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5.1 ORTHONORMAL BASES AND OR-
THOGONAL PROJECTIONS

Not all bases are created equal.
Definition. 5.1.1

Qrthogonality, length, unit vectors
a. Tow vectors v and w in R™ are called per-
pendicular or orthogonal if v-w = 0.

b. The length (or magnitude or norm) of a

- =

vector v in R"™ is ||¥]| = VU - U.

c. A vector u in R" is called a unit vector if its
length is 1, (i.e., ||[4]| =1, or 4-u =1).

Explanation:

If ¥ is a nonzero vector in R", then

=

U= Y

=

IS a unit vector.



Definition. 5.1.2 Orthonormal vectors
The vector vi,vs,...,vm In R™ are called or-
thonormal if they are all unit vectors and or-
thogonal to one another:

- 1 of i=j
' 0 if i#j.

Example. 1.

The vectors €1,e>,...,en, in R™ are orthonormal.

Example. 2.

—Sin«

For any scalar «, the vectors
COS &

Sin «

COS o ]
)

are orthonormal.



Example. 3. The vectors

[ 1/27 T 1/2° o 1/2°
I I 2~ 2 B B 0> T R S s
1= a2 P27 —12 0BT 12

1/2 - —1/2 | - —1/2 |

in R* are orthonormal. Can you find a vector
v in R* such that all the vectors vi,v5,03,04
are orthonormal.

The following properties of orthonormal vec-
tors are often useful:



Fact 5.1.3

a. Orthonormal vectors are linearly indepen-
dent.

b. Orthonormal vectors v, ..., vp in R™ form
a basis of R™.

Proof
a. Consider a relation

c1v1+covo+- - - v+ - - +emvm=0

Let us form the dot product of each side of
this equation with vj:

(c10i + cotd + -+ + ¢i0; + -+ + cmui) - 05 =
O0-v; =0.
Because the dot product is distributive.
c;(v; - v3) =0
Therefore, c; =0 forall:=1, ..., m.

b. Any n linearly independent vectors in R"
form a basis of R".



Definition. 5.1.4 Orthogonal complement
Consider a subspace V of R"™. The orthogonal
complement VX of V is the set of those vectors
Z in R™ that are orthogonal to all vectors in V':

Vi={Z in R*: ¢¥-£=0, for all ¥ in V }.

Fact 5.1.5 If V is a subspace of R", then its
orthogonal complement V-1 is a subspace of
R™ as well.

Proof

We will verify that V-1 is closed under scalar
multiplication and leave the verification of the
two other properties as Exercise 23. Consider
a vector & in V4 and a scalar k. We have
to show that kw is orthogonal to all vectors
v in V. Pick an arbitrary vector v in V. Then,
(kW) -v=k(w - ¥)=0, as claimed.



Orthogonal projections
See Figure 5.

T he orthogonal projection of a vector £ onto
one-dimentaional subspace V with basis 77 (unit
vector) is computed by:

projyZ = w = (v1 - T)vi

Now consider a subspace V with arbitrary di-
mension m. Suppose we have an orthonormal
basis v1,v2,...,Um Of V. Find w in V such that
Z—isin VL. Let

W = c1U1 + coUo + - -+ + cmUm

It is required that

—

T—W =T — C{U] — CoUD — + -+ — CmUm

IS perpendicular to V; i.e.:



U; - (37116) = 0; - (& — c1U1 — coUo — -+ — cmUm)

= U T—c1 (V- 01) = - - —¢i(U-03) = - - —em (V- Um)

17,L--:Y;’—ci=0

The equation holds if ¢; = v; - x.

Therefore, there is a unique w in V such that
7 — 0 is in V1, namely,

W= (V1 - T)VU1 + (V2 - )V + -+ + (Um - T)Um

Fact 5.1.6 Orthogonal projection

Consider a subspace V of R™ with orthonormal
basis v1,v>,...,um. FOr any vector £ in R"™, there
IS @ unique vector w in V such that z-w is in
VL. This vector @ is called the orthogonal
projection of £ onto V, denoted by projyx. We
have the formula

projyx=(vi - ¥)vi+- - +(vm - T)vm.

The transformation T'(¥) = projyx from R™ to
R™ is linear.



