
978-1-4244-5604-8/09/$26.00 c©2009 IEEE

Bandwidth-Aware Peer-to-Peer 3D Streaming
Chien-Hao Chien, Shun-Yun Hu, and Jehn-Ruey Jiang

Department of Computer Science and Information Engineering
National Central University, Taiwan, R.O.C.

Abstract—Peer-to-Peer streaming support for 3D content (i.e.,
P2P 3D streaming) has recently been proposed to provide
affordable and real-time virtual environment (VE) content de-
livery. However, the generally limited client upload bandwidth
requires maximal bandwidth utilization for effective streaming.
This paper proposes Bandwidth-Aware Peer Selection (BAPS), a
peer selection strategy that improves the bandwidth utilization
for 3D streaming. BAPS avoids request contention and peer
overloading as object and user densities increase, thus improving
both bandwidth utilization and system scalability. We compare
BAPS with strategies that select from only peers within the
area of interest (AOI) as data sources and do not consider
bandwidth capacity. Our evaluation shows that BAPS achieves
better performance in general, and maintains a stable minimal
quality of service (QoS) for streaming, which is important for
commercial applications.

I. INTRODUCTION

Networked Virtual Environments (NVEs) are computer sim-
ulations that combine networked communications and 3D
graphics techniques to provide immersive and responsive
virtual interactions. The early military simulator SIMNET
[1], and the recent Massively Multiplayer Online Games
(MMOGs), such as World of Warcraft (WoW)1 or Second
Life (SL)2, are all well-known examples of networked virtual
environments. Rendering a scene in a virtual environment
(VE) requires a combination of various 3D objects (e.g., mesh
models and textures), currently often obtained from a full
installation via a DVD or a network download. However,
downloading and installing the entire content to local storage
might take a long time. To address this issue, the technique of
3D Streaming has been utilized.

3D Streaming [2]–[5] refers to the real-time and continuous
transmission of 3D content through networks. Users only need
to download the data for rendering a given scene before
navigation, without having to wait for the entire download
to complete. For example, Second Life delivers terabytes of
user-generated content with their 3D streaming technology
[6]. 3D streaming is similar to media streaming [7], where
users can immediately use the data when the data is only
partially received. Before transmission, the data also needs
to be fragmented into many pieces, so that users will be able
to see the content progressively. However, differences exist
between 3D streaming and media streaming. For instance,
video streaming transmits data pieces according to the time
sequence of the video, so the transmission sequence of the
pieces is fixed. On the other hand, 3D streaming transmits data

1http://www.worldofwarcraft.com
2http://www.secondlife.com

based on 3D objects viewable to the user, different viewing
angles or distances thus would produce individually different
transmission sequences.

If 3D streaming is supported by a client-server (C/S) ar-
chitecture, then all content is provided by a central server.
When a user requests new data, the request is sent directly
to the central server, waiting for the server’s processing and
response. However, C/S architectures cannot scale easily with
user size, because the bandwidth or computing resources of
any given server is often fixed, whereas the number of users
might increase with user activities, and may in some cases
overload the server’s capacity (e.g., a flash crowd could gather
for a concert). When concurrent requests from users exceed the
server’s capacity, the efficiency and quality of service (QoS)
of the system will degrade. To address this problem, peer-to-
peer (P2P) architectures [6], [8], [9] have been proposed to
support 3D streaming. P2P networks are characterized by the
design where every user plays the role of both the provider
and the requester: each user shares data with other users on
the network. In other words, because users can get what they
need from other users, the data source is not limited to the
server. With this architecture, the total network bandwidth
or computing resources will increase as user size scales,
improving the system’s scalability.

Recent proposals in P2P-based 3D streaming (e.g., [6], [8],
[9]) show the benefits of using the P2P architecture to reduce
server load. However, request contention and overloading can
occur for some nodes [10], so some users’ bandwidth cannot
be properly used when the data sources are limited to only a
few nearby neighbors in the virtual space.

