
Assignment 2 of CE2004, Principles of Programming
Languages

Due day: 21st June 2007

P.S.:

(1) You need to type your answers and print them out in paper. And then hand
the answer sheets to TAs.

(2) Late submission will not be accepted.

(3) Copying other student’s answers is strictly prohibited.

(1) (5 points) Dynamic type binding is closely related to implicit heap-dynamic
variables. Explain this relationship.

(2) (10 points) Consider the following program:

procedure Main is

X, Y, Z : Integer;

procedure Subl is

A,Y,Z : Integer;

procedure Sub2 is

A,B,Z : Integer;

begin -- of Sub2

. . .

end; -- of Sub2

begin – of Subl

. . .

end; -- of Subl

procedure Sub3 is

A,X,W : Integer;

begin -- of Sub3

. . .

end; -- of Sub3

begin -- of Main

. . .

end; -- of Main

List all the variables, along with the program units where they are declared, that are
visible in the bodies of Subl, Sub2, and Sub3, assuming static scoping is used.

(3) (10 points) Consider the following skeletal C program:

void funl(void); /* prototype */

void fun2(void); /* prototype */

void fun3(void); /* prototype */

void main() {

int a, b, c;

. . .

}

void funl(void) {

int b, c, d;

. . .

}

void fun2(void) {

int c, d, e;

. . .

}

void fun3(void) {

int d, e, f;

. . .

}

Given the following calling sequences and assuming that dynamic scoping is used,
what variables are visible during execution of the last function called? Include with
each, visible variable the name of the function in which it was defined.

(a) main calls funl; funl calls fun2; fun2 calls fun3.

(b) main calls funl; funl calls fun3.

(c) main calls fun2; fun2 calls fun3; fun3 calls funl.

(d) main calls fun3; fun3 calls funl.

(e) main calls funl; funl calls fun3; fun3 calls fun2.

(f) main calls fun3; fun3 calls fun2; fun2 calls funl.

(4) (10 points) Consider the following program:

procedure Main is

X, Y, Z : Integer;

procedure Subl is

A, Y, Z : Integer;

begin -- of Subl

. . .

end; -- of Subl

procedure Sub2 is

A, B, Z : Integer;

begin -- of Sub2

. . .

end; -- of Sub2

procedure Sub3 is

A, X, W : Integer;

begin -- of Sub3

. . .

end; -- of Sub3

begin -- of Main

. . .

end; -- of Main

Given the following calling sequences and assuming that dynamic scoping is used,
what variables are visible during execution of the last subprogram activated? Include
with each visible variable the name of the unit where it is declared.

(a) Main calls Subl; Subl calls Sub2; Sub2 calls Sub3.

(b) Main calls Subl; Subl calls Sub3.

(c) Main calls Sub2; Sub2 calls Sub3; Sub3 calls Subl.

(d) Main calls Sub3; Sub3 calls Subl.

(e) Main calls Subl; Subl calls Sub3; Sub3 calls Sub2.

(f) Main calls Sub3; Sub3 calls Sub2; Sub2 calls Subl.

(5) (5 points) What significant justification is there for the -> operator in C and
C++?

(6) (10 points) Multidimensional arrays can be stored in row major order, as in C++,
or in column major order, as in FORTRAN. Develop the access functions for both of
these arrangements for three-dimensional arrays.

P.S.: Let the subscript ranges of the three dimensions be named min(1), min(2),
min(3), max(1), max(2), and max(3). Let the sizes of the subscript ranges be
size(1), size(2), and size(3). Assume the element size is 1.

(7) (10 points) In the Burroughs Extended ALGOL language, matrixes are stored as a
single-dimensioned array of pointers to the rows of the matrix, which are treated as
single-dimensioned arrays of values, what are the advantages and disadvantages of
such a scheme?

(8) (10 points) In the following C program excerpt,

(a) what is the result printed out by the statement commented as ``Location 6’’?

(b) what is the result printed out by the statement commented as ``Location 11’’?

(c) what mistake does it make?

void bar()

{ char *p,*q; /*Location 1*/

q=malloc(1); /*Location 2*/

p=q; /*Location 3*/

*q=’h’; /*Location 4*/

*p=’e’; /*Location 5*/

printf(“%c”,*q); /*Location 6*/

q=malloc(1); /*Location 7*/

p=q; /*Location 8*/

*q=’r’; /*Location 9*/

*p=’o’; /*Location 10*/

printf(“%c”,*q); /*Location 11*/

}

(9) (10 points) In the following C program,

(a) Right after the execution of the statement commented as ``Location 2’’is finished,
do variable f and i have the same value?

(b) Right after the execution of the statement commented as ``Location 4’’is finished,
do variable f and i have the same value?

(c) Explain the results of (a) and (b).(P.S.: You can execute this program and observe
the results to get your answers.)

#include<stdio.h>

main()

{

float f;

int i;

f=0;

i=0.01;

printf("%d\n",i); /*Location 1*/

f=i; /*Location 2*/

printf("%f\n",f); /*Location 3*/

f=1.234;

i=f; /*Location 4*/

printf("%f\n",f); /*Location 5*/

printf("%d\n",i); /*Location 6*/

}

(10) (10 points) In the following C program excerpt,

(a) what security problem does it have?

(b) why does this problem happen?

#define BufferSize 60

char *poi=”I will never miss a PPL class.”;

char sentence[BufferSize];

int ppp(char *s, char *d, unsigned len)

{ unsigned i;

for(i=0 ;i<len; ++i)

{

(d+i)=(s+i);

}

}

void goo(char *s, char *d, int length)

{

if(length<BufferSize)

ppp(poi,sentence,length);

}

(11) (10 points) In the following C program excerpt,

(a) what security problem does it have?

(b) why does this problem happen?

void candy()

{

char CharArray[100];

char *p;

p=CharArray;

while((*(p)=getchar())!=EOF)

{

++p;

}

}

