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ABSTRACT
Bidding for products on the Internet has become a 

common activity in our daily life. However, it’s a tedious 
problem that there are too many items for the bidder to 
select the cheapest one. In the results providing by eBay, 
only a small number of results are target items. This is a 
common situation while the user is searching for a main 
product in 3C. We aim at helping the bidder compare 
items easily on auction websites. In this thesis we propose 
CADBid, which is a web-based system built between 
auction websites and the bidder. CADBid is able to 
automatically filter out non-target items and clean the 
descriptions about these items. Afterward, a list is 
generated which helps the bidder compare these items. 
The list only shows the target items along with their 
important properties. Our work focuses on two tasks. The 
first task is item filtering. The second is cleaning of 
descriptions. After cleaning of descriptions, the clean 
descriptions are used to assist the first task. We view the 
two tasks as classification problems and propose two 
feature sets. We build two classification models based on 
Support Vector Model. Our experiment shows that 
cleaning of description is helpful because clean
descriptions indeed improve the accuracy of item filtering. 
With CADBid, the bidder will be convenient while 
making a good decision on which item to bid.

1: INTRODUCTIONS

With the growing of Internet technology, bidding on 
auction websites has become one of the most popular 
activities on the Internet. eBay [1] is the most 
representative one of auction websites. Usually, these 
website provide a web form for the bidder to search for 
the targets, where the bidder inputs product name or 
model name as a keyword and submits it to the search 
engine of auction website. For example, the bidder looks 
for a hot cell phone - Motorola V3x, no doubt the bidder 
inputs “Motorola V3x” as a keyword. After submitting 
the keyword, the auction website returns all of the 
matched items in a list page. List pages show the rough 
information of matched items. They may contain the title, 
picture, price and so on. Many auction websites provide a 
sorting function in list pages (Figure 1). The bidder can 
sort the items according to prices, time left, etc.

After skimming the information on the list pages, the 
bidder can click the link of the item which he is interested
in. The link then redirects to a detailed page of the item
(Figure 2). There is much information shown on the 
detailed pages, like information about the seller, history 
of every offering by bidders, duration of the item, 
category which the item belongs to, and a description area
for the item.

Although every auction website provides a friendly 
user interface for searching, and users can get all the 
information from list pages and detailed pages, they still 
encounter many problems on looking for what they want 
to buy and bid.

The first problem is the huge number of returned 
items [2]. The total number of items on auction websites
is very large. It is increased in an astonishing speed every 
second. If the user inputs a hot product name as the 
keyword, thousands or even more items are returned. In
consideration of time, it is impossible to read all the items 
in list pages, even the detailed pages of these items. 
What’s even worse, part of returned items are not what 

Figure 2: Detailed Page in eBay

Figure 1: List Page in eBay
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the user expects. The bidder needs extra time to filter out 
irrelevant items by his eyes.

The problem comes from two reasons. The first 
reason is that some tokens in the title are not related to the 
item. In order to sell a product successfully, the seller 
usually adds some popular keywords to the end of title. 
For example, the seller adds “Michael Jordan” to a title of 
a basketball shoes. This trick makes the item gain a high 
opportunity to be showed in list pages; however, it is 
not the bidder’s target. 

The second reason is that the keyword doesn’t truly
represent what the bidder wants. In some categories, 
especially in 3C products (communications, computers, 
and consumer products), new products enter the market 
accompanied with many accessories. For example, 
battery, charger and headset in the market of cell phone
products. Compared to these accessory products, we call 
the others “main products”. Inputting a product name in 
such categories gets a complex result set, which is a 
combination of main products and heterogeneous 
accessories. In many categories, the proportion of main 
products to accessories is about 1:9. The bidder wastes a 
lot of time looking at what he doesn’t want to buy.

The second problem is about the noisy description in 
the detailed page. Description area is used for content 
related to the bid, e.g., product status, warranty period, 
promotions for other bids, and instructions of transaction. 
In terms of comparing items, some information isn’t 
important. Figure 3 is an example of description area. 
There are three blocks in Figure 3. The block circled with 
blue line is genuine description. The two blocks circled 
with red line are payment and feedback policies. The 
latter part is useless while comparing items.

