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Abstract

Discovering patterns with highly significance is an important problem in data mining discipline. An

episode is defined to be a partially ordered set of events for a consecutive and fixed time intervals in a

sequence. Previous studies in episodes consider only frequent episodes in a sequence of events (called

simple sequence). In real world, we may find a set of events at each time slot in terms of various intervals

(hours, days, weeks, etc.) We refer to such sequences as complex sequences. Mining frequent episodes

in complex sequences has more extensive applications than in simple sequences. In this paper, we

discuss the problem on mining frequent episodes in a complex sequence. We extend previous algorithm

MINEPI to MINEPI+ for episode mining from complex sequences. Furthermore, a memory-anchored

algorithm called EMMA is introduced for the mining task. Experimental evaluation on both real world

and synthetic data sets shows that EMMA is more efficient than MINEPI+.

1. Introduction

Most data mining and machine learning techniques are adapted towards the analysis of unordered

collections of data, e.g. transaction databases and sequence databases [1, 3, 7, 8, 26, 27, 30]. However,

there are important application areas where the data to be analyzed is ordered, e.g. alarms in a telecom-

munication network, user interface actions, occurrences or recurrent illnesses, etc. One basis problem



in analyzing such a sequence is to find frequent episodes, i.e. collections of events occurring frequently

together [20, 19, 21]. The goal of episode mining is to find relationships between events. Such rela-

tionships can then be used in an on-line analysis to better explain the problems that cause a particular

event or predict future result. Episode mining has been of great interest in many applications, including

Internet anomaly intrusion detection [17, 22], biomedical data analysis [4, 23], stock trend prediction

[24] and drought risk management in climatology data sets [10]. Besides, there are also studies on how

to identify significant episodes from statistical model [2, 5].

The task of mining frequent episodes was originally defined on “a sequence of events” where the

events are sampled regularly as proposed by Mannila et al. [20]. Informally, an episode is a partially

ordered collection of events occurring together. The user defines how close is close enough by giving

the width of the time window win. The number of sliding windows with width win in a sequence is

te−ts+win, where ts and te are called the starting interval and the ending interval, respectively. Take the

sequence S = A3A4B5B6 (the subscript i represents the ith interval) as an example, there are 6-3+3=6

sliding windows in S, e.g. W1 = A3, W2 = A3A4, W3 = A3A4B5, W4 = A4B5B6 and W5 = B5B6,

W6 = B6. Mannila et al. introduced three classes of episodes. Serial episodes consider patterns of a

total order in the sequence, while parallel episodes have no constraints on the relative order of event sets.

The third class contains composite episodes like serial combination of parallel episodes. In a way, serial

and parallel episodes can be captured by sequential patterns and frequent itmesets respectively. Frequent

itemsets to transaction databases are similar to parallel episodes, while sequential patterns to sequence

databases are similar to serial episodes as defined in [20]. Therefore, we can mine parallel episodes by
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transforming an event sequence to a transaction database where each transaction are the unions of events

from sliding window Wi. Similarly, we can mine serial episodes by transforming an event sequence

to a sequence database, where each sequence are the serial combinations of events from Wi. However

such methods are not efficient, since the space requirement is win times original database size. Finally,

composite episodes can be mined from serial joins of parallel episodes.

Mannila et al. presented a framework for discovering frequent episodes through a level-wise algo-

rithm, WINEPI [20], for finding parallel and serial episodes that are frequent enough. The algorithm

was an Apriori-like algorithm based on the “anti-monotone” property of episodes’ support. Unfortu-

nately, this support count has a defect, i.e., the duplicate counting of an occurrence of an episode. For

example, in the sequence S = A3A4B5B6, episode < A > is supported by 4 sliding windows, while

episode < A,B > is matched by 2 sliding windows, e.g., W3 = A3A4B5, W4 = A4B5B6. Instead of

counting the number of sliding windows that support an episode, Mannila et al. therefore consider the

number of minimal occurrences of an episode from another perspective. They presented MINEPI [19],

an alternative approach for the discovery of frequent episodes based on minimal occurrences (mo) of

episodes. A minimal occurrence of an episode α is an interval such that no proper subwindow contains

the episode α. For example, episode < A > has mo support 2 (interval [3,3] and [4,4]) as the number

of occurrences, while episode < A,B > has only mo support 1 from interval [4,5]. However, both

measures are not natural for the calculating of an episode rule’s confidence (conditional probability).

For example, the serial episode rule “When event A occurs, then event B occurs within 3 time units”

should have probability or confidence 2/2 in the sequence S = A3A4B5B6 since every occurrence of A
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is followed by B within 3 time units. Therefore, we need a measure that facilitates the calculating of

such episode rules to replace the number of sliding windows or minimal occurrences. The problem has

also been discussed in [16], but no algorithms are proposed.

In addition, we sometimes find several events occur (multi-variables) at one time slot in terms of

various intervals (e.g., hours, days and weeks). We refer to such sequences as complex sequences.

Note that a temporal database is also a kind of complex sequence with temporal attributes. Mining

frequent episodes in a complex sequence has more extensive applications than in a simple sequence.

Therefore, we discuss the problem on mining frequent episodes over complex sequence in this paper,

where the support of an episode is modified carefully to count the exact occurrences of episodes. We

propose two algorithms in mining frequent episodes in complex sequences, including MINEPI+ and

EMMA. MINEPI+ is modified from previous vertical-based MINEPI [19] for mining episodes in a

complex sequence. MINEPI+ employs depth first enumeration to generate the frequent episodes by

equalJoin and temporalJoin. To further reduce the search space in pattern generation, we propose a

brand new algorithm, EMMA (Episodes Mining using Memory Anchor), which utilize memory anchors

to accelerate the mining task. Experimental evaluation on both real world and synthetic data sets shows

that EMMA is more efficient than MINEPI+.

The rest of this paper is organized as follows. Section 2 reviews related work in sequence mining.

We define the problem of frequent serial episode mining in Section 3. Section 4 presents our serial

episode mining algorithms, including MINEPI+ and EMMA. (The extensions of the algorithms to par-

allel episode mining will be discussed in Appendix). Experiments on both synthetic and real world data
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Figure 1. Temporal Database TDB

sets are reported in Section 5. Finally, conclusions are made in Section 6.

