Applied Linear Algebra OTTO BRETSCHER

http://www.prenhall.com/bretscher

Chapter 5
Orthogonality and Least Squares

Chia-Hui Chang
Email: chia@csie.ncu.edu.tw

5.1 ORTHONORMAL BASES AND ORTHOGONAL PROJECTIONS

Not all bases are created equal.
Definition. 5.1.1
Qrthogonality, length, unit vectors
a. Tow vectors \vec{v} and \vec{w} in R^{n} are called perpendicular or orthogonal if $\vec{v} \cdot \vec{w}=0$.
b. The length (or magnitude or norm) of a vector \vec{v} in R^{n} is $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}$.
c. A vector \vec{u} in R^{n} is called a unit vector if its length is 1 , (i.e., $\|\vec{u}\|=1$, or $\vec{u} \cdot \vec{u}=1$).

Explanation:

If \vec{v} is a nonzero vector in R^{n}, then

$$
\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}
$$

is a unit vector.

Definition. 5.1.2 Orthonormal vectors

 The vector $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}$ in R^{n} are called orthonormal if they are all unit vectors and orthogonal to one another:$$
\overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}=\left\{\begin{array}{lll}
1 & \text { if } & i=j, \\
0 & \text { if } & i \neq j .
\end{array}\right.
$$

Example. 1.

The vectors $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{n}}$ in R^{n} are orthonormal.

Example. 2.
For any scalar α, the vectors $\left[\begin{array}{c}\cos \alpha \\ \sin \alpha\end{array}\right],\left[\begin{array}{r}-\sin \alpha \\ \cos \alpha\end{array}\right]$ are orthonormal.

Example. 3. The vectors

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{r}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]
$$

in R^{4} are orthonormal. Can you find a vector $\overrightarrow{v_{4}}$ in R^{4} such that all the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ are orthonormal.

The following properties of orthonormal vectors are often useful:

Fact 5.1.3
a. Orthonormal vectors are linearly independent.
b. Orthonormal vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ in R^{n} form a basis of R^{n}.

Proof

a. Consider a relation

$$
c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{i} \overrightarrow{v_{i}}+\cdots+c_{m} \overrightarrow{v_{m}}=\overrightarrow{0}
$$

Let us form the dot product of each side of this equation with $\overrightarrow{v_{i}}$:

$$
\begin{gathered}
\left(c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{i} \overrightarrow{v_{i}}+\cdots+c_{m} \overrightarrow{v_{m}}\right) \cdot \overrightarrow{v_{i}}= \\
\overrightarrow{0} \cdot \overrightarrow{v_{i}}=0 .
\end{gathered}
$$

Because the dot product is distributive.

$$
c_{i}\left(\overrightarrow{v_{i}} \cdot \overrightarrow{v_{i}}\right)=0
$$

Therefore, $c_{i}=0$ for all $i=1, \ldots, m$.
b. Any n linearly independent vectors in R^{n} form a basis of R^{n}.

Definition. 5.1.4 Orthogonal complement Consider a subspace V of R^{n}. The orthogonal complement V^{\perp} of V is the set of those vectors \vec{x} in R^{n} that are orthogonal to all vectors in V :

$$
V^{\perp}=\left\{\vec{x} \text { in } R^{n}: \vec{v} \cdot \vec{x}=0, \text { for all } \vec{v} \text { in } V\right\}
$$

Fact 5.1.5 If V is a subspace of R^{n}, then its orthogonal complement V^{\perp} is a subspace of R^{n} as well.

Proof
We will verify that V^{\perp} is closed under scalar multiplication and leave the verification of the two other properties as Exercise 23. Consider a vector \vec{w} in V^{\perp} and a scalar k. We have to show that $k \vec{w}$ is orthogonal to all vectors \vec{v} in V . Pick an arbitrary vector \vec{v} in V . Then, $(k \vec{w}) \cdot \vec{v}=k(\vec{w} \cdot \vec{v})=0$, as claimed.

Orthogonal projections

See Figure 5.

The orthogonal projection of a vector \vec{x} onto one-dimentaional subspace V with basis \vec{v}_{1} (unit vector) is computed by:

$$
\operatorname{proj}_{V} \vec{x}=\vec{w}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}
$$

