
1

Cleaning of Auction Data for Bidding Decision
Shu-Gang Han and Chia-Hui Chang

Dept. of Computer Science and Information Engineering,

National Central University, Taiwan

Email: kenthan@db.csie.ncu.edu.tw chia@csie.ncu.edu.tw

ABSTRACT
Bidding for products on the Internet has become a

common activity in our daily life. However, it’s a tedious
problem that there are too many items for the bidder to
select the cheapest one. In the results providing by eBay,
only a small number of results are target items. This is a
common situation while the user is searching for a main
product in 3C. We aim at helping the bidder compare
items easily on auction websites. In this thesis we propose
CADBid, which is a web-based system built between
auction websites and the bidder. CADBid is able to
automatically filter out non-target items and clean the
descriptions about these items. Afterward, a list is
generated which helps the bidder compare these items.
The list only shows the target items along with their
important properties. Our work focuses on two tasks. The
first task is item filtering. The second is cleaning of
descriptions. After cleaning of descriptions, the clean
descriptions are used to assist the first task. We view the
two tasks as classification problems and propose two
feature sets. We build two classification models based on
Support Vector Model. Our experiment shows that
cleaning of description is helpful because clean
descriptions indeed improve the accuracy of item filtering.
With CADBid, the bidder will be convenient while
making a good decision on which item to bid.

1: INTRODUCTIONS

With the growing of Internet technology, bidding on
auction websites has become one of the most popular
activities on the Internet. eBay [1] is the most
representative one of auction websites. Usually, these
website provide a web form for the bidder to search for
the targets, where the bidder inputs product name or
model name as a keyword and submits it to the search
engine of auction website. For example, the bidder looks
for a hot cell phone - Motorola V3x, no doubt the bidder
inputs “Motorola V3x” as a keyword. After submitting
the keyword, the auction website returns all of the
matched items in a list page. List pages show the rough
information of matched items. They may contain the title,
picture, price and so on. Many auction websites provide a
sorting function in list pages (Figure 1). The bidder can
sort the items according to prices, time left, etc.

After skimming the information on the list pages, the
bidder can click the link of the item which he is interested
in. The link then redirects to a detailed page of the item
(Figure 2). There is much information shown on the
detailed pages, like information about the seller, history
of every offering by bidders, duration of the item,
category which the item belongs to, and a description area
for the item.

Although every auction website provides a friendly
user interface for searching, and users can get all the
information from list pages and detailed pages, they still
encounter many problems on looking for what they want
to buy and bid.

The first problem is the huge number of returned
items [2]. The total number of items on auction websites
is very large. It is increased in an astonishing speed every
second. If the user inputs a hot product name as the
keyword, thousands or even more items are returned. In
consideration of time, it is impossible to read all the items
in list pages, even the detailed pages of these items.
What’s even worse, part of returned items are not what

Figure 2: Detailed Page in eBay

Figure 1: List Page in eBay

2

the user expects. The bidder needs extra time to filter out
irrelevant items by his eyes.

The problem comes from two reasons. The first
reason is that some tokens in the title are not related to the
item. In order to sell a product successfully, the seller
usually adds some popular keywords to the end of title.
For example, the seller adds “Michael Jordan” to a title of
a basketball shoes. This trick makes the item gain a high
opportunity to be showed in list pages; however, it is
not the bidder’s target.

The second reason is that the keyword doesn’t truly
represent what the bidder wants. In some categories,
especially in 3C products (communications, computers,
and consumer products), new products enter the market
accompanied with many accessories. For example,
battery, charger and headset in the market of cell phone
products. Compared to these accessory products, we call
the others “main products”. Inputting a product name in
such categories gets a complex result set, which is a
combination of main products and heterogeneous
accessories. In many categories, the proportion of main
products to accessories is about 1:9. The bidder wastes a
lot of time looking at what he doesn’t want to buy.

