Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher

Chapter 5 Orthogonality and Least Squares

Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan

5.1 ORTHONORMAL BASES AND OR-THOGONAL PROJECTIONS

Not all bases are created equal.

Definition. 5.1.1

Qrthogonality, length, unit vectors

a. Tow vectors \vec{v} and \vec{w} in R^n are called perpendicular or orthogonal if $\vec{v} \cdot \vec{w} = 0$.

b. The length (or magnitude or norm) of a vector \vec{v} in R^n is $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$.

c. A vector \vec{u} in \mathbb{R}^n is called a unit vector if its length is 1, (i.e., $\|\vec{u}\| = 1$, or $\vec{u} \cdot \vec{u} = 1$).

Explanation:

If \vec{v} is a nonzero vector in \mathbb{R}^n , then

$$\vec{u} = \frac{1}{\|\vec{v}\|}\vec{v}$$

is a unit vector.

Definition. 5.1.2 Orthonormal vectors

The vector $\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}$ in \mathbb{R}^n are called orthonormal if they are all unit vectors and orthogonal to one another:

$$\vec{v_i} \cdot \vec{v_j} = \begin{cases} 1 & if \quad i = j, \\ 0 & if \quad i \neq j. \end{cases}$$

Example. 1.

The vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ in \mathbb{R}^n are orthonormal.

Example. 2.

For any scalar α , the vectors $\begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$, $\begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix}$ are orthonormal.

Example. 3. The vectors

$$\vec{v_1} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \vec{v_2} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ -1/2 \\ -1/2 \end{bmatrix}, \vec{v_3} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \\ -1/2 \end{bmatrix}$$

in R^4 are orthonormal. Can you find a vector $\vec{v_4}$ in R^4 such that all the vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}$ are orthonormal.

The following properties of orthonormal vectors are often useful: Fact 5.1.3

a. Orthonormal vectors are linearly independent.

b. Orthonormal vectors $\vec{v_1}, \ldots, \vec{v_n}$ in \mathbb{R}^n form a basis of \mathbb{R}^n .

Proof

a. Consider a relation

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_i \vec{v_i} + \dots + c_m \vec{v_m} = \vec{0}$$

Let us form the dot product of each side of this equation with $\vec{v_i}$:

$$(c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_i\vec{v_i} + \dots + c_m\vec{v_m}) \cdot \vec{v_i} = \vec{0} \cdot \vec{v_i} = 0.$$

Because the dot product is distributive.

$$c_i(\vec{v_i}\cdot\vec{v_i})=0$$

Therefore, $c_i = 0$ for all $i = 1, \ldots, m$.

b. Any *n* linearly independent vectors in \mathbb{R}^n form a basis of \mathbb{R}^n .

Definition. 5.1.4 **Orthogonal complement**

Consider a subspace V of \mathbb{R}^n . The orthogonal complement V^{\perp} of V is the set of those vectors \vec{x} in \mathbb{R}^n that are orthogonal to all vectors in V:

 $V^{\perp} = \{ \vec{x} \text{ in } R^n : \vec{v} \cdot \vec{x} = 0, \text{ for all } \vec{v} \text{ in } V \}.$

Fact 5.1.5 If V is a subspace of \mathbb{R}^n , then its orthogonal complement V^{\perp} is a subspace of \mathbb{R}^n as well.

Proof

We will verify that V^{\perp} is closed under scalar multiplication and leave the verification of the two other properties as Exercise 23. Consider a vector \vec{w} in V^{\perp} and a scalar k. We have to show that $k\vec{w}$ is orthogonal to all vectors \vec{v} in V. Pick an arbitrary vector \vec{v} in V. Then, $(k\vec{w})\cdot\vec{v}=k(\vec{w}\cdot\vec{v})=0$, as claimed.

Orthogonal projections

See Figure 5.

The orthogonal projection of a vector \vec{x} onto one-dimentational subspace V with basis \vec{v}_1 (unit vector) is computed by:

$$proj_V \vec{x} = \vec{w} = (\vec{v_1} \cdot \vec{x})\vec{v_1}$$

Now consider a subspace V with arbitrary dimension m. Suppose we have an orthonormal basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ of V. Find \vec{w} in V such that $\vec{x} - \vec{w}$ is in V^{\perp} . Let

$$\vec{w} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_m \vec{v}_m$$

It is required that

$$\vec{x-w} = \vec{x} - c_1 \vec{v_1} - c_2 \vec{v_2} - \dots - c_m \vec{v_m}$$

is perpendicular to V; i.e.:

$$\vec{v}_i \cdot (\vec{x} - \vec{w}) = \vec{v}_i \cdot (\vec{x} - c_1 \vec{v}_1 - c_2 \vec{v}_2 - \dots - c_m \vec{v}_m)$$
$$= \vec{v}_i \cdot \vec{x} - c_1 (\vec{v}_i \cdot \vec{v}_1) - \dots - c_i (\vec{v}_i \cdot \vec{v}_i) - \dots - c_m (\vec{v}_i \cdot \vec{v}_m)$$
$$= \vec{v}_i \cdot \vec{x} - c_i = 0$$