Now consider a subspace V with arbitrary dimension m. Suppose we have an orthonormal basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ of V. Find \vec{w} in V such that $\vec{x}-\vec{w}$ is in V^{\perp}. Let

$$
\vec{w}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}
$$

It is required that

$$
\overrightarrow{x-\vec{w}}=\vec{x}-c_{1} \vec{v}_{1}-c_{2} \vec{v}_{2}-\cdots-c_{m} \vec{v}_{m}
$$

is perpendicular to V; i.e.:

$$
\begin{aligned}
& \vec{v}_{i} \cdot\left(\overrightarrow{x-\vec{w})=\vec{v}_{i} \cdot\left(\vec{x}-c_{1} \vec{v}_{1}-c_{2} \vec{v}_{2}-\cdots-c_{m} \vec{v}_{m}\right), ~\left({ }^{2}\right)}\right. \\
& =\vec{v}_{i} \cdot \vec{x}-c_{1}\left(\vec{v}_{i} \cdot \vec{v}_{1}\right)-\cdots-c_{i}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)-\cdots-c_{m}\left(\vec{v}_{i} \cdot \vec{v}_{m}\right) \\
& =\vec{v}_{i} \cdot \vec{x}-c_{i}=0
\end{aligned}
$$

The equation holds if $c_{i}=\vec{v}_{i} \cdot \vec{x}$.
Therefore, there is a unique \vec{w} in V such that $\vec{x}-\vec{w}$ is in V^{\perp}, namely,

$$
\vec{w}=\left(\vec{v}_{1} \cdot \vec{x}\right) \vec{v}_{1}+\left(\vec{v}_{2} \cdot \vec{x}\right) \vec{v}_{2}+\cdots+\left(\vec{v}_{m} \cdot \vec{x}\right) \vec{v}_{m}
$$

Fact 5.1.6 Orthogonal projection

Consider a subspace V of R^{n} with orthonormal basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}$. For any vector \vec{x} in R^{n}, there is a unique vector \vec{w} in V such that $\vec{x}-\vec{w}$ is in V^{\perp}. This vector \vec{w} is called the orthogonal projection of \vec{x} onto V, denoted by $\operatorname{proj}_{V} \vec{x}$. We have the formula

$$
\operatorname{proj}_{V} \vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}+\cdots+\left(\overrightarrow{v_{m}} \cdot \vec{x}\right) \overrightarrow{v_{m}} .
$$

The transformation $T(\vec{x})=\operatorname{proj}_{V} \vec{x}$ from R^{n} to R^{n} is linear.

Example. 4
Consider the subspace $V=\mathrm{im}(\mathrm{A})$ of R^{4}. where

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & -1 \\
1 & 1
\end{array}\right]
$$

Find $\operatorname{proj}_{V} \vec{x}$, for

$$
\vec{x}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
7
\end{array}\right]
$$

Solution

The two columns of A form a basis of V. Since they happen to be orthogonal, we can construct an orthonormal basis of V merely by dividing these two vectors by their length (2 for both vectors):

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{r}
1 / 2 \\
-1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right]
$$

Then,

$$
\begin{gathered}
\operatorname{proj}_{V} \vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}+\left(\overrightarrow{v_{2}} \cdot \vec{x}\right) \overrightarrow{v_{2}}=6 \overrightarrow{v_{1}}+2 \overrightarrow{v_{2}}= \\
{\left[\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
2 \\
4
\end{array}\right] .}
\end{gathered}
$$

To check this answer, verify that $\vec{x}-\operatorname{proj}_{V} \vec{x}$ is perpendicular to both $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.

What happens when we apply Fact 5.1.6 to the subspace $V=R^{n}$ of R^{n} with orthonormal basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{n}}$? Clearly, $\operatorname{proj}_{V} \vec{x}=\vec{x}$, for all \vec{x} in R_{n}. Therefore,

$$
\vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}+\cdots+\left(\overrightarrow{v_{n}} \cdot \vec{x}\right) \overrightarrow{v_{n}},
$$

for all \vec{x} in R^{n}. See Figure 7 .

Fact 5.1.7
Consider an orthonormal basis $\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{n}}$ of R^{n}. Then,

$$
\vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}+\cdots+\left(\overrightarrow{v_{n}} \cdot \vec{x}\right) \overrightarrow{v_{n}},
$$

for all \vec{x} in R^{n}.

This is useful for compute the B-coordinate, since $c_{i}=\vec{v}_{i} \cdot \vec{x}$.

Example. 5

By using paper and pencil, express the vector $\vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ as a linear combination of

$$
\overrightarrow{v_{1}}=\frac{1}{3}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right], \overrightarrow{v_{3}}=\frac{1}{3}\left[\begin{array}{r}
-2 \\
1 \\
2
\end{array}\right]
$$

Solution

Since $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ is an orthonormal basis of R^{3}, we have
$\vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}+\left(\overrightarrow{v_{2}} \cdot \vec{x}\right) \overrightarrow{v_{2}}+\left(\overrightarrow{v_{3}} \cdot \vec{x}\right) \overrightarrow{v_{3}}=3 \overrightarrow{v_{1}}+$ $\overrightarrow{v_{2}}+2 \overrightarrow{v_{3}}$.

From Pythagoras to Cauchy

Example. 6

Consider a line L in R^{3} and a vector \vec{x} in R^{3}. What can you say about the relationship between the lengths of the vectors \vec{x} and $\operatorname{proj}_{L} \vec{x}$?