The descriptions in shopping website and description 
area in auction website are all in HTML format, but there 
is no constant template in description area for auction 
items. Every seller wants to make this area different to 
others, because a unique and attractive description area is 
important in the competitive market. However, for a 
buyer who needs a comparison of the many candidates 
found, such autonomy becomes a hazard for extracting 
product properties from various description areas.

To solve these problems, Yukitaka et al proposed 
NTM-agent [2] to conquer these problems. NTM-Agent 
is a standalone application which filters irrelevant items 
using correlation rules discovered from users' feedback. 
NTM-agent uses these labeled data as training data to 
build a model for filtering irrelevant items. Stand-alone 
applications have such limitation that they are not easy to 
distribute. In the information explosive age where most 
information is viewed from browsers, the ability to 
integrate with browser is extremely important for such 
applications. For the second problem, NTM-agent 
extracts product properties from auction web pages and 
then generating a property list. The model for property
extraction needs prepared domain knowledge.

In this paper, we reconsider such problems and 
incorporate a framework for integration NTM-agent with 

browsers. For irrelevant item filtering, we can use either 
pre-trained model or dynamic model like NTM-agent. For 
property extraction, we apply supervised text mining 
technique. On the other hand, we use webpage cleaning 
[3][4][5] to improve irrelevant item filtering. Webpage 
cleaning includes segmentation which divides the item 
descriptions into blocks and a binary classification mode 
which filters noisy sections.

To illustrate, the developed system, called CADBid 
(Cleaning of Auction Data for Bidding Decision), is 
placed between the auction website and the bidder. When 
the bidder reaches an auction page where comparison is 
needed, a pre-installed bookmark is clicked such that the 
information of current page is sent to system. The system 
then queries the auction website on behalf of the bidder, 
filters the items based on its relevancy and extracts 
properties for comparison. In addition, CADBid 
accomplishes description cleaning. Users use these 
genuine descriptions to make item filtering more precise. 
At the same time, the bidder compares items much easily 
by reading the genuine descriptions, not the whole 
descriptions.

In the experiments, we evaluate the effectiveness of 
irrelevant item filtering using 5 common product 
categories with pre-trained models. The bidder can use 
these pre-trained models immediately. CADBid also 
enables the bidder to train a new model for other new 
categories. In addition, we train a generalized 
classification model for description cleaning. By means 
of CADBid, the bidder will have a more joyful 
experience shopping online than before. We propose a 
statistical learning approach to the task, based on SVM 
(Support Vector Machines) [6]. Our experimental results 
indicate that the proposed method performs well. 
Classification of items got a very high accuracy, as well 
as high precision and recall. Classification of descriptions 
got an accuracy which is good enough in solving this kind 
of problem.

The rest of the paper is organized as follows. In 
Section 2, we introduce related work. In Section 3, we 

Figure 3: Description Area
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describe our approach in detail. Section 4 gives our 
experimental results. We summarize our conclusion and 
future work in Section 5.

2: RELATED WORK
Our research is related to the search fields of agent for 

electronic commerce and web page cleaning.

2.1: AGENTS FOR ELECTRONIC COMMERCE
In the research area of agent for electronic commerce, 

some agent systems were developed to help users find 
their target item from a large number of items. ShopBot
[7] and BiddingBot [8] are classical prototypes which 
summarize the information of items on electronic 
commerce sites.

ShopBot focused on products which users want. It 
automatically searches items in shopping websites and 
summarizes the characteristics of the items, which helps 
the user find the cheapest item at one glance. To achieve 
this goal in a specific website, ShopBot begins with a 
pre-process which analyzing the website.

For a specific product domain, ShopBot needs some 
additional domain knowledge, and then it is capable of 
analyzing this kind of product domain. Domain 
knowledge contains the examples of property values. 
ShopBot conducts keyword matching between the 
examples of property values and the text of the page and 
learns where the property values are generally described 
in the page. Unlike ShopBot, CADBid extract genuine 
descriptions from product page and filter out noise 
products. This function is crucial for the online-bidding 
websites where miscellaneous sellers participate in.