2. Related works

Mining significant patterns in sequence(s) is an important and fundamental issue in knowledge dis-

covery area. For example, sequential patterns [1, 3, 7, 8, 26, 27, 30] consider the problem on discovering

repeated subsequences in a database of sequences. On the other hand, some mining tasks focus on

mining repeated subsequences in a sequence, e.g., frequent episodes [19, 20, 21], frequent continuities

[14, 15, 28] and periodic patterns [6, 13, 18, 25, 29]. In this section, we distinguish various sequence

mining tasks including sequential patterns, periodic patterns and frequent continuities which are related

to frequent episodes. We also make an overall comparison between frequent itemsets and the four mining

tasks.

The problem of mining sequential patterns was introduced in [1]. This problem is formulated as

“Given a set of sequences, where each sequence consists of a list of elements and each element consists
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of a set of items, and given a user-specified minsup threshold, sequential pattern mining is to find all fre-

quent subsequences, whose occurrence frequency in the set of sequences is no less than minsup.” The

main difference between frequent itemsets and sequential patterns is that a sequential pattern considers

the order between items, whereas frequent itemset does not specify the order. Srikant et al. proposed an

Apriori-based algorithm, GSP (Generalized Sequential Pattern) [27] to the mining of sequential patterns.

However, in situations with prolific frequent patterns, long patterns, or quite low minsup thresholds, an

Apriori-like algorithm may suffer from a huge number of candidate sets and multiple database scans. To

overcome these drawbacks, Han et al. extend the concept of FP-tree [9] and proposed the PrefixSpan al-

gorithm by prefix-projected pattern growth [26] for sequential pattern mining. In addition to algorithms

based on horizontal formats, Zaki proposed a vertical-based algorithm SPADE [30]. SPADE utilizes

combinatorial properties to decompose the original problem into smaller sub-problems that can be inde-

pendently solved in main-memory using efficient lattice search techniques and simple join operations.

Periodic pattern, as suggested by its name, consider regularly appear events where the exact positions

of events in the period are fixed [11, 12, 29]. To form periodicity, a list of k disjoint matches is required

to form a contiguous subsequence where k satisfying some predefined minimum repetition threshold.

For example, in Figure 1, pattern (A,*,B) is a periodic pattern that matches M1, M2, and M3, three

contiguous and disjoint matches, where event {A} (resp. {B}) occurs at the first (resp. third) position

of each match. The character “*” is a “don’t care” character, which can match any single set of events.

Note that M6 is not part of the pattern because it is not located contiguously with the previous matches.

To specify the occurrence, we use a 4-tuple (P , l, rep, pos) to denote a valid segment of pattern P
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with period l starting from position pos for rep times. In this case, the segment can be represented by

((A,*,B), 3, 3, 1). Algorithms for mining periodic patterns also fall into two categories, horizontal-based

algorithms, LSI [29], and vertical-based algorithms, SMCA [11, 12].

A continuity pattern is similar to a periodic pattern, but without the constraint on the contiguous and

disjoint matches. For example, pattern [A,*,B] is a continuity with four matches M1, M2, M3, and M6

in Figure 1. The term continuity pattern was coined by Huang et. al. in [15] to replace the general term

inter-transaction association defined by Tung, et al. in [28], since episodes and periodic patterns are

also a kind of inter-transaction associations in the conceptual level. In comparison, frequent episodes

are a loose kind of frequent continuities since they consider only the partial order between events, while

periodic patterns are a strict kind of frequent continuities with constraints on the subsequent matches. In

a word, frequent episodes are a general case of the frequent continuity, and periodic patterns are a special

case of the frequent continuity. Two algorithms have been proposed for this task, including FITI and

PROWL. FITI [28] is an Apriori-based algorithm which uses breadth-first enumeration for candidate

generation and scans the horizontal-layout database. The PROWL algorithm [15], on the other hand,

generates frequent continuities using depth first enumeration and relies on the use of both horizontal and

vertical-layout databases.

Table 1 shows the comparison of the above mining tasks with frequent itemsets. The column “Order”

represents whether the discovered pattern specify order; the column “Temporal” indicates whether the

task is defined for a temporal database. According to the input database, frequent itemsets and sequential

patterns are similar since they are defined on databases where the order among transactions/sequences
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Notation Order Temporal Input Constraint
Frequent Itemset I = {i1, . . . , in} N N a transaction DB

Sequential Pattern S = I1, . . . , In Y N a sequence DB
Serial Episode SEP =< I1, . . . , In > Y Y a sequence

Parallel Episode PEP = {I1, . . . , In} N Y a sequence
Frequent Continuity C = [I1, . . . , In] Y Y a sequence 1

Periodic Pattern P = (I1, . . . , In) Y Y a sequence 1 2

1 Fixed interval between Ii and Ii+1. 2 Contiguous match.

Table 1. Comparison of various pattern mining.

is not considered; whereas episodes, continuities, and periodic patterns are similar for they are defined

on sequences of events that are usually sampled regularly. Frequent itemsets and sequential patterns are

defined for a set of transactions and a set of sequences, respectively. Frequent itemsets show contemporal

relationships, i.e., the associations among items within the same transaction; whereas sequential patterns

present temporal/causal relationships among items within transactions of customer sequences. Finally,

the differences of serial episodes, parallel episodes, periodic patterns, continuities are summarized in

Table 1 as discussed above.

3. Problem definition

In this section, we first define the problem of frequent serial episode mining. We also discuss the

parallel episode in section 4.3. Let E be a set of all events. An eventset is a nonempty subset of E. An

input sequence can be represented as (X1, X2, . . . , XO) where Xi is an eventset that occurs in i-th time

interval or empty. The input sequence can also be described using a more general concept like a temporal

database, where each tuple (tj , Xtj ) records the time interval tj for each event set Xtj (nonempty). We

refer this representation as horizontal format (e.g., Figure 1(a)). Let N be the number of tuples in the

temporal database TDB. We say TDB has length N in O observation time intervals. We say that an
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event set Y is supported by a record (ti, Xti) if and only if Y ⊆ Xti . An event set with k events is called

a k-eventset.

Let maxwin be the maximum window bound. When mining episode rules, only the rules which span

less than or equal to maxwin intervals will be mined. Users can thus use this mining parameter to avoid

mining rules that span across too many intervals.