This motivates us to propose a Bandwidth-Aware Peer
Selection (BAPS) method that avoids request contention and
overloading. Unlike existing P2P 3D streaming schemes,
BAPS allows users to send requests to neighbors within the
AOI (area of interest) as well as to other users. Therefore,
more data sources become available. Furthermore, BAPS
adopts bandwidth reservation and the Tit-for-Tat concept from
BitTorrent [11] to 1) ensure a stable level of quality of service
(QoS); 2) improve bandwidth utilization, and 3) achieve higher
scalability. We verify BAPS with simulations and compare its
performance with existing designs to show its advantages.

The rest of the paper is organized as follows. Section
II defines our problem and describes the expected results;
Section III proposes our peer selection and piece selection
methods; Section IV presents the results of the experiments;
and conclusions will be given in Section V.

II. PROBLEM FORMULATION

We formulate our user scenario based on Second Life, as it
is a more generalized model for virtual worlds among current
MMOGs. There are two types of network transmissions in Sec-
ond Life: states and content data. States provide information
about what surrounds the current user, such as the positions of
other users and the placements or status of objects (e.g., how
filled is a glass of water, or how much money an item costs).
When a user is aware of the surrounding objects through the
states, requests of the 3D objects (i.e., the content data) can
then be sent to the server. States therefore consist of smaller
packets and require higher responsiveness and security. On
the other hand, according to Liang et al. [12], 61% to 88% of
the network traffic in Second Life is for textures, which is a
type of 3D content. Therefore, to reduce server loading and
maximize the number of concurrent users, the sensible priority
is to reduce bandwidth usage due to the transmission of 3D
objects. This paper is based on a former study of FLoD [6],
which is a framework that addresses issues of 3D streaming
in a P2P network. In FLoD, there are two sources for content
download: AOI neighbors and the server. AOI neighbors refer
to the other users who are within a given user’s visibility, or
Area of Interest (AOI). As AOIs may intersect, users can find
other users with similar object interests to form a neighbor
group, which can then serve as another source for content
download. When a user wants to download certain objects in
the AOI, the user can send a request to another user who
owns the object from the AOI neighbor group. If there are no
AOI neighbors to request, requests are then sent to the server.
However, as there is a limit on concurrent servable requests,
a download might be delayed due to the inability to send or
respond to requests. We identify three problems in FLoD’s
basic strategy:

1. Non-server content sources are limited to current AOI
neighbors. However, other non-AOI users who have been in
the same area may still possess the objects of interest. The
download thus can be inefficient due to the insufficiency in
content sources.

2. Random peer selection causes bandwidth waste and
request jam. It is found that a naive random peer selection
causes users of different upload bandwidth to carry the same
loading [10], users of low upload bandwidth can thus be
in a request jam (i.e., receiving requests beyond capacities),
whereas users with high upload bandwidth are idling. Band-
width thus is not efficiently allocated.

3. Unstable connections exist between peers. As connec-
tions are created and broken very dynamically according to
user movements, the response time of the content requests
cannot be estimated accurately. The quality of streaming thus
would suffer and cannot be consistently guaranteed.

In summary, it is found that getting content from only
the AOI neighbors limits the download sources, and random
selection causes unbalanced workload and request contention.
Sung et al. [10] propose to solve the above problems by
reserving a list of past AOI neighbors and using a multi-

level AOI for the request areas. However, the work neglects
the difference in upload bandwidth between users and does
not assure that the source nodes have sufficient bandwidth to
provide for download. The P2P network thus may not transmit
most effectively. Besides, when the user density is high, even
with multi-level AOI requests, users within a single area might
still receive excessive data requests. Therefore, we propose an
improved mechanism with the following objectives:

1. Develop a bandwidth allocation method to reduce the
waiting time to fulfill download requests and improve the
streaming quality.

2. Construct Peer Lists to provide additional data sources,
and adopt a Bandwidth-Aware Peer Selection (BAPS) strategy,
so that peer selection is not limited to only AOI neighbors.