The second problem is about the noisy description in
the detailed page. Description area is used for content
related to the bid, e.g., product status, warranty period,
promotions for other bids, and instructions of transaction.
In terms of comparing items, some information isn’t
important. Figure 3 is an example of description area.
There are three blocks in Figure 3. The block circled with
blue line is genuine description. The two blocks circled
with red line are payment and feedback policies. The
latter part is useless while comparing items.

The descriptions in shopping website and description
area in auction website are all in HTML format, but there
is no constant template in description area for auction
items. Every seller wants to make this area different to
others, because a unique and attractive description area is
important in the competitive market. However, for a
buyer who needs a comparison of the many candidates
found, such autonomy becomes a hazard for extracting
product properties from various description areas.

To solve these problems, Yukitaka et al proposed
NTM-agent [2] to conquer these problems. NTM-Agent
is a standalone application which filters irrelevant items
using correlation rules discovered from users' feedback.
NTM-agent uses these labeled data as training data to
build a model for filtering irrelevant items. Stand-alone
applications have such limitation that they are not easy to
distribute. In the information explosive age where most
information is viewed from browsers, the ability to
integrate with browser is extremely important for such
applications. For the second problem, NTM-agent
extracts product properties from auction web pages and
then generating a property list. The model for property
extraction needs prepared domain knowledge.

In this paper, we reconsider such problems and
incorporate a framework for integration NTM-agent with

browsers. For irrelevant item filtering, we can use either
pre-trained model or dynamic model like NTM-agent. For
property extraction, we apply supervised text mining
technique. On the other hand, we use webpage cleaning
[3][4][5] to improve irrelevant item filtering. Webpage
cleaning includes segmentation which divides the item
descriptions into blocks and a binary classification mode
which filters noisy sections.

To illustrate, the developed system, called CADBid
(Cleaning of Auction Data for Bidding Decision), is
placed between the auction website and the bidder. When
the bidder reaches an auction page where comparison is
needed, a pre-installed bookmark is clicked such that the
information of current page is sent to system. The system
then queries the auction website on behalf of the bidder,
filters the items based on its relevancy and extracts
properties for comparison. In addition, CADBid
accomplishes description cleaning. Users use these
genuine descriptions to make item filtering more precise.
At the same time, the bidder compares items much easily
by reading the genuine descriptions, not the whole
descriptions.

In the experiments, we evaluate the effectiveness of
irrelevant item filtering using 5 common product
categories with pre-trained models. The bidder can use
these pre-trained models immediately. CADBid also
enables the bidder to train a new model for other new
categories. In addition, we train a generalized
classification model for description cleaning. By means
of CADBid, the bidder will have a more joyful
experience shopping online than before. We propose a
statistical learning approach to the task, based on SVM
(Support Vector Machines) [6]. Our experimental results
indicate that the proposed method performs well.
Classification of items got a very high accuracy, as well
as high precision and recall. Classification of descriptions
got an accuracy which is good enough in solving this kind
of problem.

The rest of the paper is organized as follows. In
Section 2, we introduce related work. In Section 3, we

Figure 3: Description Area

3

describe our approach in detail. Section 4 gives our
experimental results. We summarize our conclusion and
future work in Section 5.

2: RELATED WORK
Our research is related to the search fields of agent for

electronic commerce and web page cleaning.

2.1: AGENTS FOR ELECTRONIC COMMERCE
In the research area of agent for electronic commerce,

some agent systems were developed to help users find
their target item from a large number of items. ShopBot
[7] and BiddingBot [8] are classical prototypes which
summarize the information of items on electronic
commerce sites.

ShopBot focused on products which users want. It
automatically searches items in shopping websites and
summarizes the characteristics of the items, which helps
the user find the cheapest item at one glance. To achieve
this goal in a specific website, ShopBot begins with a
pre-process which analyzing the website.