BiddingBot supports the user in attending, monitoring, 
and bidding in multiple auction websites simultaneously.
BiddingBot monitors prices of goods in several online 
auction websites to get reasonable market prices of goods, 
and uses a new cooperative bidding mechanism to 
effectively bid in auctions. In general, most of online 
auctions are classified into common-value auctions. For 
example, auctions for personal computers and cars are 
common-value auctions, because we can see a market 
price as a common valuation among bidders. In the case 
of a common-value auction, a bidder who wins an auction 
is the one with the most optimistic information. Therefore, 
it is an advantage to know real valuations of an item, 
since a bidder avoids the winner’s curse if she knows a 
correct valuation (i.e. a market price) of an item. Since it 
is hard for a bidder to monitor, attend, and bid in multiple 
auctions simultaneously, the authors use agents to 
cooperatively monitor, attend, and bid on behalf of the 
users. At the same time, a market price of an item is 
predicted.

BiddingBot consists of one leader agent and several 
bidder agents. Each of bidder agents is assigned to an 
auction site. Bidder agents cooperatively gather
information, monitor, and bid in the multiple auction sites 
simultaneously. The leader agent facilitates cooperation 

among bidder agents as a matchmaker, sends the user’s 
request to the bidder agents, and presents bidding 
information to the user. In BiddingBot, each of bidder 
agents is specified to its auction site and can behave as a 
flexible wrapper, since the different auction sites 
represent information in different forms. The results of 
experiments demonstrate that the cooperative bidding
mechanism effectively bid in multiple auctions.

In 2004, K. Yukitaka et al proposed NTM-agent [2]. 
The authors aim at supporting the bidders on auction
websites by automatically generating a list which contains 
the properties of items for comparison. NTM-agent is a 
powerful agent-based system. The system collects Web 
pages of items and extracts the items’ properties from the 
pages. After that, a list which contains the extracted 
properties is prepared. The authors mentioned two 
problems. The first problem is that if the system collects 
items automatically, the results contain the items which 
are different from those of the user’s target. The second 
problem is that the formats of descriptions in auction
websites are not consistent (There are different formats 
such as sentences, list items, images, and tables.). 
Therefore, it is difficult to extract the information from 
the descriptions by conventional methods of information 
extraction. The authors proposed methods to solve these
problems. For the first, NTM-Agent uses correlation rules
filtering the items. These rules are keywords in the titles 
and descriptions. They are created semi-automatically by 
a support tool. For the second, NTM-Agent extracts the 
information by distinguishing the formats. It also learns 
the property values from examples for the future 
extraction.

The authors have proved that the filtering method is 
effective for some product category which has noise 
items to some extent and the system actually reduce a 
bidder’s work load to select an item to bid; even so, 
NTM-agent has two problems. One is the preparation of 
the domain knowledge and the other is the low accuracy 
of item filtering. Domain knowledge includes: template 
for the search result pages, template for the item’s pages, 
and property names. They are necessary for general 
extraction but which means the system cannot be easily 
adapted to a new website. Besides, it uses correlation
rules to filter out noise items. CADBid targets the same 
objective and we overcome the latter problem. The 
accuracy is strengthened by our sophisticated classifier.

2.2: DATA CLEANING
With the prevalence of web pages, many researches 

focus on web page cleaning. A web page usually consists 
of informative content and non-informative content. 
Informative content is what users are interested in, like a 
news article in CNN.com. Non-informative content is 
generated dynamically, containing advertisements, 
image-maps, plug-ins, logos, counters, search boxes, 
category information, navigational links, related links, 
footers and headers, and copyright information. The 
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purpose of web page cleaning is to filter out 
non-informative content. At the same time, the result of 
data mining could be reinforced.

The common step is to subdivide the whole web page 
into smaller semantically homogeneous blocks. The step 
is called “segmentation.” Many approaches have been 
proposed for automatic page segmentation, which fall 
into two categories. One mainly depends on HTML DOM 
trees [4] [5]; the other uses visual cues such as location, 
color, and separators to simulate how a user understands 
the semantic structure of a page [9][10][11]. Due to the 
heterogeneity in description area and JavaScript codes, 
we usually get wrong visual cues about HTML tags. 
Finally we decide to segment pages depending on DOM 
trees.

After segmentation, some researches quantify the 
degree of importance and give every block a score [3][4];
others view each block as an instance, and define feature 
sets for classification model [5]. In our work, we view it 
as a classification problem. Informative block is the block 
which contains genuine product descriptions. The block 
which contains ads and instructions is considered 
non-informative block. The difference between them is 
the semantics inside the block. We use the tokens as 
feature set for classification model.