3. Introduce the Tit-for-Tat in BitTorrent [11] to provide
prioritized download for users with larger upload bandwidth,
so that they are able to provide more data to other users sooner,
reducing the server’s loading for better scalability.

III. DESIGN OF BAPS

A. Assumptions and Basic Ideas

Based on the ideas of FLoD [6] and the work of Sung
et al. [10], we divide a virtual world into several scenes
with fixed sizes. Each scene consists of a scene description
with the number of objects and each object’s placement and
size. When a user logins the virtual world, he/she will be
informed of the scene descriptions according to the user’s
AOI coverage. In this work we assume that there is a gateway
server to perform this task (i.e., the server notifies each user
the necessary scene descriptions) in order to focus on the P2P
aspect of content exchange. Note that in the original FLoD
design, scene descriptions are provided by a P2P overlay as
well. However, as scene descriptions are often much smaller
than the actual content, we assume that they have negligible
contribution to bandwidth and may be performed in either a
client-server or P2P fashion. The required 3D objects are then
downloaded according to the scene descriptions. When new
objects are found, a list of required objects is formulated by a
Piece Selection procedure to determine the content pieces to
be downloaded and their priorities. Once a piece is selected,
the Peer Selection procedure will find an appropriate user to
request. We describe the procedures below:
1) Piece Selection mainly deals with the transmission priority
of piece request. We first assume that objects in the VE are
fragmented into one or several pieces with Level of Detail
(LoD) techniques [13]. As shown in Figure 1, every object is
divided into a base piece (BP), and many refinement pieces
(RP), where successive pieces depend on the previous ones,
so every 3D object can be transmitted as a streaming content.
When a user has downloaded a base piece, the object can
be seen in its rough outline; and if the download continues
with getting more refinement pieces, then the object will
appear to be more refined. According to the nature of virtual
world, Piece Selection prioritizes the download order with two
considerations: (1) visual contribution of the piece and (2)
object proximity in the virtual world.

Fig. 1. Data Structure of 3D Streaming Object

As 3D objects are displayed progressively, BP has to be
downloaded before showing RP1, and Ri−1 is required before
Ri. So, download priority depends on the piece number,
where pieces with smaller numbers are downloaded first.

Pr(Piecei) = w(Piecei)/dist(ObjectA)

We thus define the priority Pr of Piecei of ObjectA as
above, where w(Piecei) indicates the visual contribution (or
weight) of the piece, and dist(ObjectA) represents the virtual
distance between ObjectA and the user. Higher Pr values
indicate higher priorities. When a user has to transmit several
pieces at the same time, this value would help to decide which
data piece has the higher priority.
2) Peer Selection decides to whom a request is sent. In P2P 3D
streaming, in order to provide a good navigation, the system
should focus on the timeliness of piece download. To reduce
waiting time, we propose to use bandwidth reservation to
allow requests be served as soon as they are received. We
realize that if content sources are limited to AOI neighbors,
insufficient downloadable sources and request jam may result.
To solve these problems, we propose Bandwidth-Aware Peer
Selection (BAPS), which includes Bandwidth Allocation and
Multi-Source Selection, to help users allocating bandwidth
properly and finding appropriate content providers. Similar
to other media streaming, 3D streaming should assure a
stable streaming quality, which can be achieved by avoiding
excessive waiting time on piece requests. Considering that in
residential networks, bandwidth resources are often limited
and asymmetric for upload and download, we thus lower
the allowable requests for users with lower bandwidth in
order to avoid jamming in the requests. For users with higher
bandwidth, we should also allocate the bandwidth efficiently
to avoid resource idling. By using pre-allocation, the upload
bandwidth of a user is divided into several connection channels
of identical sizes. When a requester asks a peer for content,
a connection channel is created first, where the provider will
reserve some upload bandwidth, so that requests will not be
delayed due to request jam. If enough bandwidth cannot be
allocated, the requester is denied connection and may need
to look elsewhere for other peers. Each channel is constantly
monitored to make sure that it is occupied. If channels sit idle
for a system-defined time, the channel is recycled for other
users. As object pieces are linearly dependent, when a user
makes requests to some peers, it means that their AOIs have

been overlapped at some time (past or present) and include the
same objects. The provider thus is likely to own other content
pieces needed by the requester. By reserving bandwidth at the
provider, the request flow can be kept smooth and continuous
(i.e., similar to a pipeline), which increases its efficiency.