For a specific product domain, ShopBot needs some
additional domain knowledge, and then it is capable of
analyzing this kind of product domain. Domain
knowledge contains the examples of property values.
ShopBot conducts keyword matching between the
examples of property values and the text of the page and
learns where the property values are generally described
in the page. Unlike ShopBot, CADBid extract genuine
descriptions from product page and filter out noise
products. This function is crucial for the online-bidding
websites where miscellaneous sellers participate in.

BiddingBot supports the user in attending, monitoring,
and bidding in multiple auction websites simultaneously.
BiddingBot monitors prices of goods in several online
auction websites to get reasonable market prices of goods,
and uses a new cooperative bidding mechanism to
effectively bid in auctions. In general, most of online
auctions are classified into common-value auctions. For
example, auctions for personal computers and cars are
common-value auctions, because we can see a market
price as a common valuation among bidders. In the case
of a common-value auction, a bidder who wins an auction
is the one with the most optimistic information. Therefore,
it is an advantage to know real valuations of an item,
since a bidder avoids the winner’s curse if she knows a
correct valuation (i.e. a market price) of an item. Since it
is hard for a bidder to monitor, attend, and bid in multiple
auctions simultaneously, the authors use agents to
cooperatively monitor, attend, and bid on behalf of the
users. At the same time, a market price of an item is
predicted.

BiddingBot consists of one leader agent and several
bidder agents. Each of bidder agents is assigned to an
auction site. Bidder agents cooperatively gather
information, monitor, and bid in the multiple auction sites
simultaneously. The leader agent facilitates cooperation

among bidder agents as a matchmaker, sends the user’s
request to the bidder agents, and presents bidding
information to the user. In BiddingBot, each of bidder
agents is specified to its auction site and can behave as a
flexible wrapper, since the different auction sites
represent information in different forms. The results of
experiments demonstrate that the cooperative bidding
mechanism effectively bid in multiple auctions.

In 2004, K. Yukitaka et al proposed NTM-agent [2].
The authors aim at supporting the bidders on auction
websites by automatically generating a list which contains
the properties of items for comparison. NTM-agent is a
powerful agent-based system. The system collects Web
pages of items and extracts the items’ properties from the
pages. After that, a list which contains the extracted
properties is prepared. The authors mentioned two
problems. The first problem is that if the system collects
items automatically, the results contain the items which
are different from those of the user’s target. The second
problem is that the formats of descriptions in auction
websites are not consistent (There are different formats
such as sentences, list items, images, and tables.).
Therefore, it is difficult to extract the information from
the descriptions by conventional methods of information
extraction. The authors proposed methods to solve these
problems. For the first, NTM-Agent uses correlation rules
filtering the items. These rules are keywords in the titles
and descriptions. They are created semi-automatically by
a support tool. For the second, NTM-Agent extracts the
information by distinguishing the formats. It also learns
the property values from examples for the future
extraction.

The authors have proved that the filtering method is
effective for some product category which has noise
items to some extent and the system actually reduce a
bidder’s work load to select an item to bid; even so,
NTM-agent has two problems. One is the preparation of
the domain knowledge and the other is the low accuracy
of item filtering. Domain knowledge includes: template
for the search result pages, template for the item’s pages,
and property names. They are necessary for general
extraction but which means the system cannot be easily
adapted to a new website. Besides, it uses correlation
rules to filter out noise items. CADBid targets the same
objective and we overcome the latter problem. The
accuracy is strengthened by our sophisticated classifier.

2.2: DATA CLEANING
With the prevalence of web pages, many researches

focus on web page cleaning. A web page usually consists
of informative content and non-informative content.
Informative content is what users are interested in, like a
news article in CNN.com. Non-informative content is
generated dynamically, containing advertisements,
image-maps, plug-ins, logos, counters, search boxes,
category information, navigational links, related links,
footers and headers, and copyright information. The

4

purpose of web page cleaning is to filter out
non-informative content. At the same time, the result of
data mining could be reinforced.

