Fault-Tolerant Distributed k-Mutual Exclusion
with Constant Expected Message Cost
Jehn-Ruey Jiang and Shing-Tsaan Huang
Department of computer science
National Tsing Hua University, HsinChu, Taiwan
Abstract

In this paper we propose a fault-tolerant, quorum-based solution to distributed k-mutual exclusion. The solution utilizes a logical structure named Cohorts to construct quorums of constant size in the best case. When some sites are inaccessible, the quorum size increases gradually and may be as large as O(n), where n is the number of sites. However, the expected quorum size is shown to remain constant as n grows. This is a desirable property since the message cost for accessing the critical section is directly proportional to the quorum size. We have also analyzed the availability of the constructed quorums and found that the availability of the constructed quorums is comparably high in comparison with those of relevant ones.

1. Introduction 

A distributed system is a collection of sites that may communicate with each other by exchanging messages. K-mutual exclusion algorithms concern themselves with controlling the sites such that at most k sites can simultaneously access their critical sections. Such algorithms can be used to coordinate the sharing of a resource that can be allocated to no more than k sites at a time. Several distributed k-mutual exclusion algorithms [2, 5, 7-9, 11-12, 14] are proposed in the literature; some of them [5, 7-9] rely on the concept of k-coteries. A k-coterie [5] is a family of sets (called quorums) in which any (k+1) quorums contain at least a pair of quorums intersecting each other. The concept of k-coteries is an extension of that of coteries [6]; that is, an 1-coterie (the value of k is taken as 1) is exactly a coterie. K-mutual exclusion algorithms using k-coteries require a site to collect enough permissions (votes) to form a quorum before accessing the critical section; they are fault-tolerant in the sense that a quorum may still be formed even when network partitioning [3] occurs and makes some sites unavailable.

In this paper we propose a quorum-based solution to distributed k-mutual exclusion and formalize it as constructing quorums of a k-coterie. The solution utilizes a logical structure named Cohorts to construct quorums of constant size in the best case. When some sites are inaccessible, the quorum size increases gradually and may be as large as O(n), where n is the number of sites. However, the expected quorum size is shown to remain constant as n grows. This is a desirable property since the message cost for accessing the critical section is directly proportional to the quorum size. We have also analyzed the availability of the constructed quorums and found that the availability of the constructed quorums is comparably high in comparison with those of relevant ones.

The remainder of this paper is organized as follows. In Section 2, we elaborate the concept of k-coteries. Then, in Section 3, we introduce the Cohorts structure and show how to construct quorums with its aid. In Section 4, we show that the collection of the constructed quorums is a k-coterie. In Section 5, we analyze and compare the constructed quorums with others in terms of availability and quorum size. At last, we conclude this paper with Section 6.

2. Preliminaries of k-coteries

A k-coterie [5] C is a family of non-empty subsets of an underlying set U, which is a set containing all system sites u1,...,un. Each member Q in C is called a quorum, and the following properties should hold for the quorums. The reader should note that an 1-coterie (the value of k is taken as 1) is exactly a coterie introduced in [6].

Non-intersection Property:

For any h (< k) pairwise disjoint quorums Q1, ... , Qh in C, there exists one quorum Qh+1 in C such that Q1, ..., Qh+1 are pairwise disjoint.

Intersection Property:

There are no m, m > k, pairwise disjoint quorums in C (i.e., there are at most k pairwise disjoint quorums in C).

Minimality Property:

There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2.
For example, {{u1, u3}, {u1, u4}, {u2, u3}, {u2, u4}} is a 2‑coterie under U={u1,...,u4} because it satisfies all the properties of a 2-coterie—given one quorum Q1, we can always find another quorum Q2 such that Q1 and Q2 are disjoint; there are at most two pairwise disjoint quorums; and every quorum is not a super set of another quorum.