B. BAPS algorithm

We now describe BAPS in more details according to the
main stages in P2P 3D streaming [14]:

1) Object Discovery: Before performing the piece and peer
selections, our first task is to identify which objects are within
the user’s view and thus are relevant to download. This is
achieved by reading the scene descriptions obtained from the
central server. As object discovery is not our main focus, we
assume that such a simple method would suffice. If dynamic
object creation / deletion / update were to be supported, then
a more sophisticated mechanism can be used.

2) Source Discovery: To improve the source insufficiency
due to requesting from only AOI neighbors, a Peer List is
also included in the scene description, which describes the
users who have ever downloaded the scene. The Peer List
is constructed by the gateway server, which logs the users
who request for each scene descriptions. So when other users
request the scene descriptions, the server can randomly select
some users who have requested the same scene description
previously into the Peer List. Users can learn from the list
about other users who have ever accessed the scene. This way,
the potential sources for peer selection is increased. A new
Peer List is obtained each time a scene a entered, however, for
a given scene the list is not updated unless the sources are too
few. AOI neighbors, on the other hand, is updated continuously
from the P2P overlay, and may reflect the sources more timely.

3) State Exchange: This step includes connection request
and state exchange. After knowing who are the content
sources, we then need to know which peers own the required
data pieces by exchanging some simple states [10]. We adopt
the proactive push-based distribution of such meta states on
piece availability (as proposed in [15], [16]) to save the time on
state exchange, and a passive pull-based method for the later
content exchange (which tolerates more latency). In order to
inform existing connected peers on the availability of pieces,
we specify the state exchange peers as both the AOI neighbors
and peers with established connected channels. When a user
comes to a new scene which it has no knowledge of, it would
connect with some randomly selected peers from the Peer List
and AOI neighbors. Otherwise, the user will only connect with
peers who are known to possess the desired content. When
the size of known peers is lower than a pre-defined value, the
server is asked to provide a new Peer List.

4) Content Exchange: This is the main stage where piece
selection and peer selection are performed. We determine the
request rpi for piece pi according to the Piece Selection policy
as follows. If set A represents all the owners of pi among
known users; set B represents the known owners of pi in the
connected channels; and set C is the owners of pi in AOI
neighbors. As users in set B have reserved bandwidth for

incoming requests, when a piece request is sent to any peer in
set B, it will immediately be served without being delayed due
to too many requests. We choose from set B a content provider
who has not yet reached the maximum supportable requests.
If no provider is found in set B, then we pick a source from
set C. When no appropriate provider is found either in set B
or set C, we examine whether we meet the Server Request
Condition [6]. If so, we send a request to the server. In case
we fail to find anyone to request, that means the total system
resource is insufficient, and we would randomly select a few
users in set A to ask for new connections.

When a provider receives a piece request, it should imme-
diately decide whether to serve the request. In the original
FLoD, the piece request procedure uses the first come first
serve model, or FCFS. The benefit of this model is an equal
opportunity for all requesters. Thus, the requested loading is
evenly distributed. However, the FCFS model offers the same
opportunity for users with high upload and users with low
upload bandwidth, making the high capacity users to have
idle bandwidth resource while unable to distribute content
to others (called a content bottleneck [7]). To improve such
scenario, when a requester asks for a connection channel, if
the provider is fully loaded, connection preference is given
to peers who have contributed more content, using a Tit for
Tat policy [11]. When connections are fully loaded, those
with lower transmissions will be suspended, so that higher
contributing peers (which may more likely be high capacity
peers) can obtain content faster and serve sooner.