Yi and Liu [3] propose a noise elimination technique 
based on the following observation: In a website, blocks 
of noisy content usually have some common contents and 
presentation styles, while those of main content are often 
diverse in their actual content and presentation styles. 
Based on this observation, they propose a tree structure
Site Style Tree (SST), which is used to capture the 
common presentation styles and the actual contents of the 
pages in a given Web site. Then they introduce an 
information based measure to determine that given parts
of the SST represent noises or main contents. By mapping 
this page to the SST, noises within given page can be 
detected and eliminated.

Lin and Ho [4] first partitions a page into several 
content blocks according to HTML tag <TABLE> in a 
Web page. Based on the occurrence of the features (terms) 
in the set of pages, it calculates entropy value of each 
feature. According to the entropy value of each feature in 
a content block, the entropy value of the block is defined. 
By analyzing the information measure, they propose a 
method to dynamically select the entropy-threshold that 
partitions blocks into either informative or redundant.

Moreover, our work is related to email data cleaning.
Tang et al. [12] proposes a cascaded approach and makes 
a significant improvement on extraction accuracy when 
applying to term extraction. The system takes advantage 
of classification model and defines an excellent feature 
sets. Here the classification instances are sentences in an 
email, which are different from blocks in web page 
cleaning.

3: CADBID SYSTEM 

The user has two ways to send information to 
CADBid. The user can input the information through the 
web form in CADBid. The other way is very friendly to 
the user. When the user is surfing on eBay and comparing 
some items, he can use CADBid through a bookmark 
which redirects the user to CADBid. CADBid is able to 
get information of what the user was comparing by some 
JavaScript codes inside the bookmark.

CADBid provides 5 pre-trained category models. In 
web form, user can choose one of them which the product 
belong to. If the user doesn’t want to choose the model, 
CADBid will automatically select the most appropriate 
model from the five models. The mechanism is default 
when the user uses CADBid through a bookmark in 
previous scenario. 

Here we use a simple mechanism to achieve this 
function. We use product name along with one of the five 
model names as search keywords, and query Google. The 
model name which gets the most number of results is the 
most appropriate one. 

          Figure 4 System Architecture

Figure 4 shows system architecture. After getting the 
information from the user, CADBid uses the product 
name to query eBay and extracts all the information about 
the result items in result pages. For example, item title, 
current price, and time-left are extracted. Compared to 
descriptions in the detailed page, they are basic features
of these result items.

In order to filter items, CADBid can just use the basic 
features. We define a feature set to do the item filtering 
according to this basic information. On the other side, 
CADBid has another path of process to do item filtering. 
We clean the descriptions in detailed page and use them 
as additional features in item filtering. The steps include 
segmenting the description area and using another 
classification model filtering out unnecessary descriptions 
(The details about cleaning of descriptions are in Section 
3.5). By the assistance of clean descriptions, we hope to 
get a better result in item filtering compared to basic 
features.

After item filtering, main products are classified by 
CADBid. CADBid uses supervised text mining
techniques to extract important product properties from 



5

the detailed page. In the last step, CADBid generates a 
list showing these main products with their properties. 
The user can compare them easily.

3.1: CLASSIFICATION MODEL

We make use of Support Vector Machines (SVM) [6]
as the classification model. The SVM implementation we 
use is from Weka [13]. We use default setup because it 
works best for our tasks. 

3.2: PREPROCESSING

We collect data from eBay because it’s the most 
popular auction website. As mentioned before, we 
prepare data for 5 product categories and assign 4 popular 
products for each category (ex: Motorola V3i). We collect 
100 product pages for one product. There are totaling
2,000 pages which are downloaded randomly from eBay. 
The numbers of target items in every product are different. 
The proportion of main products to accessories is about
1:9. For every page, we extracted title, seller name, 
current price, and its category. The HTML text of 
description area is stored in a text file for subsequent
description cleaning.

