Part III Nonlinear Constrained Optimization Chapter 20 PROBLEMS WITH INEQUALITY CONSTRAINTS

Chia-Hui Chang (張嘉惠) National Central University 2008.1.12

KARUSH-KUHN-TUCKER (KKT) CONDITION

Definition 20.1 An inequality constraint $g_j(x) \leq 0$ is said to be *active* at x^* if $g_j(x^*) = 0$. It is *inactive* at x^* if $g_j(x^*) < 0$.

Definition 20.2 Let x^* satisfy $h(x^*) = 0$, $g(x^*) \le 0$, and let $J(x^*)$ be the index set of active inequality constraints, that is,

$$J(\boldsymbol{x}^{\star}) \triangleq \{j: g_j(\boldsymbol{x}^{\star}) = 0\}.$$

Then, we say that x^* is a regular point if the vectors

$$\nabla h_i(\boldsymbol{x}^*), \ \nabla g_j(\boldsymbol{x}^*), \ 1 \le i \le m, \ j \in J(\boldsymbol{x}^*)$$

are linearly independent.

KKT Theorem

Theorem 20.1 Karush-Kuhn-Tucker (KKT) Theorem. Let $f, h, g \in C^1$. Let x^* be a regular point and a local minimizer for the problem of minimizing f subject to $h(x) = 0, g(x) \le 0$. Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that 1. $\mu^* \ge 0$; 2. $Df(x^*) + \lambda^* Dh(x^*) + \mu^* Dg(x^*) = 0^T$; Lagrange 3. $\mu^* g(x^*) = 0$. $u, g + u_2 g + \cdots + u_p g = 0$

Implication

 If g_j(x*) < 0, then u_j*=0

 $Df(x^*) = -(u^*) Dg(x^*)$

Example 20.1 A graphical illustration of the Karush-Kuhn-Tucker (KKT) theorem is given in Figure 20.1. In this two-dimensional example, we have only inequality constraints $q_j(x) \leq 0, j = 1, 2, 3$. Note that the point x^* in the figure is indeed a minimizer. The constraint $g_3(x) \le 0$ is inactive, that is, $g_3(x^*) < 0$; hence $\mu_3^* = 0$. By the KKT theorem, we have

$$\nabla f(\boldsymbol{x}^*) + \mu_1^* \nabla g_1(\boldsymbol{x}^*) + \mu_2^* \nabla g_2(\boldsymbol{x}^*) = \boldsymbol{0},$$

or, equivalently,

Illustration of the Karush-Kuhn-Tucker (KKT) theorem Figure 20.1

KKT necessary condition

- 1, $\mu^* \ge 0$;
- 2. $Df(x^*) + \lambda^{*T} Dh(x^*) + \mu^{*T} Dg(x^*) = 0^T;$
- 3. $\mu^{*T}g(x^*) = 0;$
- ✓ 4. $h(x^*) = 0;$
- ✓ 5. $g(x^*) \le 0$.

Proof of KKT Theorem

- Let x* be a regular local minimizer of
 on the set {x: h(x)=0, g(x) 0}
- Then x* is also regular on the set {x: h(x)=0, $g_j(x)=0$, $j \Box J(x^*)$ }
- From Lagrange's theorem $Df(x^*) + \lambda^{*T}Dh(x^*) + \mu^{*T}Dg(x^*) = 0^T$,
- Implication: all $j \Box J(x^*)$, we have $u_j^*=0$;

Proof of KKT Theorem (Cont.)

• Show $u_{j}^* \square 0$ by contradiction

- Suppose $u_j^* < 0$, then $Dg_j(x^*)y \square 0$
- Consider Lagrange condition

$$\underbrace{Df(x^*)}_{j} + \underbrace{\lambda^{*T}Dh(x^*)}_{j} + \underbrace{\mu_j^*Dg_j(x^*)}_{i \neq j} + \underbrace{\sum_{i \neq j} \mu_i^*Dg_i(x^*)}_{i \neq j} = \mathbf{0}^T$$

$$\circ$$
 Implication $Df(x^*)y = -\mu_j^*Dg_j(x^*)y$.

$$Df(x^*)y < 0.$$

$$\frac{d}{dt}g_j(\boldsymbol{x}(t^*)) = Dg_j(\boldsymbol{x}^*)\boldsymbol{y} < 0,$$

Because the points x(t), $t \in (t^*, t^* + \min(\delta, \varepsilon)]$, are in \hat{S} , they are feasible points with lower objective function values than x^* . This contradicts the assumption that x^* is a local minimizer, and hence the proof is completed.

Maximization Problem

1.
$$\mu^* \ge 0;$$

2. $-Df(x^*) + \lambda^{*T}Dh(x^*) + \mu^{*T}Dg(x^*) = 0^T;$
3. $\mu^{*T}g(x^*) = 0;$
4. $h(x^*) = 0;$
5. $g(x^*) \le 0.$

Minimize A similar problem

Example 20.3 In Figure 20.3, the two points x_1 and x_2 are feasible points, that is, $g(x_1) \ge 0$ and $g(x_2) \ge 0$, and they satisfy the KKT condition.

The point x_1 is a maximizer. The KKT condition for this point (with KKT multiplier μ_1) is:

1. $\mu_1 \ge 0;$ 2. $\nabla f(x_1) + \mu_1 \nabla g(x_1) = 0;$ 3. $\mu_1 g(x_1) = 0;$ 4. $g(x_1) \ge 0.$ $\int (x) f(x) = 0;$

The point x_2 is a minimizer of f. The KKT condition for this point (with KKT multiplier μ_2) is:

- 1. $\mu_2 \leq 0;$
- 2. $\nabla f(x_2) + \mu_2 \nabla g(x_2) = 0;$
- 3. $\mu_2 g(x_2) = 0;$
- 4. $g(x_2) \ge 0$.

Second Order Conditions

Figure 20.4 Some possible points satisfying the KKT condition for problems with positive constraints (adapted from [9])

X170 X230