IV. EVALUATION

This section describes the evaluation of BAPS via sim-
ulations. We first present the simulation environment and
methods, followed by the metrics used and result analysis. Our
experiment is based on the FLoD architecture and procedures
[6], where users, represented as nodes on a 2D plane, are
simulated to move for a certain number of time-steps under
a clustering movement pattern (i.e., nodes would move near
certain hotspots with a high probability [6]). Each node needs
to obtain the scene description of the cells that its AOI covers,
before making requesting the objects located in each cells.
Please see Table I for the simulation parameters. At the
initialization phase, all 3D objects are placed randomly in
the VE, and the object sizes are between 100KB to 300KB.
During the experiment, different number of nodes are created
(e.g., from 50 to 500) to represent users of the virtual world.
Similar to the objects, their placements are random. At the
beginning, all nodes remain at the initial positions until an
initial set of AOI objects are downloaded. This assures that
users are equipped with some content to exchange with others
before their movements start. We can thus focus on the steady
state behaviors during data distribution. The user bandwidth
allocation is set as in [15] (see Table II) to simulate a real
environment, so that we may examine the performance of
different algorithms under a realistic bandwidth distribution.
Note that for the comparisons below, the same bandwidth
limits are applied for both the original FLoD scheme and

TABLE I
SIMULATION PARAMETERS

World dimension (units) 1000x1000
Cell size (units) 100x100

AOI-radius (units) 100
Time-steps (10 steps = 1 sec) 1500

Object Size (KB) 100 - 300
Piece Size (KB) 5

Percentage of Base Piece 10%
Server Download/Upload Limit (KB) 1000/1000

TABLE II
USER BANDWIDTH DISTRIBUTION

download (KB/sec) upload (KB/sec) Node Fraction
96 10 0.05
187 30 0.45
375 100 0.40

1250 625 0.10

BAPS for evaluation. We set-up cache size to be unlimited,
as cache size evaluation is not our current focus. However,
as previously investigated by FLoD, cache size over a certain
critical size would not affect the actual performance much, as
long as a minimal amount of cache is provided.

A. Metrics

The following metrics are used for performance evaluation:
Server Request Ratio (SRR): Data pieces are requested

from both peers and the server, but when a peer provider
cannot be found and the Server Request Condition is matched,
the user can request from the server. The proportion of
pieces (in data size) obtained from the server is described in
percentage as Server Request Ratio (SRR). Lower SRR means
lower loading for the server and better system scalability.

Fill Ratio: To evaluate the visual quality of a scene, a
simple quantity is to measure the ratio between successfully
downloaded content and the total interested (i.e., within AOI)
content (in size). Higher ratio means a more complete 3D
scene and thus a better visual quality.

Request Latency: The delay between sending a piece
request to acquiring the piece shows the efficiency of request
serving and whether there is a request jam. Here we focus on
the latency for the first (base) piece (i.e., base latency), as it
shows how quickly a user may start navigation in a scene. Note
that while the completion latency [6] (i.e., when an object is
fully downloaded) is also important, but because we simulate
constantly moving nodes, the completion latency may not be
measured for all objects.

B. Performance Analysis

In the following simulations, we use two setups to evaluate
bandwidth utilization and the system’s scalability: (1) Fixed
user size and movement paths to maintain the same available
bandwidth, while adjusting object quantities to evaluate band-
width utilization; (2) Fixed object placements and quantities
with varying user sizes to evaluate the system’s scalability.
Finally, we evaluate the streaming quality with time-series in
how fill ratio changes.

