(12) (7 points) Write EBNF and syntax graph descriptions for the following:
(). A Javaclass definition header statement
(i1). A C switch statement

Ans.

(i) <class_head> — {<modifier>} cl ass <id>[ext ends class_name]
[i mpl enent s <interface_name> {, <interface_name>}]

<modifier>— public | abstract | final

(i) <switch_stmt>— swi t ch (<expr>) {case <literal>: <stmt_list>

{case <literal>: <stmt_list>} [def aul t : <stmt_list>] }

(13) (7 points) Rewrite the BNF of Example 3.4 to give + precedence over * and force
+ to be right associative.
Ans.

<assign> — <id> = <expr>
<id>—>A|B|C
<expr>— <expr>* <term>
| <term>
<term> — <factor> + <term>
| <factor>
<factor> — (<expr>)
| <id>
(14) (7 points) Modify the grammar of Example 3.4 to add a unary minus operator

that has higher precedence than either + or *.
Ans.

Assume that the unary operators can precede any operand.
Replace therule

<factor> — <id>
with

<factor> — <id>

|- <id>

(15) (7 points) Write an attribute grammar whose BNF basis is that of Example 3.6 in
Section 3.4.5, but whose language rules are as follows: Data types cannot be mixed in
expressions, but assignment statements need not have the same types on
both sides of the assignment operator.

Ans.

1. Syntax rule: < assign> -> <var> = <expr>
2. Syntax rule: <expr> -> < var>[2] + <var>[3]

predicate: <var>[2].actual_type = <var>[3].actual_type

3. Syntax rule: <expr> -> <var>

4. Syntax rule: <var >->A|B|C

Semantic rule; <var>.actual_type <- look-up(<var >.string)