Solution

Applying the Pythagorean theorem to the shaded right triangle in Figure 8, we find that

$$
\left\|\operatorname{proj}_{L} \vec{x}\right\| \leq\|\vec{x}\| .
$$

The statement is an equality if (and only if) \vec{x} is on L.

Does this inequality hold in higher dimensional cases? We have to examine whether the Pythagorean theorem holds in R^{n}.

Fact 5.1.8 Pythagorean theorem
Consider two vectors \vec{x} and \vec{y} in R^{n}. The equation

$$
\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}
$$

holds if (and only if) \vec{x} and \vec{y} are orthogonal. (See Figure 9.)

Proof The verification is straightforward:
$\|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y})$
$=\vec{x} \cdot \vec{x}+2(\vec{x} \cdot \vec{y})+\vec{y} \cdot \vec{y}$
$=\|\vec{x}\|^{2}+2(\vec{x} \cdot \vec{y})+\|\vec{y}\|^{2}$
$=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}$
if (and only if) $\vec{x} \cdot \vec{y}=0$.

Fact 5.1.9 Consider a subspace V of R^{n} and a vector \vec{x} in R^{n}. Then,

$$
\left\|\operatorname{proj}_{V} \vec{x}\right\| \leq\|\vec{x}\| .
$$

The statement is an equality if(and only if) \vec{x} is in V.

Proof we can write $\vec{x}=\operatorname{proj}_{V} \vec{x}+\left(\vec{x}-\operatorname{proj}_{V} \vec{x}\right)$ and apply the Pythagorean theorem(see Figure 10):

$$
\|\vec{x}\|^{2}=\left\|\operatorname{proj}_{V} \vec{x}\right\|^{2}+\left\|\vec{x}-\operatorname{proj}_{V} \vec{x}\right\|^{2} .
$$

It follows that $\left\|\operatorname{proj}_{V} \vec{x}\right\| \leq\|\vec{x}\|$, as claimed.

Let V be a one-dimensional subspace of R^{n} spanned by a(nonzero) vector \vec{y}. We introduce the unit vector

$$
\vec{u}=\frac{1}{\|\vec{y}\|} \vec{y}
$$

in V. (See Figure 11.)
We know that

$$
\operatorname{proj}_{V} \vec{x}=(\vec{u} \cdot \vec{x}) \vec{u}=\frac{1}{\|\vec{y}\|^{2}}(\vec{y} \cdot \vec{x}) \vec{y} .
$$

for any \vec{x} in R^{n}. Fact 5.1 .9 tells us that

$$
\begin{gathered}
\|\vec{x}\| \geq\left\|\operatorname{proj}_{V} \vec{x}\right\|=\left\|\frac{1}{\| \overrightarrow{y^{2}}}(\vec{y} \cdot \vec{x}) \vec{y}\right\|= \\
\frac{1}{\|\vec{y}\|^{2}}|\vec{y} \cdot \vec{x}|\|\vec{y}\| .
\end{gathered}
$$

To justify the last step, note that $\|k \vec{v}\|=|k| \|$ $\vec{v} \|$, for all vectors \vec{v} in R^{n} and all scalars k. (See Exercise 25(a).) We conclude that

$$
\frac{|\vec{x} \cdot \vec{y}|}{\|\vec{y}\|} \leq\|\vec{x}\| .
$$

Fact 5.1.10 Cauchy-Schwarz inequality If \vec{x} and \vec{y} are vectors in R^{n}, then

$$
|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\| .
$$

The statement is an equality if (and only if) \vec{x} and \vec{y} are parallel.

Definition. 5.1.11

Angle between two vectors Consider two nonzero vectors \vec{x} and \vec{y} in R^{n}. The angle α between these vectors is defined as

$$
\cos \alpha=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \vec{y} \|} .
$$

Note that α is between 0 and π, by definition of the inverse cosine functiion.

Example. 7

Find the angle between the vectors

$$
\vec{x}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \text { and } \vec{y}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] .
$$

Solution

$$
\begin{gathered}
\cos \alpha=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|\vec{y}\|}=\frac{1}{1 \cdot 2}=\frac{1}{2} \\
\alpha=\frac{\pi}{3}
\end{gathered}
$$

Correlation

Consider two characteristics of a population, with deviation vectors \vec{x} and \vec{y}. There is a positive correlation between the two characteristics if (and only if) $\vec{x} \cdot \vec{y}>0$.

Definition. 5.1.12

Correlation coefficient

The correlation coefficient r between two characteristics of a population is the cosine of the angle α between the deviation vectors \vec{x} and \vec{y} for the two characteristics:

$$
r=\cos (\alpha)=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \vec{y} \|}
$$

Exercise 5.1: 7, 9, 12, 19, 23, 24, 25, 28