(a) Avg. Server Request Ratio (SRR) (b) Avg. Fill Ratio (c) Base Latency

Fig. 2. Bandwidth utilization evaluation under varying object sizes (fixed at 100 peers)

(a) Avg. Server Request Ratio (SRR) (b) Avg. Fill Ratio (c) Base Latency

Fig. 3. System scalability evaluation under varying peer sizes (fixed at 300 objects)

Bandwidth utilization: In a P2P network, data pieces are
obtained from both server and peers. When users cannot find
appropriate sources in the P2P network, the request is shifted
to server. So if the SRR is high, then the P2P network may
be under-utilized. By maintaining the same user size (100
peers) and movement paths while varying the object size
(from 100 up to 500), we test the performance under different
workloads. M objects are randomly placed in the VE, whose
sizes are Di|i = 1, 2, 3..., M . The total content size thus is:∑M

i=1 Di, which is also the maximum downloadable volume
for a user. The average downloadable volume in AOI is shown
as AOIArea/WorldArea∗

∑M
i=1 Di. For example, when 300

objects with an average size of 200KB exist, there will be a
total of 60 MB of content, and the average AOI content size
is 1.88MB.

As shown in Figure 2(a), when the content sources are
extended from AOI neighbors to Peer List neighbors, under our
strategy and the same number of objects, the server’s loading
reduces 59.8% on average. For example, when there are 200
objects, the SRR is 14.6% in FLoD but only 8.6% in BAPS,
which is about a 55.9% reduction on server loading; when
there are 500 objects, the reduction rate becomes 66.2%.

The server loading is efficiently reduced with multiple
sources and the improved peer selection. However, we also
need to know the bandwidth overhead of using Peer Lists. It

is found that Peer Lists take 4.3% in the entire transmission,
and the proportion increases with the number of objects. This
shows that its cost is acceptable, but also indicates that as
the object quantity grows, AOI neighbors will not provide
sufficiently, and requests for Peer Lists would increase.

As for the fill ratio, Figure 2(b) shows that the fill ratio
reduction in FLoD is higher than BAPS. When there are 100
objects, the fill ratio in FLoD is 87.5%, and when the object
size increases to 500, the fill ratio is reduced to 55.7% with
a reduction rate of 31.8%. So as object density increases,
bandwidth becomes insufficient and the fill ratio suffers. As
for BAPS, the fill ratio is reduced from 92.5% to 75.1%, which
is 17% less compared to FLoD. Consequently, given identical
bandwidth, BAPS is able to provide better utilization with a
lower reduction in fill ratio.

Figure 2(c) shows the latency for getting the base piece (i.e.,
the base latency [6]), where the base piece is 10% of object
size. We note that as object size increases, it takes more time
to get the base piece. The latency curve of FLoD, however,
grows noticeably faster than BAPS. It is likely due to the
limited content sources and random peer selection in FLoD,
as requests are distributed evenly to all peers, even those with
low bandwidth. With BAPS, not only base piece download is
prioritized, bandwidth is also reserved for base piece requests
to ensure that users can obtain them faster.

(a) FLoD (b) BAPS

Fig. 4. Fill Ratio Time-series (100 peers, 300 objects)

System Scalability: We simulate different number of peers
to evaluate the scalability of the system, while fixing the
object size at 300. When users are unable to obtain content
from peers, requests are shifted to the server. So we need
to observe whether server loading increases as the number
of user scales. Figure 3(a) shows the percentage of data
obtained from the server in FLoD and BAPS. When user size
increases, FLoD and BAPS both reduces server loading. But
for BAPS the server request ratio is even lower. Figure 3(b)
shows the average fill ratio after 1500 time-steps. The more
limited content sources may produce the lower fill ratio for
FLoD. Figure 3(c) shows the comparisons in base latency.
We can easily observe the difference in performance from
Figure 3(b) and Figure 3(c). One observation is that both FLoD
and BAPS can effectively relive server loads and maintain
relatively stable performances as user scales. However, BAPS
in general achieves better performance, as connection channels
are created to provide better guarantee on request latency.