3.3: ITEM FILTERING

In our problem, instances in classification are auctions
in eBay. Item filtering consists of two stages: training
phase and testing phase. In training phase, we prepare an 
input table. Input table consists of labeled instances along 
with their feature values. The label represents whether the 
auction is target item or not. The feature values are 
computed based on the feature set we define. SVM model 
is generated according to the input table. The key issue 
here is how to define an effective feature set. The feature
set is as follows:
 Price: The current price of each auction divided by 

average price.
 Frequent tokens in title: We count the frequencies

of every token occurred in all titles belonged to the 
same product category. Stopwords are removed first. 
Then we propose a sequence of binary values 
representing frequent words rank 1 to rank 50.

 Catalog: An auction belongs to only one node of 
catalog tree. The catalog tree is compiled by eBay
and they hope that each seller choose the correct 
node selling their products. For example, cell phone 
should be listed in “Cell Phones / Phones Only”, not 
“Cell Phones / Accessories”. However, due to 
unexpected reason, there are always some auctions 
listed in wrong node. For every product, we count the 
occurrences of every node and use the number to 
represent the node feature.

 Descriptions: These features are from raw 
descriptions or clean descriptions. We will elaborate 

it in experiments.

3.4: CLEANING OF DESCRIPTIONS

In description area, it’s not easy to find out useful 
information (genuine description) at first glance. Using 
data mining techniques or NLP techniques to extract 
useful data from the area isn’t easy, too. Various HTML
tags and script language adds to the complexity of this 
area.

Though complex, this area contains significant 
information which helps the bidder compare items. These 
genuine descriptions could be used to enhance the 
accuracy of item filtering in CADBid. In opposition to 
genuine description, other information in the area is
regarded as noises. In order to utilize genuine descriptions 
in item filtering, we build another classification model to 
extract them in description area.

HTML page can be parsed into a DOM tree 
(Document Object Model tree). Every HTML tag in the 
page means a node in the DOM tree. In HTML’s 
viewpoint, anything between start tag “<xxx>” and end 
tag “</xxx>” are viewed as inner contents belonged to the 
tag “xxx”. Inner contents may be plain text or other tags. 
Mapped to tree structure, inner contents are equivalent of 
children nodes. 

According to our observations in tree structure, we 
design an algorithm to segment the DOM tree into a 
number of sub-trees. These sub-trees represent different 
blocks in the description area. Based on the feature set we 
defined, every block has its own characteristic. We train a 
SVM model to filtering out unnecessary blocks. With the 
help of remaining blocks (genuine descriptions), the 
accuracy of item filtering is improved.

In abstract view, description area can be divided into 
blocks. Some are product descriptions, others are 
advertisement, and still others are instructions of 
transaction. Every block has its own corresponding 
sub-tree in the DOM tree. By applying our algorithm, we 
could segment the area into some separate blocks by 
dividing the DOM tree into some sub-trees. Then we use
our classification model to classify these blocks.

Blocks containing genuine description are remained. 
Other blocks are rejected. We use these remained blocks 
to improve the item filtering, which is our main objective.

We develop a deep-first algorithm to segment the 
description area into blocks. First, we extract the HTML 
text of description area from an auction page. Second, we 
transform the text into a DOM tree. Here we use 
CyberNeko HTML parser [14] to complete the task. A 
DOM tree transformed by the parser is a tree structure. 
The structure provides many useful functions, like 
getChildNodes(), getNextSibling(), and getAttributes(). 
Third, we input the root node of the DOM tree into 
segmentation program. Finally, the program outputs the 
blocks information and their properties.
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In a composition, related contents are put together in a 
paragraph. Like the way we write composition, related 
contents are put together in an abstract block. From our 
empirical observation, sellers usually use some HTML 
tags to separate blocks. We define these HTML tags as 
Paragraph Tags. For examples, <TABLE> and <P> are 
Paragraph Tags. Except for these Paragraph Tags, other 
tags are used to decorate the content. We define these 
HTML tags Decorate Tags. For examples, <FONT> and 
<B> are Decorate Tags. In our algorithm, the way we 
deal with the node depends on the type of its tag.