Definition 3.1 A sliding window Wi in a temporal database TDB is a block of maxwin continuous

records along time interval, starting from interval ti (where TDB contains an eventset at ti-th time inter-

val). Each interval tij in Wi is called a subwindow of Wi denoted as Wi[j], where j = tij −ti. Therefore,

TDB with length N can be divided into N sliding windows, such as W1=(Xt1 , Xt1+1, . . . , Xt1+maxwin−1),

W2=(Xt2 , Xt2+1, . . . , Xt2+maxwin−1), . . ., WN=(XtN ).

Example 3.1 Figure 1(a) shows a temporal database TDB with fourteen(N = 14) transactions located

at intervals 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 16. Assume a value of 3 is set for maximum

window maxwin. From definition, the number of sliding windows in Figure 1(c) is fourteen, from

W1, W2, . . . , W14. This will form a sequence database of size 14, which is different from the 18 sliding

windows defined in [20] where empty intervals are considered. Thus, window W1 has three subwindow

W1[0] (containing events A, C and F ), W1[1] (containing no event), and W1[2] (containing events B

and D). As another example, window W2 has also three subwindows W2[0] = X3, W2[1] = X4, and

W2[2] = X5. Figure 1(b) shows the transaction database where each transaction is the union of the

events in all subwindows of a window Wi, while Figure 1(c) shows the sequence database where each
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sequence represents a sliding window (with subscript denoting the time interval).

Definition 3.2 A serial episode is a nonempty partial ordered set of events P =< p1, p2, . . . , pk >

where each pi is a nonempty eventset and pi occurs before pj for i < j. We call P is k-tuple serial

episode or has length k.

Definition 3.3 Given two sequences S =< s1, s2, . . . , sn > and S ′ =< s′1, s
′
2, . . . , s

′
m >, we say that S

is a super-sequence of S ′ (i.e., S ′ is a sub-sequence of P ) if and only if, each s′j can be mapped by sij

(s′j ⊆ sij) and preserve it’s order (1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n)

For example, sequence S1 = < {A,B}, {C}, {D,E} > is a super-sequence of sequence S2 = <

{A}, {D} >, since the pattern {A} ({D}, resp.) is a subset of {A,B} ({D,E}, resp.). On the contrary,

S3 = < {A}, {C,D} > is not a sub-sequence of S1, since the pattern {C,D} can not map to any itemset

in S1.

Definition 3.4 Given a serial episode P =< p1, p2, . . . , pk > and window bound w, we say a slid-

ing window Wi = (Xti , Xti+1, . . . , Xti+w−1) in TDB supports P if and only if, p1 ⊆ Xti and <

p2, . . . , pk > is a subsequence of (Xti+1, . . . , Xti+w−1). Wi is also called a match of the serial episode

P . The number of sliding windows that match episode P is called the support count of P in temporal

database TDB.

Let us return to the previous example in Figure 1(a) and assume maxwin = 3, the serial episode

< A,D > is matched by sliding windows starting from time slot 1, 4, 7, 8, 11 and 14. Therefore, there
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are six matches with respect to serial episode < A,D >. Note that the sequence corresponding to

window W2 =< X3, X4, X5 >, although contains < A,D >, does not support this episode for the first

subwindow does not contain A.

Definition 3.5 The concatenation of two serial episodes P =< p1, . . . , pl1 > and Q =< q1, . . . , ql2 >

is defined as P · Q =< p1, . . . , pl1 , q1, . . . , ql2 >. P is called a prefix of P · Q.

Definition 3.6 An episode rule generated from episodes is an implication of the form X ⇒ Y , where

1. X,Y are episodes with length l1 and l2, respectively.

2. The concatenation X · Y is an episode with length l1 + l2.

Similar to the studies in mining typical association rules, episode rules are governed by two interest-

ingness measures: support and confidence.

Definition 3.7 Let N be the number of transactions in the temporal database TDB. Let Match(X · Y )

be the number of support counts with respect to episode X ·Y and Match(X) be the number of support

count with respect to episode X . Then, the support and confidence of an episode rule X ⇒ Y are

defined as

Support =
Matches(X · Y )

N
, Confidence =

Matches(X · Y )

Matches(X)
. (1)

If we only consider the episode that occurs at least minsup, there will have a problem. Take a simple

sequence S = A1A2B3 and maxwin = 3 as an example, we will find a 2-tuple episode P =< A,B >.

It will be generated as a rule like ”< A >⇒< B >”. However, only A is a frequent item and B is not a
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frequent one. Therefore, we assume that not all frequent episodes has significance information, only the

frequent episodes that all frequent itemsets in each tuples may be generated as a significant episode rule.

To avoid generating the insignificant episodes. Therefore, the frequent episodes in this paper is defined

as following.

Definition 3.8 An episode P =< p1, . . . , pk > is a frequent episode if and only if the supports of P and

all pi(1 ≤ i ≤ k) are at least the required user-specified minimum supports (i.e., minsup).

Example 3.2 Let the user-specified threshold minimum support minsup and minimum confidence minconf

be 30 percent and 100 percent respectively. An example of a serial episode rule with maximum time win-

dow bound maxwin = 3 from the temporal database in Figure 1(a) will be:

< ACF >⇒< BD > .

This rule ”eventset {B,D} occurs within two interval after eventset {A,C, F}” holds in the temporal

database TDB with support = 35.7%(5/14) and confidence = 100%(5/5).

As in classical association rule mining, when frequent episodes and their support are known, the

episode rule generation is straightforward. Hence, the problem of mining episode rules is reduced to

the problem of determining frequent episodes and their support. Therefore, the problem is formulated

as follows: given a minimum support level minsup and a maximum window bound maxwin, our task

is to mine all frequent episodes from temporal database with support greater than minsup and window

bound less than maxwin.
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4. Mining Serial Episodes

In this section, we propose two algorithms for serial episode mining. We first show how to extend

existing algorithm MINEPI to find the support counts instead of minimal occurrences in a complex

sequence. Then, a new algorithm EMMA is proposed for more efficient mining of serial episodes from

complex sequences. The comparison of the two algorithms is given in section 4.3.

4.1 MINEPI+

MINEPI is an iteration-based algorithm which adopts breadth first manner to enumerate longer serial

episodes from shorter ones. But instead of scanning the temporal database (in horizontal format) for

support counting, MINEPI compute the minimal occurrences mo of each candidate episode from the

minimal occurrences of its subepisode by temporal joins. For example, we want to find all frequent

serial episodes from a simple sequence S = A1A2B3A4B5 with maxwin = 4 and minsup = 2.