Streaming Quality: Figure 4(a) and Figure 4(b) show the
time-series of fill ratio under 100 peers and 300 objects.
We see that FLoD takes more time to stabilize, and when
users begin to move, the fill ratio decreases more significantly
than in BAPS. In these figures, we show the maximum /
average / minimum fill ratios achieved among all users. A fast
increase in maximum fill ratio indicates the effective use of
the Tit-for-Tat policy. It preferentially connects with peers with
more contribution and suspends non-performing channels. The
minimum fill ratio indicates the worst streaming quality a user
may experience. An important observation from Figure 4(b)
is that by reducing request jam, a more stable streaming
is achieved even for worse case scenarios. For commercial
providers, such minimal QoS guarantee can be important to
ensure a basic level of user satisfaction.

V. CONCLUSION

FLoD demonstrates the possibility of progressive 3D con-
tent streaming in a P2P network. In this paper, we propose a
Bandwidth-Aware Peer Selection (BAPS) method that reduces
the request latency by having bandwidth allocation channels

and more content sources beyond AOI neighbors. The exper-
iments show that when content sources are limited, source
insufficiency and request jam can occur. Such insufficiency is
solvable with BAPS and the adoption of Peer Lists. To make
high capacity users contribute more, we use BitTorrent’s Tit-
for-Tat peer selection strategy to determine the peers to form
connection channels. Future improvements to BAPS include a
more distributed approach to maintain the Peer List (instead of
relying on server), as maintaining Peer List can be a potential
bottleneck for the server. We would also like to evaluate our
strategies using more realistic user-traces or behaviors.

REFERENCES

[1] S. Singhal and M. Zyda, Networked Virtual Environments: Design and
Implementation. ACM Press, 1999.

[2] S. Mondet et al., “Streaming of plants in distributed virtual environ-
ments,” in Proc. ACM Multimedia, 2008.

[3] W. Cheng et al., “An analytical model for progressive mesh streaming,”
in Proc. ACM Multimedia, 2007.

[4] A. Andre, S. Saito, and M. Nakajima, “Adaptive 3d content for multi-
platform on-line games,” in Proc. Cyberworlds, 2007.

[5] C.-H. Chu, Y.-H. Chan, and P. Wu, “3d streaming based on multi-
lod models for networked collaborative design,” Computers in Industry,
vol. 59, no. 9, pp. 863–872, 2008.

[6] S.-Y. Hu et al., “Flod: A framework for peer-to-peer 3d streaming,” in
Proc. INFOCOM, 2008.

[7] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” in Proc. INFOCOM, 2007, pp. 1415–1423.

[8] J. Royan, P. Gioia, R. Cavagna, and C. Bouville, “Network-based
visualization of 3d landscapes and city models,” IEEE CG&A, vol. 27,
no. 6, pp. 70–79, 2007.

[9] J. Botev et al., “The hyperverse: concepts for a federated and torrent-
based ’3d web’,” IJAMC, vol. 2, no. 4, pp. 331–350, 2008.

[10] W. L. Sung, S. Y. Hu, and J. R. Jiang, “Selection strategies for peer-to-
peer 3d streaming,” in Proc. NOSSDAV, 2008.

[11] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. Economics
of Peer-to-Peer Systems, 2003.

[12] H. Liang et al., “Texture in second life: Measurement and analysis,” in
Proc. P2P-NVE, 2008.

[13] D. Schmalstieg and G. Schaufler, “Smooth levels of detail,” in Proc.
IEEE VRAIS, 1997, pp. 12 – 19.

[14] S.-Y. Hu, J.-R. Jiang, and B.-Y. Chen, “Peer-to-peer 3d streaming,” IEEE
Internet Computing (to appear), 2009.

[15] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and improv-
ing a bittorrent networks performance mechanisms,” in Proc. INFO-
COM, 2006.

[16] S. Xie et al., “Coolstreaming: Design, theory, and practice. multimedia,”
IEEE TMM, vol. 9, no. 8, pp. 1661–1671, 2007.