The common step is to subdivide the whole web page
into smaller semantically homogeneous blocks. The step
is called “segmentation.” Many approaches have been
proposed for automatic page segmentation, which fall
into two categories. One mainly depends on HTML DOM
trees [4] [5]; the other uses visual cues such as location,
color, and separators to simulate how a user understands
the semantic structure of a page [9][10][11]. Due to the
heterogeneity in description area and JavaScript codes,
we usually get wrong visual cues about HTML tags.
Finally we decide to segment pages depending on DOM
trees.

After segmentation, some researches quantify the
degree of importance and give every block a score [3][4];
others view each block as an instance, and define feature
sets for classification model [5]. In our work, we view it
as a classification problem. Informative block is the block
which contains genuine product descriptions. The block
which contains ads and instructions is considered
non-informative block. The difference between them is
the semantics inside the block. We use the tokens as
feature set for classification model.

Yi and Liu [3] propose a noise elimination technique
based on the following observation: In a website, blocks
of noisy content usually have some common contents and
presentation styles, while those of main content are often
diverse in their actual content and presentation styles.
Based on this observation, they propose a tree structure
Site Style Tree (SST), which is used to capture the
common presentation styles and the actual contents of the
pages in a given Web site. Then they introduce an
information based measure to determine that given parts
of the SST represent noises or main contents. By mapping
this page to the SST, noises within given page can be
detected and eliminated.

Lin and Ho [4] first partitions a page into several
content blocks according to HTML tag <TABLE> in a
Web page. Based on the occurrence of the features (terms)
in the set of pages, it calculates entropy value of each
feature. According to the entropy value of each feature in
a content block, the entropy value of the block is defined.
By analyzing the information measure, they propose a
method to dynamically select the entropy-threshold that
partitions blocks into either informative or redundant.

Moreover, our work is related to email data cleaning.
Tang et al. [12] proposes a cascaded approach and makes
a significant improvement on extraction accuracy when
applying to term extraction. The system takes advantage
of classification model and defines an excellent feature
sets. Here the classification instances are sentences in an
email, which are different from blocks in web page
cleaning.

3: CADBID SYSTEM

The user has two ways to send information to
CADBid. The user can input the information through the
web form in CADBid. The other way is very friendly to
the user. When the user is surfing on eBay and comparing
some items, he can use CADBid through a bookmark
which redirects the user to CADBid. CADBid is able to
get information of what the user was comparing by some
JavaScript codes inside the bookmark.

CADBid provides 5 pre-trained category models. In
web form, user can choose one of them which the product
belong to. If the user doesn’t want to choose the model,
CADBid will automatically select the most appropriate
model from the five models. The mechanism is default
when the user uses CADBid through a bookmark in
previous scenario.

Here we use a simple mechanism to achieve this
function. We use product name along with one of the five
model names as search keywords, and query Google. The
model name which gets the most number of results is the
most appropriate one.

 Figure 4 System Architecture

Figure 4 shows system architecture. After getting the
information from the user, CADBid uses the product
name to query eBay and extracts all the information about
the result items in result pages. For example, item title,
current price, and time-left are extracted. Compared to
descriptions in the detailed page, they are basic features
of these result items.

In order to filter items, CADBid can just use the basic
features. We define a feature set to do the item filtering
according to this basic information. On the other side,
CADBid has another path of process to do item filtering.
We clean the descriptions in detailed page and use them
as additional features in item filtering. The steps include
segmenting the description area and using another
classification model filtering out unnecessary descriptions
(The details about cleaning of descriptions are in Section
3.5). By the assistance of clean descriptions, we hope to
get a better result in item filtering compared to basic
features.

After item filtering, main products are classified by
CADBid. CADBid uses supervised text mining
techniques to extract important product properties from

5

the detailed page. In the last step, CADBid generates a
list showing these main products with their properties.
The user can compare them easily.

3.1: CLASSIFICATION MODEL

We make use of Support Vector Machines (SVM) [6]
as the classification model. The SVM implementation we
use is from Weka [13]. We use default setup because it
works best for our tasks.