Example. 4

Consider the subspace V=im(A) of R*. where

1 11
1 -1
A= 1 -1
- 1 1 -
Find projyx, for
F g
= 3
11
- 7 -

Solution

The two columns of A form a basis of V. Since
they happen to be orthogonal, we can con-
struct an orthonormal basis of V merely by di-
viding these two vectors by their length (2 for
both vectors):



C1/27 T 1/2°
L 12 L | —1)2
1= 12 027 —1/2
| 1/2 . 1/2]

Then,

projy&=(vi - )vi+(v2 - T)vp=6vi+ 2vs=

3 1 4
3 —1| |2
3T 1T 2
3] | 1] | 4]

To check this answer, verify that z-projyx is
perpendicular to both v3 and v>.



What happens when we apply Fact 5.1.6 to
the subspace V=R" of R"™ with orthonormal
basis vy, va, -+, vn? Clearly, projyr=x, for all £
in Ry. Therefore,

= (v1 -%)v1+- -+ (vn - B)vp,
for all £ in R™. See Figure 7.

Fact 5.1.7
Consider an orthonormal basis v1,---,vp Of R™.
Then,

= (w1 -©)v1+- -+ (vp - ¥)vp,
for all £ in R™.

This is useful for compute the B-coordinate,

—

since ¢; = v; - .



Example. 5

By using paper and pencil, express the vector

1
r— | 2 | as a linear combination of
_3_
[ D ] 1 [ D ]
v_i:% 2 ,U_é:% —2 ,v_f:,:% 1
| 1] 2 2
Solution

Since v3,v5,03 is an orthonormal basis of R3,
we have

= (v1 - ¥)v1 + (V3 - ©)vs + (v3 - T)vz = 3v1 +
'U_é + 2v3.

10



From Pythagoras to Cauchy
Example. 6

Consider a line L in R3 and a vector # in R3.
What can you say about the relationship be-
tween the lengths of the vectors £ and proj;x?

Solution
Applying the Pythagorean theorem to the shaded
right triangle in Figure 8, we find that

| projra |I<[| Z | .

The statement is an equality if (and only if) ¥
is on L.

Does this inequality hold in higher dimensional
cases? We have to examine whether the
Pythagorean theorem holds in R™.

11



Fact 5.1.8 Pythagorean theorem
Consider two vectors £ and ¢ in R™. The equa-
tion

lZ+glIP=Iz >+ 7I°

holds if (and only if)Z and ¢ are orthogonal.
(See Figure 9.)

Proof The verification is straightforward:
|2+ 7 °=@&+7) @+

=& F+2F D+7-7

=|| Z |2 +2z- N+ || 7|7

= Z?+ 7

if (and only if) £-4=0.
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Fact 5.1.9 Consider a subspace V of R"™ and
a vector £ in R™. Then,

| projva ||<[| Z |-

The statement is an equality if(and only if)Z
isin V.

Proof we can write & = projyr+(Z—projy£)and
apply the Pythagorean theorem(see Figure 10):

| & |°=|| projv-& ||* + || £ — projy& ||°.

It follows that || projy @ ||<|| £ ||, as claimed.

13



Let V be a one-dimensional subspace of R"™
spanned by a(nonzero) vector . We introduce
the unit vector

- L—»
R il
in V. (See Figure 11.)
We know that
projyE = (@ D) = 2 (7 - D7

9]

for any £ in R"™. Fact 5.1.9 tells us that

|| L ||Z|l projyx ||_|| ||g||2(y . :B)y H_
1 - = —

To justify the last step, note that || kv ||= |k| ||

—

v ||, for all vectors ¢ in R™ and all scalars k.
(See Exercise 25(a).) We conclude that

14



Fact 5.1.10 Cauchy-Schwarz inequality
If £ and y are vectors in R"™, then

[z -yl <[ Z [ 71

The statement is an equality if (and only if) &
and iy are parallel.

Definition. 5.1.11
Angle between two vectors Consider two

nonzero vectors ¥ and ¢ in R™. The angle «
between these vectors is defined as

Note that « is between 0 and m, by definition
of the inverse cosine functiion.

15



Example. 7

Find the angle between the vectors

and y =

o oo+

Solution




Correlation

Consider two characteristics of a population,
with deviation vectors ¥ and y. There is a
positive correlation between the two charac-
teristics if (and only if) ¥- ¢ > 0.

Definition. 5.1.12

Correlation coefficient

T he correlation coefficient » between two char-
acteristics of a population is the cosine of the
angle a between the deviation vectors ¥ and vy
for the two characteristics:

B _ &g
r = cos(a) = [T

Exercise 5.1: 7, 9, 12, 19, 23, 24, 25, 28
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