its position
10 times a second, and subscribes its AOI to discover other
nodes or receive position updates. For latencies, we use a pair-
wise ping data of 90 nodes from PlanetLab1. When node A
sends a message to node B, the delay is looked up from the
latency table so the receiver gets the message some time-steps
later. No bandwidth limitation is imposed on the nodes, so that
full bandwidth requirement can be evaluated.

Besides being a client, each node can also be a relay. We
adjust the number of relays from 1 to 90 to mimic architectures
from classical client-server (i.e., 1 relay) to fully distributed
P2P (i.e., 90 relays). Relays are chosen as hosts with short
latencies from other hosts. (i.e., their physical coordinates are
near the center of the Vivaldi coordinates). We set the maxi-
mum number of attached clients at a relay as a little over the
average if all clients are uniformly assigned. Specifically, the
value is peerlimit = (totalnodes−relaysize)/relaysize+2.
This is an important parameter that should adjust dynamically
by the actual relay load. Finally, each node also keeps info on
the 10 closest relays (learned during joining), so that substitute
relays can be contacted in case of a relay failure.

To evaluate topology-awareness, topology-aware join allows
each node to join the system with its physical coordinate, as
determined by Vivaldi. Topology-unaware join lets each node
uses its initial VE coordinate as the physical coordinate. This
clusters the nodes close to each other in the VE to connect
with the same relay, at least initially. Below we describe the
results, and use peers to refer the VON peers for short.

1http://pdos.csail.mit.edu/s̃trib/pl app/2003-02/2003-02-13/

A. Performance

We first evaluate how well is the server load distributed,
and at what costs to the relays? Simulations show that a client
roughly has 0.5 KB/s of upload and 15 KB/s of download.
Upload is fairly constant as only periodic movements exist.
Fig. 3(a) shows the upload of both the gateway (i.e., the first
relay) and other relays under topology-aware and topology-
unaware join. We focus on upload as it is the main bottleneck
to scalability. The gateway upload begins at about 1.3 MB/s
and gradually decreases to about 40 KB/s in 90 relays (i.e.,
pure P2P). We note that the upload first increases before
decreasing, possibly due to the increased inter-relay commu-
nications. For relays, the upload begins at 1.1 MB/s with 2
relays, and gradually falls to 35 KB/s (when the relay only
hosts its own peer). This shows that a server with 10 Mbps
upload requirement only needs 1/3 as much bandwidth with
30 relays. For relays, the upload needs are between 80 KB/s to
200 KB/s. Residential ADSL with less than 5 Mbps of upload
thus would suffice to host a server, and 2 Mbps for relays.

Another important aspect to performance is the latencies
incurred. Here we measure the most time-critical movement
updates. Fig. 3(b) shows that under C/S, the average latency
is about 200ms, while under pure P2P is 110ms (i.e., the
average end-to-end latency in our dataset). With relays, the
average latencies increase quickly to a high of 340ms, before
decreasing continuously. This is because pure P2P has 1-hop
latencies, C/S has round-trip latencies, while relays result in
a mixture of 1 to 3 hops. One important observation is that
the average latencies of using relays can be as good as C/S or
even better, meaning that a tunable sweetspot exists in relay
size (between 50 and 90 relays). Another expected result is
that a visible difference exists between topology-aware and
unaware joins, at roughly 20-30ms between 10 and 70 relays.
However, when using relays is not economic (for very small
number of relays), or not practical (for large number of relays),
topology-awareness does not affect performance much.

B. Correctness

While using some relays gives better performance than
either pure C/S or P2P, we still need ensure that SPS performs
correctly. Here we define discovery consistency (or consistency
for short) as the number of AOI neighbors actually seen over
the number of neighbors that should be seen [1]. It is a basic
measure of how consistent the view of each node is from
the actual view of the system. Fig. 4(a) shows the discovery
consistency between topology aware and unaware simulations.
We see that pure C/S or P2P achieves the best consistency, at
over 99.8%. Consistency drops as latencies increase with the
addition of relays, but then improves back as latencies reduce.

For our final evaluation, we consider the effect of failures
and fail between 1 to 20 randomly selected nodes of a specific
type (so between 1.11% to 20.22% of all 90 nodes). The relay
size is fixed at 45 nodes (50% act a relays). Fig. 4(b) shows
the effect on consistency after concurrent failures. The failures
occur mid-way at 500 time-step in a 1000-step simulation.
The average consistencies after the failures occur are shown.



(a) bandwidth usage (b) transmission latency

Fig. 3. Performance Evaluation of S-VON

(a) discovery consistency (b) effect of concurrent failures

Fig. 4. Correctness Evaluation of S-VON

We see that the failures of clients almost have no impact
on consistency, as should be expected given a client’s light
role. However, failures of relays are more serious when the
concurrent failures exceeds 5 (5.56% of all nodes, or 11.11%
of all relays) under cluster movement. Discovery consistency
drops to as low as 80% and do not seem to be restoring.
However, we note that such relay-only failure may be rare.

V. CONCLUSION

In this paper we present S-VON, a generic P2P overlay that
supports spatial publish / subscribe (SPS) operations for virtual
environment applications. S-VON is designed to be practical,
by utilizing a super-peer based design; flexible, by supporting
SPS operations; and efficient, by considering network topology
for quick message deliveries. By utilizing a Voronoi-based
Overlay Network (VON), we design a method to support SPS
in a distributed and low-latency manner. From our simulations,
we show that S-VON effectively supports a crowded Second
Life region, by lowering the bandwidth usage at the server,
and the latencies between clients, all under current residential
ADSL environment. As future work, we would like to explore
how SPS can be used to support state management efficiently,
and how to handle malicious client or relay behaviors.
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