Application to Data Compression

Suppose a satellite transmits a picture con-
taining 1000x 1000 pixels. If the color of each
pixel is digitized, this information can be rep-
resented in @ 1000x1000 matrix A.

Suppose we know an SVD

A=o01u1Y] + ...+ ortry?,

Even if the rank r of the matrix A is large, most
of the singular values will typically be very small
(relatively to o1). If we neglect those, we get a
good approximation A ~ oqi191 +. ..+ osiisvs
where s is much smaller than r.

For example, if we choose s = 10, we need to
transmit only the 20 vectors ojiuq,...,010U10
and ¥y,...,710 in R1990 that is, 20,000 num-
bers.



Application to Information Retrieval

Consider the problem of searching a database
for documents. If there are m possible key
words and a total of n documents. Then the
database can be represented by a m xn matrix
A.

Two of the main problems are polysemy (words
having multiple meanings) and synonymy (mul-
tiple words having the same meaning).

If we think of our database as an approxima-
tion. Some of the entries may contain ex-
traneous components due to polysemy, and
some may miss including components because
of synonymy.

Suppose it were possible to correct for these
problems and come up with a perfect database

matrix P. Let E = A—- P, then A = P+ FE.
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We can think of E as a matrix representing the
errors.

Latent semantic indexing (LSI)

The idea of LSI is that the lower-rank matrix
may still provide a good approximation to P
and, may actually involve less error.

The lower-rank approximation can be obtained
by truncating the outer product expansion of
the singular value decomposition of A. This is
equivalent to setting

Ogt1 =0g42=...=o0n=20

and then setting As = Us>ZsV.!, the compact
form of the singular value decomposition.

Speedup
The matrix vector multiplication ATJ requires
a total of mn scalar multiplications.



On the other hand, Al = V,>,UI and the
multiplication Al'q = Vs(Zs(UL'7)) requires a
total of s(m 4+ n + 1) scalar multiplications.

Reference
S. J. Leon, Linear algebra with applications,
6th Ed., Prentice Hall. 2002.



Applications to Statistics

Matrix of observations

An example of two-dimensional data is given
by a set of weights and heights of N college
students. Let X, denote the observation vec-
tor in R? that lists the weight and height of the
7th student. Then, the matrix of observation
has the form

w1 wp ... WHN
hi ho ... hy
T 1 T
X{ Xo ... Xy

Mean and Covariance

To prepare for principle component analysis,
let | X7 ... Xy ] be a p x N matrix of obser-
vations. The sample mean, M, of the obser-
vation vectors is given by

1
M—N(X1+---+XN>



Let
X, =X, — M
The columns of the p x N matrix
B=[X X> ... Xy]

have a zero sample mean, and B is said to be

iN mean-deviation form.

The (sample) covariance matrix IS the p X N
matrix S defined by

1

S = BB

The entries s;; is called the variance of z;.

The total variance of the data is the sum of
the variances on the diagonal of S, totalvariance =
trace(S).

The entries s;; for ¢ # j is called the covariance
of x; and ;.



Principle Component Analysis

Assume that the matrix X = | X1 ... Xy |
IS already in mean-deviation form. The goal
of principle component analysis is to find an
orthogonal p x p matrix P = [ Uy ... Up } that
determines a change of variable, X = PY, or

L1 Y1
X
| Tp | | Yp |
such that the new variables yi,yo,...,yp are

uncorrelated and are arranged in order of de-
creasing variance.

Let S = 2:XX" be the covariance matrix
of X. Since the covariance matrix of ¥ =

Y1 ... Yy |is Y YT = A (PTX)(PTX)T =
PTSP. So the desired orthogonal matrix P is
one that makes P1'SP diagonal.



Let D be a diagonal matrix with the eigenval-
ues Ai,...,Ap Oof S on the diagonal, arranged
that Ay > Ao > ... > Ap > 0, and let P be an
orthogonal matrix whose columns are the cor-
responding unit eigenvectors wuy,...,up. Then
PI'spP =D and S = PDP'.

‘The unit eigenvectors uy,...,up are called the
principle components Of the data. The first
principle component u; determines the new
variable y; in the following way. Let cq1,...,¢p
be the entries in uy. Since ui is the first row

of P’ the equation Y = P X shows that

Y1 = uile =c1x1 +cpxo + ...+ cpxp

Thus, yq is a linear combination of the original
variables z1,x5,...,xp, Uusing the entries in the
eigenvector w1 as weights.



Reducing the Dimension

Principle component analysis is potentially valu-
able for applications in which most of the vari-
ation in the data is due to variations in only a
few of the new variables, y1,yo,...,yp.

The variance of Y; IS Aj, and the quotient
Aj/trace(S) measures the fraction of the total
variance that is captured by y;.

Reference
D. C. Lay, Linear algebra and its applications,
2nd Ed. Addison-Wesley, 2000.