By the intersection and the non-intersection properties, the k‑coterie can be used to develop algorithms to achieve k-mutual exclusion. To enter the critical section, a site is required to receive permissions from all the members of some quorum in the system. By the intersection property, no more than k sites can form quorums simultaneously, so no more than k sites can access the critical section at the same time. The non-intersection property assures that if there exists one unoccupied entry of the critical section, then some site that waits for entering the critical section can proceed. Note that the minimality property for the k‑coterie is not for the correctness, but for the enhancement of efficiency.

3. Construction of quorums

In this section, we present the Cohorts structure and propose an algorithm (function Get_Quorum in Figure 1) that can generate quorums by organizing system sites into a Cohorts structure.

A Cohorts structure Coh(k,l)=(C1,...,Cl) is a list of pairwise disjoint sets; each set Ci is called a cohort. The Cohorts structure should observe the following two properties:

(P1) (C1(=k.

(P2) (i : 1<i(l: (Ci(>max(2k(2,k), where max(a,b)=a, if a(b; otherwise, max(a,b)=b.

(Note that max(2k(2, k)=2k(2 when k >1; max(2k(2, k)=k when k=1.)

To sum up, a Cohorts structure Coh(k,l) has l pairwise disjoint cohorts with the first cohort having k members and the other cohorts having more than 2k(2 members (or more than one member when k=1). For example, ({u1, u2}, {u3, u4, u5}, {u6, u7, u8, u9, u10}) is Coh(2,3) since it has three pairwise disjoint cohorts with the first cohort and the other cohorts having 2 (=k) and more than 2 (=2k(2) members, respectively.

In this paper, a member of a cohort is assumed as a physical site in the system, and henceforth, the words "site" and "member" are used exchangeably.

A set Q is said to be a quorum under Coh(k,l) if some cohort Ci in Coh(k,l) is Q's primary cohort, and each cohort Cj, j > i, is Q's supporting cohort, where 

(D1)
a cohort C is Q's primary cohort if (Q(C(=
(C(((k(1) (i.e., Q contains all except k(1 members of C), and

(D2)
a cohort C is Q's supporting cohort if (Q(C(=1 (i.e., Q contains exactly one member of C).

For example, the following sets are quorums under Coh(2,2)=({u1,u2}, {u3,u4,u5}):

Q1={u3, u4}, Q2={u3, u5}, Q3={u3, u5},

Q4={u1, u3}, Q5={u1, u4}, Q6={u1, u5},

Q7={u2, u3}, Q8={u2, u4}, Q9={u2, u5}.

Quorums Q1,...,Q3 take {u3, u4, u5} as their primary cohort and no supporting cohort is needed, and quorums Q4,...,Q9 take {u1, u2} as their primary cohort and {u3, u4, u5} as their supporting cohort. It is easy to check that these nine sets constitute a 2-coterie.

Note that for a quorum Q under Coh(k,l), the larger Q's primary cohort's index (subscript) is, the fewer the number of Q's supporting cohorts is. No supporting cohort is necessary when Cl is selected as Q's primary cohort.

A function called Get_Quorum, which can produce quorums under Coh(k,l), is shown in Figure 1. Note that we assume Obtain(Cl), which is called by Get_Quorum, is a function that tries to obtain permissions from sites of Cl and return a set of sites of Cl that can grant permissions. It returns (case 1) a set of (Cl((k+1 sites of Cl if more than (Cl((k+1 can grant their permissions, or else (case 2) a singleton set of one arbitrary sites if more than one site can grant its permission, or (case 3) an empty set, otherwise.

To solve the k-mutual exclusion problem, function Get_Quorum should be extended. As in other quorum-based k-mutual exclusion algorithms, a site is allowed to access the critical section after obtaining permissions from all sites of a quorum; a site is to return all its obtained permissions on leaving the critical section. Since a site may hold some permissions while waiting for other permissions, deadlock may thus occur. The mechanics proposed in [9], [10] or [13] can be incorporated to avoid deadlock (and starvation); however, the details of these mechanics have been well studied and are not repeated here.

4. Correctness

In this section, we prove that the collection of quorums under Coh(k,l) is a k-coterie. Below, we will refer to such a k-coterie as cohort coterie.
Theorem: The collection of quorums under Coh(k,l) is a k-coterie for any l, l(1.