Let’s look at the algorithm in detail. We traverse the 
DOM tree in a deep-first way. In line 1, we check all the 
children of node t. If all the children of node t are 
Decorate Nodes, we consider it a block. We merge all 
descendant nodes belong to t. All text belong to these 
descendant nodes are combined into a chunk of text. At 
the same time, we gather features of the block for 
subsequent classification. In line 7, the condition is 
matched while t is a terminal node. We have to extract the 
text it contains and the features. In line 12, we reject the 
node whose tag is one of <SCRIPT> and <STYLE>. 
Script codes and CSS codes are not related to the 
description. They are not what we need. In line 15, if 
above conditions are not matched, we use every child of t 
as input and recursively call the function getNodeText().

After the traverse, we get some blocks. In 
classification’s viewpoint, every block is an instance. We 
label each instance whether it’s positive or negative. The 
process is done by hands. Positive instance means it’s a 
genuine description. Negative instance means it’s a noise. 
We train a classification model by these labeled instances. 
Then we use the model to get genuine descriptions from 
incoming auction pages.

The features we use are as follows:

 Number of characters: Total number of true text in 
the block.

 Co-occurrence in title and in block: A block which 
has token matching the item title is more likely to 
contain genuine descriptions. The value is the total 
number of matched token in the block.

 Occurrence of common tags: We define 26 common 
tags and the value is total occurrence of specific tag 
divided by number of characters.

 Tokens with high mutual information: The concept 
is similar to entropy in information theory [15]. It 
considers term distribution among the classes and has 
been found to be particularly effective.

4: EXPERIMENT

4.1: ITEM FILTERING

In item filtering, we run some setups to see the results 
while using basic features, features from raw descriptions, 
and features from clean descriptions. The dataset is the 
same as we mentioned in Section 3.3. For the data in each 
category, we run a 4-fold cross-validation.

First, we run an experiment with basic features as a 
baseline result. The experiment result is in Table 1. The 
results are different for different product categories. The 
category “Game Console” gets a worse result than other 
categories. By our observation, the differences between 
the four game consoles we assigned are huge. Some are 
handheld game consoles; the others are large-scale game 
consoles which are only played at home. 

Although the result is not very good, it’s sufficient for 
the bidder to filter out many accessory products. After 
basic item filtering, the proportion of main products to 
accessory products is from 1:9 to 3:1. Besides, the 
processing time is very short because we extract these 
basic features from list pages, not detailed pages. In terms 
of user of CADBid, short waiting time implies 
comfortable using experience.

In Figure 6, we show the comparison among basic 
features, features from raw descriptions, and features 
from clean descriptions. The features from raw 
descriptions or clean descriptions are all possible tokens 
occurring in the descriptions. Stopwords are removed but 
the numbers of raw features or clean features are still very 
big. 

Input: root node of DOM tree
Algorithm: getNodeText (Node t)
1 If all children of t are Decorate Tags
2 get all text belong to children of t;
3 merge all text;
4 obtain features from whole text;
5 Return 
6 End if
7 If t is a TEXT node
8 get text belong to t;
9 obtain features from the text;
10 Return
11 End if 
12 If t is one of {SCRIPT,STYLE} tag
13 Return 
14 End if 
15 While (Node child of t != NULL)
16 getNodeText(child);
17 End While

 Figure 5: Algorithm of page segmentation

Table 1: Result of basic item filtering
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In Figure 6, we see that the five lines all have a 
positive slope, which means the result is getting better 
from basic features, raw features, to clean features. From 
basic features to raw features, we all get an apparent 
improvement for the five categories. It means that 
information in descriptions is useful for filtering items. 
Clean features from clean descriptions are more useful 
than raw features because some information helpless to 
the classification model is removed. Here the useless 
information means ads and instructions of transaction in 
raw descriptions. By the comparison, we see that our 
cleaning of descriptions is useful while deciding the 
features for item filtering.

In spite of using all possible tokens as features gets 
good result, the processing time leads to a long waiting 
time. Processing time is equal to training time of 
classification model plus pre-processing time of data. To
avoid long processing time, we need a feature selection.

In setup 2, the difference between raw and clean 
descriptions is not obvious. Even raw descriptions
outperform clean descriptions in some categories, which 
is not what we suppose to be. But in setup 3, we see that 
clean descriptions outperform raw descriptions apparently. 
We see that using TF-IDF value instead of 0/1 affects the 
performance. In following setup 4-7, we use limited 
number of feature values. Clean descriptions always 
outperform raw descriptions.