MINEPI first finds frequent 1-episode and records the respective minimal occurrence, i.e. mo(A) =

{[1, 1], [2, 2], [4, 4]}, mo(B) = {[3, 3], [5, 5]} (We call this representation of the temporal sequence as

vertical format). Using temporal join, we get intervals [1,3], [2,3], [2,5] and [4,5] for candidate 2-tuple

episode < A,B >. Since [1, 3] and [2, 5] are not minimal, the minimal occurrences of < A,B > will be

{[2, 3], [4, 5]}.

Continuing the above example, if we want to count the number of sliding windows that match serial

episode < A,B >, interval [1, 3] should be retained since the first subwindow contains A. Therefore, we

have support count 3 for serial episode < A,B > since [2,3] and [2,5] denote the same sliding window.
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To extend MINEPI for our problem, we also need equal join for dealing with complex sequences. We

will use these intervals to compute the right support count for the problem.

Definition 4.1 Given the maximum window bound maxwin, the bound list of a serial episode P=

< p1, . . . , pk >, is the set of intervals [tsi, tei] (tei − tsi < maxwin) such that p1 ⊂ Xtsi
, pk ⊂ Xtei

and

[Xtsi+1, Xtsi+2, . . . , Xtei−1] is a super-sequence of < p2, . . . , pk−1 >. Each interval [tsi, tei] is called a

matching bound of P . By definition, the bound list of an event Y is the set of intervals [ti, ti] such that

Xti support Y .

Given a serial episode P =< p1, . . . , pk > and a frequent 1-pattern f and their matching bound

lists, e.g., P.boundlist = {[ts1, te1], . . . , [tsn, ten]} and f.boundlist = {[ts′1, ts
′
1], . . . , [ts

′
m, ts′m]}. The

operation equal join of P and f which computes the bound list for a new serial episode P1 =<

p1, . . . , pk

⋃
f > (denoted by P � f ) is defined as the set of intervals [tsi, tei] such that tei = ts′j for

some j (1 ≤ j ≤ m). Similar to equal join, the operation temporal join (concatenation) of P and f (de-

noted by P · f ) which computes the bound list for new serial episode P2 =< p1, . . . , pk, f > is defined

as the set of intervals [tsi, te
′
j] such that te′j − tsi < maxwin, and te′j > tei for some j (1 ≤ j ≤ m).

Lemma 4.1 The support count of a serial episode P equals to the number of distinct starting positions

of the bound list for P , denoted by EntityCount(P.boundlist).

Example 4.1 Let maxwin = 4, we use the matching bound lists < A > .boundlist = {[1,1], [4,4],

[7,7], [8,8], [11,11], [14,14]}, < B > .boundlist = {[3,3], [6,6], [9,9], [12,12], [16,16]},and <

C > .boundlist = {[1,1], [4,4], [8,8], [11,11], [14,14], [15,15]} as an example. The matching bound
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Procedure of MINEPI+(temporal database TD, minsup, maxwin)
1. Scan TD once, find frequent 1-episode F1 and the boundlists;
2. for each fi in F1 do
3. SerialJoins(fi, fi.boundlist, fi);

Subprocedure of SerialJoins(α, boundlist, lastItem)
4. for each fj in F1 do
5. if ( fj > lastItem ) then
6. tempBoundlist = equalJoin(α, fj);
7. if (EntityCount(tempBoundlist) ≥ minsup ∗ |TDB|) then
8. SerialJoins(α � fj, tempBoundlist, fj);
9. end if
10. tempBoundlist = temporalJoin(α, fj);
11. if (EntityCount(tempBoundlist) ≥ minsup ∗ |TDB|) then
12. SerialJoins(α · fj, tempBoundlist, fj);

Figure 2. MINEPI+: Vertical-Based Frequent Serial Episode Mining Algorithm

list of equal join (< A > · < C >) and temporal join (< B > · < A >) are < AC > .boundlist =

{[1,1], [4,4], [8,8], [11,11], [14,14]} and < B,A > .boundlist = {[3,4], [6,7], [6,8], [9,11], [12,14]},

respectively. The serial episode < B,A > is matched by five matching bounds in four sliding windows,

i.e., [3,6], [6,9], [9,12] and [12,15].

Different from MINEPI, we apply depth first enumeration in pattern generation for memory saving.

This is because breadth first enumeration must keep track of records for all episode in two consecutive

levels, while depth first enumeration needs only to keep intermediate records for episodes generated

along a single path. Figure 2 outlines the proposed MINEPI+ algorithm. The input to the procedure are a

temporal database, minimum support threshold minsup and maximum window bound maxwin. As the

Definition 3.8, the frequent episode is generated by frequent itemsets. Therefore, before applying depth

first enumeration, we scan temporal database TDB once, find frequent 1-episode F1 and the boundlists
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(line 1). Frequent episodes are then generated by joining the boundlists of an existing episode (line 2–3)

and an fj in F1 (line 4) through procedure call to SerialJoins. To avoid duplicate enumeration for

equal joins, we define an order (e.g., alphanumerical order) in the events E. If the order of fj is greater

than the order of the lastitem in the episode, we apply equal join (line 5–6) and check if the new serial

episode α · fj is frequent or not (line 7). If the result is true, all frequent episodes which have prefix

α � fj (line 8) will be enumerated by recursive call to subprocedure SerialJoins. Similarly, we apply

temporal join to the existing serial episode and the fjs in F1 to get α · fj in line 10–12. We illustrate the

MINEPI+ algorithm using the following example.