The equation holds if $c_i = \vec{v}_i \cdot \vec{x}$. Therefore, there is a unique \vec{w} in V such that $\vec{x} - \vec{w}$ is in V^{\perp} , namely,

 $\vec{w} = (\vec{v}_1 \cdot \vec{x})\vec{v}_1 + (\vec{v}_2 \cdot \vec{x})\vec{v}_2 + \dots + (\vec{v}_m \cdot \vec{x})\vec{v}_m$

Fact 5.1.6 Orthogonal projection

Consider a subspace V of \mathbb{R}^n with orthonormal basis $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$. For any vector \vec{x} in \mathbb{R}^n , there is a unique vector \vec{w} in V such that $\vec{x} \cdot \vec{w}$ is in V^{\perp} . This vector \vec{w} is called the orthogonal projection of \vec{x} onto V, denoted by $proj_V \vec{x}$. We have the formula

$$proj_V \vec{x} = (\vec{v_1} \cdot \vec{x})\vec{v_1} + \dots + (\vec{v_m} \cdot \vec{x})\vec{v_m}.$$

The transformation $T(\vec{x}) = proj_V \vec{x}$ from R^n to R^n is linear.

Example. 4

Consider the subspace V = im(A) of R^4 . where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Find $proj_V \vec{x}$, for

$$\vec{x} = \begin{bmatrix} 1\\ 3\\ 1\\ 7 \end{bmatrix}$$

Solution

The two columns of A form a basis of V. Since they happen to be orthogonal, we can construct an orthonormal basis of V merely by dividing these two vectors by their length (2 for both vectors):

$$\vec{v_1} = \begin{bmatrix} 1/2\\1/2\\1/2\\1/2 \end{bmatrix}, \vec{v_2} = \begin{bmatrix} 1/2\\-1/2\\-1/2\\1/2 \end{bmatrix}$$

Then,

$$proj_V \vec{x} = (\vec{v_1} \cdot \vec{x})\vec{v_1} + (\vec{v_2} \cdot \vec{x})\vec{v_2} = 6\vec{v_1} + 2\vec{v_2} = \begin{bmatrix} 3\\3\\3\\3 \end{bmatrix} + \begin{bmatrix} 1\\-1\\-1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 4\\2\\2\\4 \end{bmatrix}.$$

To check this answer, verify that \vec{x} - $proj_V \vec{x}$ is perpendicular to both $\vec{v_1}$ and $\vec{v_2}$.

What happens when we apply Fact 5.1.6 to the subspace $V=R^n$ of R^n with orthonormal basis $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$? Clearly, $proj_V \vec{x} = \vec{x}$, for all \vec{x} in R_n . Therefore,

$$\vec{x} = (\vec{v_1} \cdot \vec{x})\vec{v_1} + \dots + (\vec{v_n} \cdot \vec{x})\vec{v_n},$$

for all \vec{x} in \mathbb{R}^n . See Figure 7.

Fact 5.1.7

Consider an orthonormal basis $\vec{v_1}, \cdots, \vec{v_n}$ of \mathbb{R}^n . Then,

$$\vec{x} = (\vec{v_1} \cdot \vec{x})\vec{v_1} + \dots + (\vec{v_n} \cdot \vec{x})\vec{v_n},$$

for all \vec{x} in \mathbb{R}^n .

This is useful for compute the *B*-coordinate, since $c_i = \vec{v}_i \cdot \vec{x}$.

Example. 5

By using paper and pencil, express the vector $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ as a linear combination of

$$\vec{v_1} = \frac{1}{3} \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \vec{v_2} = \frac{1}{3} \begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \vec{v_3} = \frac{1}{3} \begin{bmatrix} -2\\1\\2 \end{bmatrix}.$$

Solution

Since $\vec{v_1}, \vec{v_2}, \vec{v_3}$ is an orthonormal basis of R^3 , we have

 $\vec{x} = (\vec{v_1} \cdot \vec{x})\vec{v_1} + (\vec{v_2} \cdot \vec{x})\vec{v_2} + (\vec{v_3} \cdot \vec{x})\vec{v_3} = 3\vec{v_1} + \vec{v_2} + 2\vec{v_3}.$

From Pythagoras to Cauchy

Example. 6

Consider a line L in R^3 and a vector \vec{x} in R^3 . What can you say about the relationship between the lengths of the vectors \vec{x} and $proj_L \vec{x}$?