3.2: PREPROCESSING

We collect data from eBay because it’s the most
popular auction website. As mentioned before, we
prepare data for 5 product categories and assign 4 popular
products for each category (ex: Motorola V3i). We collect
100 product pages for one product. There are totaling
2,000 pages which are downloaded randomly from eBay.
The numbers of target items in every product are different.
The proportion of main products to accessories is about
1:9. For every page, we extracted title, seller name,
current price, and its category. The HTML text of
description area is stored in a text file for subsequent
description cleaning.

3.3: ITEM FILTERING

In our problem, instances in classification are auctions
in eBay. Item filtering consists of two stages: training
phase and testing phase. In training phase, we prepare an
input table. Input table consists of labeled instances along
with their feature values. The label represents whether the
auction is target item or not. The feature values are
computed based on the feature set we define. SVM model
is generated according to the input table. The key issue
here is how to define an effective feature set. The feature
set is as follows:
 Price: The current price of each auction divided by

average price.
 Frequent tokens in title: We count the frequencies

of every token occurred in all titles belonged to the
same product category. Stopwords are removed first.
Then we propose a sequence of binary values
representing frequent words rank 1 to rank 50.

 Catalog: An auction belongs to only one node of
catalog tree. The catalog tree is compiled by eBay
and they hope that each seller choose the correct
node selling their products. For example, cell phone
should be listed in “Cell Phones / Phones Only”, not
“Cell Phones / Accessories”. However, due to
unexpected reason, there are always some auctions
listed in wrong node. For every product, we count the
occurrences of every node and use the number to
represent the node feature.

 Descriptions: These features are from raw
descriptions or clean descriptions. We will elaborate

it in experiments.

3.4: CLEANING OF DESCRIPTIONS

In description area, it’s not easy to find out useful
information (genuine description) at first glance. Using
data mining techniques or NLP techniques to extract
useful data from the area isn’t easy, too. Various HTML
tags and script language adds to the complexity of this
area.

Though complex, this area contains significant
information which helps the bidder compare items. These
genuine descriptions could be used to enhance the
accuracy of item filtering in CADBid. In opposition to
genuine description, other information in the area is
regarded as noises. In order to utilize genuine descriptions
in item filtering, we build another classification model to
extract them in description area.

HTML page can be parsed into a DOM tree
(Document Object Model tree). Every HTML tag in the
page means a node in the DOM tree. In HTML’s
viewpoint, anything between start tag “<xxx>” and end
tag “</xxx>” are viewed as inner contents belonged to the
tag “xxx”. Inner contents may be plain text or other tags.
Mapped to tree structure, inner contents are equivalent of
children nodes.

According to our observations in tree structure, we
design an algorithm to segment the DOM tree into a
number of sub-trees. These sub-trees represent different
blocks in the description area. Based on the feature set we
defined, every block has its own characteristic. We train a
SVM model to filtering out unnecessary blocks. With the
help of remaining blocks (genuine descriptions), the
accuracy of item filtering is improved.

In abstract view, description area can be divided into
blocks. Some are product descriptions, others are
advertisement, and still others are instructions of
transaction. Every block has its own corresponding
sub-tree in the DOM tree. By applying our algorithm, we
could segment the area into some separate blocks by
dividing the DOM tree into some sub-trees. Then we use
our classification model to classify these blocks.

Blocks containing genuine description are remained.
Other blocks are rejected. We use these remained blocks
to improve the item filtering, which is our main objective.

We develop a deep-first algorithm to segment the
description area into blocks. First, we extract the HTML
text of description area from an auction page. Second, we
transform the text into a DOM tree. Here we use
CyberNeko HTML parser [14] to complete the task. A
DOM tree transformed by the parser is a tree structure.
The structure provides many useful functions, like
getChildNodes(), getNextSibling(), and getAttributes().
Third, we input the root node of the DOM tree into
segmentation program. Finally, the program outputs the
blocks information and their properties.