Example 4.2 Given minsup = 30% (5 times) and maxwin = 4, the frequent 1-episodes F1 for Fig-

ure 1(a) include < A >, < B >, < C >, < D > and < F >. Due to space limitation, we only use

episodes < A > and < C > as an example. The flowchart of executive process is shown in Figure 3. In

the beginning, we check the equal and temporal join for < A > and < A >. Since they have the same

order, we only apply the temporal join for them. The entity count for temporalJoin(< A >,< A >) =

{[1,4], [4,7], [7,8], [8,11], [11,14]} is 5 (minsup ∗ |TDB|). Thus, we call subprocedure SerialJoins

for generating serial episodes which have prefix < A,A >. Next, we check serial episodes < A,A,A >,

< A,AC > and < A,A,C >. In this layer, all of them are infrequent. The recurse stops and backs

to the prior procedure. Next, We compute the matching bound list for serial episode < AC > by

equalJoin(< A >,< C >). The matching bounds of < AC > are {[1,1], [4,4], [8,8], [11,11],

[14,14]}. The recursive step then enumerates < AC,A > and < AC,C > (see Figure 3). Finally, only

five serial episodes < A >, < A,A >, < AC >, and < A,C > are outputted in this example.
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Figure 3. Flowchart for prefix < A > (only demonstrate event A and C

Though the extension of MINEPI discover all frequent serial episodes, MINEPI+ has the following

drawbacks:

• A huge amount of combinations/computations: Let |I| be the number of frequent 1-episodes,

WINEPI+ needs |I|2 and |I|2−|I|
2

checking for temporal joins and equal joins, respectively. For

example, if there are 1000 frequent 1-episodes, the combinations is approximately 1.5 million

times. Moreover, when the number of matching bounds increases, MINEPI+ requires more time

in computations.

• Unnecessary joins: Since long episodes are generated from shorter ones, sometimes MINEPI+

makes some unnecessary checking. Take the bound list of serial episode < A,A > in example 4.2

as an example. In this case, only the time bound [7, 8] can be extended by temporal join to generate

long episode since other bounds already reach the limits of maximum windows. Since the number

of the extendable matching bounds for serial episode < A,A > is less than minsup ∗ |TDB|,

we can skip all temporal joins for this prefix. We will discuss a pruning strategy in the following
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section.

• Duplicate joins: Furthermore, MINEPI+ also perform some duplicate checking. For example, to

find serial episode < ABCD,ABCD,ABCD >, MINEPI+ needs 9 times of equal join (e.g.,

equalJoin(< A >,< B >), equalJoin(< AB >,< C >) and equalJoin(< ABC >,< D >),

etc. ) and 2 temporal join (e.g., temporalJoin(< ABCD >,< A >) and temporalJoin(<

ABCD,ABCD >,< A >)). However, if we maintain the bound list for < ABCD >, we only

needs 2 temporal join.

4.2 EMMA

In this section we propose an algorithm, EMMA (Episode Mining using Memory Anchor), that over-

comes the drawbacks of the MINEPI+ algorithm described in the previous section. According to the

definition of frequent episodes in Definition 3.8, we have a idea for the sake of reducing in duplicate

checking. Therefore, EMMA is divided into 3-phases, including

1. Frequent itemset mining: Mining frequent itemset in the complex sequence.

2. Database encoding: Encode each frequent itemset with a unique ID and construct them into a

encoded horizontal database.

3. Frequent serial episode mining: Mining frequent serial episodes in the encoded database.

Similar to the algorithm FITI (First-Intra-Then-Inter) for frequent continuity mining [28], the idea is

avoid duplicate checking by mining all frequent itemsets (Phase I) and use them to form frequent serial
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Item Timelist
{A} {1, 4, 7, 8, 11, 14}
{B} {3, 6, 9, 12, 16}
{C} {1, 4, 8, 11, 14, 15}
{D} {3, 5, 6, 9, 12, 13, 16}
{F} {1, 4, 7, 8, 11, 14}

Item LocationList
{A} {0, 5, 11, 13, 18, 24}
{B} {3, 9, 16, 21, 28}
{C} {1, 6, 14, 19, 25, 27}
{D} {4, 8, 10, 17, 22, 23, 29}
{F} {2, 7, 12, 15, 20, 26}

(a) Two vertical formats using Tid (left) and Index (right)

Index (Item, Tid)
0 (A, 1)
1 (C, 1)
2 (F, 1)
3 (B, 3)
4 (D, 3)
5 (A, 4)
6 (C, 4)
7 (F, 4)
8 (D, 5)
9 (B, 6)

Index LocationList
10 (D, 6)
11 (A, 7)
12 (F, 7)
13 (A, 8)
14 (C, 8)
15 (F, 8)
16 (B, 9)
17 (D, 9)
18 (A, 11)
19 (C, 11)

Index LocationList
20 (F, 11)
21 (B, 12)
22 (D, 12)
23 (D, 13)
24 (A, 14)
25 (C, 14)
26 (F, 14)
27 (D, 15)
28 (B, 16)
29 (D, 16)

(b) Horizontal format indexed by Tid

Figure 4. Indexed Database for Figure 1(a)

episodes. Thus, instead of frequent 1-itemsets, we have a larger set of all frequent itemsets as frequent

1-tuple episodes. Again, we will use the boundlists for each frequent 1-tuple episode to enumerate

longer frequent episodes. However, we only combine existing episodes with a “local” frequent 1-tuple

episode to overcome the huge amount of candidate generation. Now, in order to discover local frequent

1-tuple episode efficiently, we construct an encoded database indexed by time (Phase II) and utilize the

boundlists as a memory anchor to access the time (or horizontal) based information. Finally, we use

depth first enumeration to enumerate frequent serial episodes and carefully avoid unnecessary joins in

Phase III.
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Procedure of FIMA(temporal database TDB, minsup)
1. Scan TDB, find frequent 1-item F1;
2. Scan TDB, transform TDB into indexed database IndexDB

and maintain the locations of all F1 in the index database;
3. for each fi in F1 do
4. fimajoin(fi, fi.LocationList);

Subprocedure of fimajoin(Pattern, LocationList)
5. LFI = local frequent 1-item in Pattern.PList;
6. for each lfj in LFI do
7. fimajoin(Pattern ∪ lfj, lfj.LocationList);

Figure 5. FIMA: Frequent Itemset mining using Memory Anchor

4.2.1 Frequent itemset mining

There are already a lot of frequent itemset mining algorithms. Since the third phase of serial episode

mining requires the time lists of each frequent itemset, we prefer using a vertical-based mining algo-

rithm, e.g., Eclat [31]. However, similar to the drawbacks of MINEPI+, there are unnecessary candidate

generation in the computation of Eclat. Therefore, we devise a more efficient algorithm FIMA (Frequent

Itemset mining using Memory Anchor) which validates local frequent items to reduce the unnecessary

combinations of existing frequent itemsets with nonlocal frequent items. To accelerate the validation

of local frequent items, a horizontal format of the database which records the items indexed by time is

necessary.

