
(12) (7 points) Write EBNF and syntax graph descriptions for the following:
(i). A Java class definition header statement
(ii). A C switch statement

Ans.

(i) <class_head>  {<modifier>} class <id> [extends class_name]

[implements <interface_name> {, <interface_name>}]

<modifier>  public | abstract | final

(ii) <switch_stmt>  switch (<expr>) {case <literal> : <stmt_list>

{case <literal> : <stmt_list> } [default : <stmt_list>] }

(13) (7 points) Rewrite the BNF of Example 3.4 to give + precedence over * and force
+ to be right associative.

Ans.

<assign>  <id> = <expr>

<id> A | B | C

<expr>  <expr> * <term>

| <term>

<term>  <factor> + <term>

| <factor>

<factor>  (<expr>)

| <id>

(14) (7 points) Modify the grammar of Example 3.4 to add a unary minus operator
that has higher precedence than either + or *.

Ans.

Assume that the unary operators can precede any operand.

Replace the rule

<factor>  <id>

with

<factor>  <id>

| - <id>

(15) (7 points) Write an attribute grammar whose BNF basis is that of Example 3.6 in
Section 3.4.5, but whose language rules are as follows: Data types cannot be mixed in
expressions, but assignment statements need not have the same types on
both sides of the assignment operator.

Ans.

1. Syntax rule: < assign> -> <var> = <expr>
2. Syntax rule: <expr> -> < var>[2] + <var>[3]

predicate: <var>[2].actual_type = <var>[3].actual_type
3. Syntax rule: <expr> -> <var>
4. Syntax rule: < var > -> A | B | C
Semantic rule; <var>.actual_type <- look-up(<var >.string)