6

In a composition, related contents are put together in a
paragraph. Like the way we write composition, related
contents are put together in an abstract block. From our
empirical observation, sellers usually use some HTML
tags to separate blocks. We define these HTML tags as
Paragraph Tags. For examples, <TABLE> and <P> are
Paragraph Tags. Except for these Paragraph Tags, other
tags are used to decorate the content. We define these
HTML tags Decorate Tags. For examples, and
 are Decorate Tags. In our algorithm, the way we
deal with the node depends on the type of its tag.

Let’s look at the algorithm in detail. We traverse the
DOM tree in a deep-first way. In line 1, we check all the
children of node t. If all the children of node t are
Decorate Nodes, we consider it a block. We merge all
descendant nodes belong to t. All text belong to these
descendant nodes are combined into a chunk of text. At
the same time, we gather features of the block for
subsequent classification. In line 7, the condition is
matched while t is a terminal node. We have to extract the
text it contains and the features. In line 12, we reject the
node whose tag is one of <SCRIPT> and <STYLE>.
Script codes and CSS codes are not related to the
description. They are not what we need. In line 15, if
above conditions are not matched, we use every child of t
as input and recursively call the function getNodeText().

After the traverse, we get some blocks. In
classification’s viewpoint, every block is an instance. We
label each instance whether it’s positive or negative. The
process is done by hands. Positive instance means it’s a
genuine description. Negative instance means it’s a noise.
We train a classification model by these labeled instances.
Then we use the model to get genuine descriptions from
incoming auction pages.

The features we use are as follows:

 Number of characters: Total number of true text in
the block.

 Co-occurrence in title and in block: A block which
has token matching the item title is more likely to
contain genuine descriptions. The value is the total
number of matched token in the block.

 Occurrence of common tags: We define 26 common
tags and the value is total occurrence of specific tag
divided by number of characters.

 Tokens with high mutual information: The concept
is similar to entropy in information theory [15]. It
considers term distribution among the classes and has
been found to be particularly effective.

4: EXPERIMENT

4.1: ITEM FILTERING

In item filtering, we run some setups to see the results
while using basic features, features from raw descriptions,
and features from clean descriptions. The dataset is the
same as we mentioned in Section 3.3. For the data in each
category, we run a 4-fold cross-validation.

First, we run an experiment with basic features as a
baseline result. The experiment result is in Table 1. The
results are different for different product categories. The
category “Game Console” gets a worse result than other
categories. By our observation, the differences between
the four game consoles we assigned are huge. Some are
handheld game consoles; the others are large-scale game
consoles which are only played at home.

Although the result is not very good, it’s sufficient for
the bidder to filter out many accessory products. After
basic item filtering, the proportion of main products to
accessory products is from 1:9 to 3:1. Besides, the
processing time is very short because we extract these
basic features from list pages, not detailed pages. In terms
of user of CADBid, short waiting time implies
comfortable using experience.

In Figure 6, we show the comparison among basic
features, features from raw descriptions, and features
from clean descriptions. The features from raw
descriptions or clean descriptions are all possible tokens
occurring in the descriptions. Stopwords are removed but
the numbers of raw features or clean features are still very
big.

Input: root node of DOM tree
Algorithm: getNodeText (Node t)
1 If all children of t are Decorate Tags
2 get all text belong to children of t;
3 merge all text;
4 obtain features from whole text;
5 Return
6 End if
7 If t is a TEXT node
8 get text belong to t;
9 obtain features from the text;
10 Return
11 End if
12 If t is one of {SCRIPT,STYLE} tag
13 Return
14 End if
15 While (Node child of t != NULL)
16 getNodeText(child);
17 End While

 Figure 5: Algorithm of page segmentation

Table 1: Result of basic item filtering

7

In Figure 6, we see that the five lines all have a
positive slope, which means the result is getting better
from basic features, raw features, to clean features. From
basic features to raw features, we all get an apparent
improvement for the five categories. It means that
information in descriptions is useful for filtering items.
Clean features from clean descriptions are more useful
than raw features because some information helpless to
the classification model is removed. Here the useless
information means ads and instructions of transaction in
raw descriptions. By the comparison, we see that our
cleaning of descriptions is useful while deciding the
features for item filtering.