Here, we transform those transactions which contain frequent items to an array of 2-tuples, (I, T id),

sorted by the transaction ID T id of the item I , where I is a frequent 1-item (see Figure 4(b)). Thus,

instead of recording the timelist for each frequent item, we records the indexes of the frequent item in

the array, as shown in Figure 4(a). Note that if there is only one frequent item in a transaction, such
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a tuple can be ignored to further save space. For example in Figure 1(a), item {A}, {C} and {F} are

frequent 1-items at time slot 1, hence the transformation is needed. However, there is only one frequent

item {D} in time slot 5, thus the transformation is ignored.

The main frame of the FIMA is outlined in Figure 5. First of all, we scan database once and find

frequent 1-items F1 (line 1). Next, we transform the database into an array of 2-tuple (Item, T id) sorted

by T id and then Item. Then, we maintain the LocationLists of each item in F1 as searching anchors.

For each fi in F1, we call subprocedure fimajoin to extend longer itemsets with prefix fi (line 3–4).

In the subprocedure fimajoin, we find all local frequent 1-items lfj by examining the transactions of

current itemset (line 5). For example, if we want to extend A with locationlist {0, 5, 11, 13, 18, 24}, we

will examine those tuples at {1, 2, 6, 7, 12, 14, 15, 19, 20, 25, 26} since these tuples have the same T id as

A. The local frequent 1-items in this list (called projected list) are {C} and {F} with counts 5 and 6

respectively. Thus, new frequent itemset are generated by uniting A with one lfj (line 6–7). Formally,

the projected list of an location list is defined as follows.

Definition 4.2 Given the location list of an itemset I , I.LocationList = {t1, t2, . . . , tn} in the index

database IndexDB, the projected location list (PList) of I is defined as I.PList = {t′1, t
′
2, . . . , t

′
m},

where t′j.T ID = ti.T ID for some ti and ti < tj ≤ t|IndexTD|).

The subprocedure fimajoin is applied recursively to enumerate all frequent itemsets with known fre-

quent itemsets as their prefixes. The recursive call stops when no more frequent itemsets are generated.

With local frequent items, we reduce a lot of unnecessary joins of the existing frequent itemset with any
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ID Item boundlist
#1 {A} {[1,1],[4,4],[7,7],[8,8],[11,11],[14,14]}
#2 {B} {[3,3],[6,6],[9,9],[12,12],[16,16]}
#3 {C} {[1,1],[4,4],[8,8],[11,11],[14,14],[15,15]}
#4 {D} {[3,3],[5,5],[6,6],[9,9],[12,12],[13,13],[16,16]}
#5 {F} {[1,1],[4,4],[7,7],[8,8],[11,11],[14,14]}
#6 {A, C} {[1,1],[4,4],[8,8],[11,11],[14,14]}
#7 {A, C, F} {[1,1],[4,4],[8,8],[11,11],[14,14]}
#8 {A, F} {[1,1],[4,4],[7,7],[8,8],[11,11],[14,14]}
#9 {B, D} {[3,3],[6,6],[9,9],[12,12],[16,16]}

(a) Encoding table of the frequent itemsets for Figure 1(a)

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#3 #9 #3 #9 #3 #9 #3 #9 #3 #3 #9

ID #7 #7 #7 #7 #7

(b) Encoded horizontal database for IDs #3, #7 and #9 in TDB

Figure 6. Location list and encoding table

frequent 1-items. The gain in time is a tradeoff of the cost in space as many algorithms. We will see

such tradeoffs applied in serial episode mining in the following sections.

4.2.2 Encoded database construction

In the second phase, we associate each frequent itemset with a unique ID and construct a horizontal

database EDB composed of these IDs. As shown in Figure 6(b)), EDB records the set of frequent

itemsets (IDs) that occur at each time slot. To simplify the example, we only present the encoded

database for IDs #3, #7 and #9 in TDB. Thus, we have for each frequent itemset the timelist from phase

I and the encoded database constructed from phase II. Note that the timelists of the frequent itemsets

are equivalent to the boundlists for frequent 1-tuple episodes. We show the boundlists for each frequent

1-tuple episode in Figure 6(a).
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Procedure of EMMA(temporal database TDB, minsup, maxwin)
1. Call FIMA to find all frequent itemsets FP1 and their timelists;
2. Associate each itemset with an #ID and construct the encoded database EDB ;
3. for each fidi in frequent IDs FP1 do
4. emmajoin(fidi, f idi.boundlist);

Procedure of emmajoin(Episode, boundlist)
5. Find local frequent IDs LFP in Episode.PBL and their boundlists;
6. for each lfi in LFP do
7. Output Episode · lfi;
8. if (ExtCount(lfi.boundlist) ≥ minsup ∗ |TDB|)
9. emmajoin(Episode · lfi, lfi.boundlist);

Figure 7. EMMA: Frequent Serial Episode Mining Using Memory Anchor

4.2.3 Frequent serial episode mining

The complete algorithm of EMMA is illustrated in Figure 7. Line 1 and 2 represent Phase I and II,

respectively. Similar to MINEPI+, it adopts depth first enumeration to generate longer serial episodes

(line 3-4, 6-7). However, EMMA generates only frequent serial episodes by joining an existing serial

episodes with local frequent IDs (line 5). This is accomplished by examining the those transactions

followings the matching bounds of current serial episode. For example, if we want to extend #3 = {C}

with boundlist {[1,1], [4,4], [8,8], [11,11], [14,14], [15,15]}, we need to count the occurrences of IDs in

the following bounds not exceeding maxwin = 4, i.e. [2,4], [5,7], [9,11], [12,14], [15,16] and [16,16].

When examining the IDs in these bounds, we also record the boundlists of IDs. Thus, when new serial

episodes are generated by temporal joining (line 7), we know their boundlists immediately. Formally,

the projected bound list of an location list is defined as follows.
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Definition 4.3 Given the bound list of a serial episode P , P.boundlist = {[ts1, te1], . . . , [tsn, ten], } in

the encoded database ED, the projected bound list (PBL) of P is defined as P.PBL = {[ts′
1, te

′
1], . . . , [ts

′
n, te

′
n], }

where ts′i=min(tsi + 1, |TDB|) and te′i = min(tsi + maxwin − 1, |TDB|).