To speed up the processing time, we simply calculate 
the frequency of all tokens occurring in raw or clean 
descriptions and use tokens as features with high 
frequency. We try four different numbers of features with 
high frequency. Table 2 shows the result.

Selected feature sets get results which are a little bit 
lower than result of feature set from full descriptions. As 
the number of selected features grows, the result is 
getting better. It’s reasonable that longer number of 
feature set provides more helpful information in 
classification. When we use the first 200 tokens with high 
frequency in clean descriptions as features, the average 
F1-measure is very close to features from all possible 
tokens in clean descriptions. In terms of processing time, 
selected feature needs a very short processing time, which 
is lower than one-sixth of full text in raw descriptions, 
low than one-fourth of full text in clean descriptions.

In designing CADBid, we think selected features are 
very useful. Instead of using feature set from full 
descriptions, we use selected feature set, which leads to a 
sufficient accuracy in item filtering and a bearable 
processing time.

4.2: CLEANING OF DESCRIPTIONS

We use 6 setups to see the effectiveness of different 
feature sets. The dataset is randomly picked from the 
whole blocks which are segmented from 2,000 pages
before. We picked 2,000 blocks as our dataset in 
description cleaning. Each category provides the same 
number of training instances. For every setup, we run a 
10 cross-validation. The result is in Table 3.

Table 3: Performance of descriptions cleaning

In the first setup we use basic features. They are 
“number of characters”, “co-occurrence in title and in 
block”, and “occurrence order in description area”. In the 
second setup we use basic features plus tag features. By 
comparing setup 1 and 2, we see that the tag information 
is not very helpful. The F1-measure only increases 0.5. 
We think it’s not easy to differentiate genuine 
descriptions from noise descriptions using tag 
information because the obvious difference between them 
is in vocabulary.

Setups 3-6 use above features plus tokens with higher 
mutual information. We try different number of tokens 
with the highest mutual information. The value of MI
features is 0 or 1 based on the existences of these tokens.

If we focus on the precision, we see that mutual 
information helps the performance remarkably. With a 

Precision Recall F1-measure

Basic 67.2 87.3 75.9

Basic+Tag 67.9 87.4 76.4

All(MI 100) 71.9 90.8 80.2

All(MI 200) 74.9 90.4 81.9

All(MI 300) 76.3 89.8 82.5

All(MI 400) 77.3 90.1 83.2

Figure 6: Comparison among three different feature sets Table 2: Performance of descriptions cleaning
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higher number of MI features, the precision gets higher, 
but the improvement is getting small while the number of 
MI features is getting higher. More features mean more 
information, but the feature set with “MI 100” has already 
included the most important tokens in descriptions 
filtering. So the new incoming tokens with high mutual 
information give less help to the classification model, 
which leads to a small improvement in precision.

In future work, we plan to combine CADBid with 
some information extraction techniques. It’s more 
powerful while able to extract data from multiple auction 
websites. In addition to auction websites, it’s also 
possible to make CADBid process data from online 
shopping websites. It a worthy task to make the users get 
what they want on e-commerce websites.

5: CONCLUSION
In the research, we focus on the scenario of bidding 

on auction websites. We have investigated 2 problems: 
item filtering and descriptions cleaning. We have 
proposed a 2-step approach. First we use classification
model to filter out noise descriptions. Then we use 
genuine descriptions to differentiate main products from 
accessories by another classification model. Using these
techniques above, we implemented a system CADBid
which helps the bidders compare items easily.

Description cleaning is helpful in two points. First, it 
makes the bidder compare items fast and easily than 
before. Showing only genuine descriptions, the bidder 
doesn’t have to pay attention to descriptions unrelated to 
the item. Second, by the help of clean description, the 
accuracy of item filtering is improved. At the same time, 
we don’t need much time to train the model.

Experimental results show that our approach has a 
high accuracy in item filtering. With a good feature 
selection mechanism, classification with clean 
descriptions outperforms that with raw descriptions. In 
descriptions cleaning, the accuracy is not very good but 
sufficient for our requirement.

In future work, we plan to combine CADBid with 
some information extraction techniques. It’s more 
powerful while able to extract data from multiple auction 
websites. In addition to auction websites, it’s also 
possible to make CADBid process data from online 
shopping websites. It a worthy task to make the users get 
what they want on e-commerce websites.
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