In spite of using all possible tokens as features gets
good result, the processing time leads to a long waiting
time. Processing time is equal to training time of
classification model plus pre-processing time of data. To
avoid long processing time, we need a feature selection.

In setup 2, the difference between raw and clean
descriptions is not obvious. Even raw descriptions
outperform clean descriptions in some categories, which
is not what we suppose to be. But in setup 3, we see that
clean descriptions outperform raw descriptions apparently.
We see that using TF-IDF value instead of 0/1 affects the
performance. In following setup 4-7, we use limited
number of feature values. Clean descriptions always
outperform raw descriptions.

To speed up the processing time, we simply calculate
the frequency of all tokens occurring in raw or clean
descriptions and use tokens as features with high
frequency. We try four different numbers of features with
high frequency. Table 2 shows the result.

Selected feature sets get results which are a little bit
lower than result of feature set from full descriptions. As
the number of selected features grows, the result is
getting better. It’s reasonable that longer number of
feature set provides more helpful information in
classification. When we use the first 200 tokens with high
frequency in clean descriptions as features, the average
F1-measure is very close to features from all possible
tokens in clean descriptions. In terms of processing time,
selected feature needs a very short processing time, which
is lower than one-sixth of full text in raw descriptions,
low than one-fourth of full text in clean descriptions.

In designing CADBid, we think selected features are
very useful. Instead of using feature set from full
descriptions, we use selected feature set, which leads to a
sufficient accuracy in item filtering and a bearable
processing time.

4.2: CLEANING OF DESCRIPTIONS

We use 6 setups to see the effectiveness of different
feature sets. The dataset is randomly picked from the
whole blocks which are segmented from 2,000 pages
before. We picked 2,000 blocks as our dataset in
description cleaning. Each category provides the same
number of training instances. For every setup, we run a
10 cross-validation. The result is in Table 3.

Table 3: Performance of descriptions cleaning

In the first setup we use basic features. They are
“number of characters”, “co-occurrence in title and in
block”, and “occurrence order in description area”. In the
second setup we use basic features plus tag features. By
comparing setup 1 and 2, we see that the tag information
is not very helpful. The F1-measure only increases 0.5.
We think it’s not easy to differentiate genuine
descriptions from noise descriptions using tag
information because the obvious difference between them
is in vocabulary.

Setups 3-6 use above features plus tokens with higher
mutual information. We try different number of tokens
with the highest mutual information. The value of MI
features is 0 or 1 based on the existences of these tokens.

If we focus on the precision, we see that mutual
information helps the performance remarkably. With a

Precision Recall F1-measure

Basic 67.2 87.3 75.9

Basic+Tag 67.9 87.4 76.4

All(MI 100) 71.9 90.8 80.2

All(MI 200) 74.9 90.4 81.9

All(MI 300) 76.3 89.8 82.5

All(MI 400) 77.3 90.1 83.2

Figure 6: Comparison among three different feature sets Table 2: Performance of descriptions cleaning

8

higher number of MI features, the precision gets higher,
but the improvement is getting small while the number of
MI features is getting higher. More features mean more
information, but the feature set with “MI 100” has already
included the most important tokens in descriptions
filtering. So the new incoming tokens with high mutual
information give less help to the classification model,
which leads to a small improvement in precision.

In future work, we plan to combine CADBid with
some information extraction techniques. It’s more
powerful while able to extract data from multiple auction
websites. In addition to auction websites, it’s also
possible to make CADBid process data from online
shopping websites. It a worthy task to make the users get
what they want on e-commerce websites.