Furthermore, if the number of extendable bounds for a serial episode P are less than minsup∗|TDB|,

then we can skip all extensions of the prefix P (line 8). For example, if the boundlist of a serial episode

α is {[1,3], [3,5], [8,11], [11,14], [14,15]} and maxwin = 4, the extendable bounds include {[1,3],

[3,5], [14,15]} since [8,11] and [11,14] already reach the maximum window bound. If the minsup is 5,

we don’t need to extend serial episode α then. This strategy can avoid some unnecessary checking spent

in MINEPI+. The procedure emmajoin is called recursively until no more new serial episodes can be

extended. The operation of phase III in EMMA can be best understood by an illustrative example as

described below.

Example 4.3 Given three frequent IDs #3, #7, #9 with their boundlist and the encoded database in

Figure 6. Let minsup and maxwin be 5 and 4, respectively. For each frequent 1-tuple episode, i.e. ID,

we call emmajoin to extend prefix < ID >. For ID #3, the projected bound list is #3.PBL = {[2,4],

[5,7], [9,11], [12,14], [15,16], [16,16]}. By examining the transaction at these bounds in Figure 6,

the matching bounds for < #3, #3 >, < #3, #7 > and < #3, #9 > are calculated respectively as

{[1,4], [8,11], [11,14], [14,15]}, {[1,4], [8,11], [11,14]} and {[1,3], [4,6], [8,9], [11,12], [14,16]}.

Note that the number of sliding windows (i.e. distinct start positions) in the three lists are 4, 3, and 5,

respectively. Therefore, the frequent serial episodes generated from prefix #3 are < #3, #9 >, e.g.
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< C,ACF >. Since the number of extendable bounds for this episode is 5, serial episode < #3, #9 >

can be extended by recursive call to procedure emmajoin. However, we found no local frequent IDs in

< #3, #9 > .PBL. Therefore, we backtrack to prefix < #7 > and discover the local frequent IDs in

< #7 > .PBL. The extensions of the episodes can be mined by applying the above process recursively

to each episodes.

4.3 Discussion

Since EMMA generates longer patterns based on shorter ones, it does not generate any candidate

patterns for checking. However, EMMA needs to maintain vertical-based boundlists for each frequent

itemset and a horizontal-based encoded database. Therefore, the memory requirement for EMMA is

greater than MINEPI+. When the number of frequent itemsets grows are large, it is unrealistic to main-

tain all patterns in the main memory. There are two alternative solutions. Firstly, we can maintain the

boundlists of frequent itemsets in disk, then read them sequentially for episode extension. Theoretically,

the disk-based EMMA can reduce half the memory requirement than original EMMA. Secondly, as the

suggestion in [14], we can mine closed frequent itemsets in phase I and generate compressed frequent

episode or devise new algorithms for mining closed frequent episodes.

5. Experiments

In this section, we report the performance study of the proposed algorithms on both synthetic data

and real world data. All the experiments are performed on a 3.2GHz Pentium PC with 1 Gigabytes main

memory, running Microsoft Windows XP. All the programs are written in Microsoft/Visual C++ 6.0.
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Sym Definition Default
|D| # of time instants 100K
N # of events 1000
T Average transaction size 6
|C| # of candidate continuities 2
L Average continuity length 3
I Average itemset length 3
W Average window length 5
Sup Average support 4%

Table 2. Meanings of symbols

5.1 Synthetic data

For performance evaluation, we use synthetically generated temporal data, D, consisting of N distinct

symbols and |D| time instants. A set of candidate patterns C, is generated as follows. First, we decide

the window length using geometrical distribution with mean W . Then L (1 < L < W ) positions are

chosen for non-empty event sets. The average number of frequent events for each time slot is set to

I . The number of occurrences of a candidate continuity follows a geometrical distribution with mean

Sup ∗ |D|. A total of |C| candidate patterns are generated. Next, we assign events to each time slot in

D. The number of events in each time instant is picked from a Poisson distribution with mean T . For

each time instant, if the number of the events in this time instant is less than T , the insufficient events

are picked randomly from the symbol set N . Table 2 shows the notations used and their default values.

Figure 8 depicts the comparison results among MINEPI+ and EMMA for synthetic data with default

parameter minsup = 4% and maxwin = 5. From Figure 8(a) we can see that when the data size

increases, the gap between MINEPI+ and EMMA in the running time becomes more substantial. EMMA

is faster than MINEPI+ (by a magnitude of 150 for |D| = 250K). However, EMMA requires more
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memory as shown in Figure 8(b). We also record the memory requirement of EMMA at phase I, denoted

by EMMA(I). If the timelists of frequent itemsets are maintained in disk, the memory requirement will

be EMMA − EMMA(I). Therefore, EMMA(disk) needs approximate 27MB at |D| = 250K.

The runtime of MINEPI+ and EMMA on the default data set with varying minimum support threshold,

minsup, from 2% to 6% is shown in Figures 8(c). Clearly, EMMA is faster and more scalable than

MINEPI+, since the number of combinations in MINEPI+ grows rapidly as the minsup decreases,

while EMMA only considers the local frequent patterns in the projected bound lists. Again, the memory

requirement for EMMA increases as minsup decreases, since the number of frequent itemsets increases

as minsup decreases (see Figures 8(d)).

Figure 8(e) shows the scalability of the algorithms with varying maximum window. Both curves in

Figure 8(e) go upwards because the number of frequent episodes increases exponentially as maxwin

increases. However, EMMA still outperforms MINEPI+ with varying maxwin. In Figures 8(f), the

memory requirement is steady for both MINEPI+ and EMMA. Thus, the maximum window threshold

does not affect the memory requirement a lot. In Figure 8(g), the total running time for MINEPI+ and

EMMA are linear to the average transaction size T . However, for large transaction size, MINEPI+

requires significantly more time in equal join. In a word, the performance study shows that the EMMA

algorithm is efficient and scalable for frequent episode mining, and is about an order of magnitude faster

than MINEPI+. However, MINEPI+ requires smaller and stable memory space than EMMA.
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Figure 9. Performance comparison in real data

5.2 Real World Dataset

We also apply MINEPI+ and EMMA to a data set comprised of ten stocks (electronics industry) in

the Taiwan Stock Exchange Daily Official list for 2618 trading days from September 5, 1994 to June