Solution

Applying the Pythagorean theorem to the shaded right triangle in Figure 8, we find that

```
\parallel proj_L \vec{x} \parallel \leq \parallel \vec{x} \parallel .
```

The statement is an equality if (and only if) \vec{x} is on *L*.

Does this inequality hold in higher dimensional cases? We have to examine whether the Pythagorean theorem holds in \mathbb{R}^n .

Fact 5.1.8 Pythagorean theorem Consider two vectors \vec{x} and \vec{y} in \mathbb{R}^n . The equation

$$\| \vec{x} + \vec{y} \|^2 = \| \vec{x} \|^2 + \| \vec{y} \|^2$$

holds if (and only if) \vec{x} and \vec{y} are orthogonal. (See Figure 9.)

Proof The verification is straightforward: $\| \vec{x} + \vec{y} \|^2 = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y})$ $= \vec{x} \cdot \vec{x} + 2(\vec{x} \cdot \vec{y}) + \vec{y} \cdot \vec{y}$ $= \| \vec{x} \|^2 + 2(\vec{x} \cdot \vec{y}) + \| \vec{y} \|^2$ $= \| \vec{x} \|^2 + \| \vec{y} \|^2$ if (and only if) $\vec{x} \cdot \vec{y} = 0$. **Fact 5.1.9** Consider a subspace V of \mathbb{R}^n and a vector \vec{x} in \mathbb{R}^n . Then,

$$\parallel proj_V \vec{x} \parallel \leq \parallel \vec{x} \parallel.$$

The statement is an equality if (and only if) \vec{x} is in V.

Proof we can write $\vec{x} = proj_V \vec{x} + (\vec{x} - proj_V \vec{x})$ and apply the Pythagorean theorem(see Figure 10):

$$\| \vec{x} \|^2 = \| proj_V \vec{x} \|^2 + \| \vec{x} - proj_V \vec{x} \|^2.$$

It follows that $\parallel proj_V \vec{x} \parallel \leq \parallel \vec{x} \parallel$, as claimed.

Let V be a one-dimensional subspace of \mathbb{R}^n spanned by a(nonzero) vector \vec{y} . We introduce the unit vector

$$\vec{u} = \frac{1}{\|\vec{y}\|}\vec{y}$$

in V. (See Figure 11.) We know that

$$proj_V \vec{x} = (\vec{u} \cdot \vec{x})\vec{u} = \frac{1}{\|\vec{y}\|^2}(\vec{y} \cdot \vec{x})\vec{y}.$$

for any \vec{x} in \mathbb{R}^n . Fact 5.1.9 tells us that

$$\| \vec{x} \| \ge \| \operatorname{proj}_V \vec{x} \| = \| \frac{1}{\| \vec{y} \|^2} (\vec{y} \cdot \vec{x}) \vec{y} \| = \frac{1}{\| \vec{y} \|^2} | \vec{y} \cdot \vec{x} | \| \vec{y} \|.$$

To justify the last step, note that $||k\vec{v}|| = |k|||$ $\vec{v}||$, for all vectors \vec{v} in R^n and all scalars k. (See Exercise 25(a).) We conclude that

$$\frac{|\vec{x} \cdot \vec{y}|}{\|\vec{y}\|} \le \parallel \vec{x} \parallel.$$

Fact 5.1.10 Cauchy-Schwarz inequality If \vec{x} and \vec{y} are vectors in R^n , then

 $|\vec{x} \cdot \vec{y}| \le \parallel \vec{x} \parallel \parallel \vec{y} \parallel.$

The statement is an equality if (and only if) \vec{x} and \vec{y} are parallel.

Definition. *5.1.11*

Angle between two vectors Consider two nonzero vectors \vec{x} and \vec{y} in \mathbb{R}^n . The angle α between these vectors is defined as

$$\cos \alpha = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}.$$

Note that α is between 0 and π , by definition of the inverse cosine function.

Example. 7

Find the angle between the vectors

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

Solution

$$\cos \alpha = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{1}{1 \cdot 2} = \frac{1}{2}$$

$$\alpha = \frac{\pi}{3}$$

Correlation

Consider two characteristics of a population, with deviation vectors \vec{x} and \vec{y} . There is a positive correlation between the two characteristics if (and only if) $\vec{x} \cdot \vec{y} > 0$.

Definition. *5.1.12*

Correlation coefficient

The correlation coefficient r between two characteristics of a population is the cosine of the angle α between the deviation vectors \vec{x} and \vec{y} for the two characteristics:

$$r = cos(\alpha) = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

Exercise 5.1: 7, 9, 12, 19, 23, 24, 25, 28