5: CONCLUSION
In the research, we focus on the scenario of bidding

on auction websites. We have investigated 2 problems:
item filtering and descriptions cleaning. We have
proposed a 2-step approach. First we use classification
model to filter out noise descriptions. Then we use
genuine descriptions to differentiate main products from
accessories by another classification model. Using these
techniques above, we implemented a system CADBid
which helps the bidders compare items easily.

Description cleaning is helpful in two points. First, it
makes the bidder compare items fast and easily than
before. Showing only genuine descriptions, the bidder
doesn’t have to pay attention to descriptions unrelated to
the item. Second, by the help of clean description, the
accuracy of item filtering is improved. At the same time,
we don’t need much time to train the model.

Experimental results show that our approach has a
high accuracy in item filtering. With a good feature
selection mechanism, classification with clean
descriptions outperforms that with raw descriptions. In
descriptions cleaning, the accuracy is not very good but
sufficient for our requirement.

In future work, we plan to combine CADBid with
some information extraction techniques. It’s more
powerful while able to extract data from multiple auction
websites. In addition to auction websites, it’s also
possible to make CADBid process data from online
shopping websites. It a worthy task to make the users get
what they want on e-commerce websites.

6: ACKNOWLEDGEMENT
This paper is sponsored by National Science Council,

Taiwan under grant NSC95-2221-E-008-076.

7: REFERENCE
[1] http://www.ebay.com.
[2] K. Yukitaka, H. Yoshinori, and N. Shogo, "Text

Mining Agent for Net Auction," in Proceedings of
the 2004 ACM symposium on Applied computing:
ACM Press, 2004.

[3] L. Yi, B. Liu, and X. Li, "Eliminating Noisy
Information in Web Pages for Data Mining," In
Proc. of the ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining, Washington, DC, USA, 2003.

[4] S.-H. Lin and J.-M. Ho, "Discovering Informative
Content Blocks from Web Documents," in
Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery
and data mining Edmonton, Alberta, Canada: ACM
Press, 2002.

[5] S. Debnath, P. Mitra, N. Pal, and C. L. Giles,
“Automatic Identification of Informative Sections
of Web Pages,” IEEE Transactions on Knowledge
and Data Engineering 17, 9, Sep. 2005.

[6] V. Vapnik, Statistical Learning Theory. New York:
Springer Verlage, 1998.

[7] B. D. Robert, E. Oren, and S. W. Daniel, "A
Scalable Comparison-shopping Agent for the
World-Wide Web," in Proceedings of the first
international conference on Autonomous agents
Marina del Rey, California, United States: ACM
Press, 1997.

[8] T. Ito, N. Fukuta, T. Shintani, and K. Sycara,
"BiddingBot: A Multiagent Support System for
Cooperative Bidding in Multiple Auctions," in
Proceedings of ICMAS2000, 2000, pp. 435-436.

[9] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma,
“Block-based Web Search,” In Proceedings of the
27th Annual international ACM SIGIR Conference
on Research and Development in information
Retrieval, 2004.

[10] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma,
“Learning Block Importance Models for Web
Pages,” In Proceedings of the 13th international
Conference on World Wide Web, 2004.

[11] P. Xiang, X. Yang, Y. Shi, “Effective Page
Segmentation Combining Pattern Analysis and
Visual Separators for Browsing on Small Screens,”
Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, 2006.

[12] J. Tang, H. Li, Y. Cao, and Z. Tang, "Email Data
Cleaning," in Proceeding of the eleventh ACM
SIGKDD international conference on Knowledge
discovery in data mining Chicago, Illinois, USA:
ACM Press, 2005.

[13] Weka 3: Data Mining Software in Java,
http://www.cs.waikato.ac.nz/ml/weka/

[14] CyberNeko HTML Parser,
http://people.apache.org/~andyc/neko/doc/html/ind
ex.html

[15] Y. Yang and J. P. Pedersen. “A Comparative Study
on Feature Selection in Text Categorization,” In
Proceedings of the Fourteenth International
Conference on Machine Learning (ICML’97),
pages 412~420, 1997.