21, 2004. We discretize the stock price of go-up/go-down into five level: upward-high(UH): >= 3.5%,

upward-low(UL): < 3.5% and > 0%, changeless(CL): 0%, downward-low(DL): > −3.5% and < 0%,

downward-high(DH): <= −3.5%. In this case, the number of events in each time slot is 10, and the

number of events is 50 (10*5). Figure 9(a) shows the running time with an increasing support thresh-

old, minsup, from 10% to 30%. Figure 9(c) shows the same measures with varying maxwin. As the

maxwin/minsup threshold increases/decreases, the gap between MINEPI+ and EMMA in the running

time becomes more substantial. Figures 9(b) and (d) show the memory requirements and the num-
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ber of frequent episodes with varying minsup and maxwin. As the maxwin threshold increases or

minsup threshold decreases, the number of frequent episodes is increased. The memory requirement

in MINEPI+ is steady. However, EMMA needs to maintain more frequent itemsets as the minsup

decreases; whereas the memory requirement with varying maxwin in EMMA is changed slightly.

MINEPI+ is better than EMMA in memory saving (by a magnitude of 4 for minsup = 10%).

6. Conclusion and Future Work

In this paper, we discuss the problem of mining frequent episodes in a complex sequence and pro-

pose two algorithms to solve this problem. First, we modify previous vertical-based MINEPI [19] to

MINEPI+ as the baseline for mining episodes in a complex sequence. To avoid the huge amount of

combinations/compuataions and unnecessary/duplcate checking, we utilize memory to propose a brand-

new memory-anchored algorithm, EMMA. (The extensions of the algorithms for parallel episode min-

ing are given in Appendix.) The experiments show that EMMA is more efficient than MINEPI+ on both

synthetic and real data set.

So far we have only discussed serial and parallel episodes. The combination of serial and parallel

episodes remains to be solved. As suggested in [21], the recognition of an arbitrary episode can be

reduced to the recognition of a hierarchical combination of serial and parallel episodes. However, there

are some complications one has to take into account. Thus, further researches are required.
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Appendix

In this section, we define the problem of frequent parallel episodes mining and discuss how to modify

our algorithms for this problem.

Definition 6.1 A parallel episode I= {i1, . . . , ik} (ij ∈ E) is a set of events that occur within a window

with length less than maxwin. We say parallel episode I is also a k-event parallel episodes.

Definition 6.2 Given a parallel episode I= {i1, . . . , ik} and the window bound win, we say the sliding

window Wi = (Xti , Xti+1, . . . , Xti+win−1) in TDB supports I if and only if, I ⊆ Ui where

Ui =
w−1⋃

j=0

Xti+j
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The number of sliding windows that match episode I is called the window count of I in the temporal

database TDB.

Take parallel episode I1 = {A,D} in Figure 1(a) as an example, we find that I1 is supported by

twelve sliding windows (from W1 to W12). Thus, the parallel episode I1 has 12 matches. Note that the

number of windows that support an event can be as large as win times the number of occurrences for the

event, since every event, except for those in the last win − 1 intervals, is counted by win windows. For

example, E, although has only 3 appearances in Figure 1(a), is supported by 8 sliding windows. Thus,

the minimum support for window counts should not be set too low, or there will be too many frequent

1-event parallel episodes.

Definition 6.3 Given a minsup, we say an event x is window frequent if and only if it occurs at least

minsup sliding windows.

The problem of frequent parallel episode mining is defined as discovering all parallel episodes that

have at least minsup support count within the maximum window bound win. Using vertical format rep-

resentation, we shall maintain the sliding windows that support each window frequent parallel episodes

(called matching window lists). Since we don’t consider the order of events within a sliding window,

we only needs to check the common parts of two known window lists when extending a short frequent

episode.

First, we discuss the modified MINEPI+ for frequent parallel episode mining. Given a parallel

episode I = {i1, . . . , ik}, a window frequent 1-pattern wf and their matching window lists, e.g.,
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Procedure of MINEPI2(temporal database TDB, minsup, maxwin)
1. Scan TDB once, find window frequent items WF1 and their matching windowlists;
2. for each wfi in WF1 do
3. ParallelJoins(wfi, wfi.windowlist, wfi);

Subprocedure of ParallelJoins(α, windowlist, lastItem)
4. for each wfj > lastItem in WF1 do
5. tempWindowlist = windowJoin(α,wfj);
6. if (|tempWindowlist| ≥ minsup ∗ |TDB|) then
7. ParallelJoins(α

⋃
wfj, tempWindowlist, wfj);

Figure 10. MINEPI2: Vertical-Based Frequent Parallel Episode Mining Algorithm

I.windowlist = {IW1, . . . , IWn} and wf.windowlist = {FW1, . . . , FWm}. The operation win-

dowJoin of I and f which computes the window list for a new parallel episode I ′ = {i1, . . . , ik, f} (de-

noted by I
⋃

f ) is defined as the intersection of the two window lists, I.windowlist
⋂

wf.windowlist.

The modified MINEPI+ for parallel episodes is illustrated in Figure 10. To avoid the duplicate enumer-

ation, we use alphabetical order to generate long parallel episodes (line 4). Starting from each window

frequent event wfi, all frequent parallel episodes with prefix wfi can be enumerated by recursive calls

to ParallelJoins.

Next, we discuss the modified solution of EMMA for frequent parallel episodes. The detailed modi-

fied algorithm, EMMA2, is illustrated in Figure 11. We shall see more clearly how EMMA differs from

MINEPI in parallel episode mining. Instead of doing windowJoin directly in MINEPI, we will check

local frequent items from the memory anchors, i.e. the window list of the current episode. To facilitate

quick checking, we shall need more memory space as discussed in Section 4.3.
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Procedure of EMMA2(temporal database TDB, minsup, maxwin)
1. Find all window frequent items WF1 and their windowlists;
2. for each wfi in WF1 do
4. WJoin(wfi, wfi.windowlist,wfi);

Procedure of WJoin(β, windowlist,lastitem)
5. Find local window frequent items LF1 in windowlist and their windowlists;
6. for each lfi > lastItem in LF1 do
7. if (|lfi.windowlist| ≥ minsup ∗ |TDB|)
8. WJoin(β

⋃
lfi, lfi.windowlist,lfi);

Figure 11. EMMA2: Frequent Parallel Episode Mining Using Memory Anchor
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