Proof: (by induction on the value of l)

Basis: l=1.

Consider Coh(k,1)=(C1). Let C1 be {u1,...,uk} (note that by (P1) (C1(=k). Then, all the quorums under Coh(k,1) are {u1},...,{uk}. Those quorums obviously satisfy the non-intersection, the intersection, and the minimality properties of a k-coterie; hence, the theorem holds for the basis case.

Induction Hypothesis:

Assume the collection of quorums under Coh(k,
l(1) is a k-coterie, i.e., quorums under Coh(k,l(1) satisfy the non-intersection, the intersection, and the minimality properties.

Induction Step:

On the basis of the induction hypothesis, we show below that quorums under Coh(k,l) satisfy the non-intersection, the intersection, and the minimality properties of a k-coterie.

Let Cl={u1,...,us}, where s=(Cl(>max(2k(2, k) (by (P2)). Then, a quorum under Coh(k,l) may be of the form: either (form-1) a set of s((k(1) members of Cl, or (form-2) {ui} ( a quorum under Coh(k,l(1), 1(i(s. Note that Cl serves as the primary cohort for a form-1 quorum, and serves as a supporting cohort for a form-2 quorum.

symbol 183 \f "Symbol" \s 14 \h
Satisfaction of the non-intersection property:

Suppose there are h, h<k, pairwise disjoint quorums Q1,...,Qh under Coh(k,l). We show that there still exists one quorum Qh+1 under Coh(k,l) such that Q1,...,Qh+1 are pairwise disjoint. There are two cases to consider: (1) all h quorums are of form-2, and (2) one quorum is of form-1 and h(1 quorums are of form-2. Note that at most one of the quorums Q1,...,Qh can be of form-1, for any two quorums of form-1 are not disjoint because s((k(1)+s((k(1)>s (by s>max(2k(2, k) ).

(1) All h quorums Q1,...,Qh are of form-2:

It follows that Q1,...,Qh take totally h (h<k) sites from Cl with s(h sites left. Note that s(h>s(k(s((k(1). Let Qh+1 be a set that involves s(k+1 sites left in Cl. It is obvious that Qh+1 is a quorum under Coh(k,l) and Q1,...,Qh+1 are pairwise disjoint.

(2) One quorum (say Qh) is of form-1, and h(1 quorums (say Q1,...,Qh(1) are of form‑2:

It follows that Qh takes s((k(1) sites from Cl and each of Q1,...,Qh(1 takes one site from Cl. So, there are s((s((k(1)+(h(1))=k(h (> 0, by h<k) sites left in Cl. Suppose that each form-2 quorum Qi, 1(i(h(1, contains a quorum Ri under Coh(k,l(1), where R1,...,Rh(1 are pairwise disjoint. Then, by hypothesis, we can find a quorum R under Coh(k,l(1) such that R1,...,Rh(1 and R are pairwise disjoint. Let Qh+1 = R ( the set of one arbitrary site left in Cl. It is obvious that Qh+1 is a quorum under Coh(k,l) and Q1,...,Qh+1 are pairwise disjoint.
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Satisfaction of the intersection property:

Assume that there are m, m>k, pairwise disjoint quorums under Coh(k,l). There are three cases to consider: (1) all m quorums are of form-2, (2) one quorum is of form-1 and m(1 quorums are of form-2, and (3) at least tow quorums are of form-1. For each case, we show that a contradiction occurs to conclude that there are at most k pairwise disjoint quorums under Coh(k,l).

(1) All m quorums are of form-2:

This means that there are m, m>k, pairwise disjoint quorums under Coh(k,l(1), which is a contradiction because, by hypothesis, there are at most k pairwise disjoint quorums under Coh(k,l(1).

(2) One quorum (say Qm) is of form-1, and m(1 quorums (say Q1,...,Qm(1) are of form-2:

This means that Qm obtains s((k(1) sites from Cl, and Q1,...,Qm(1 obtain totally m(1 sites from Cl. This is a contradiction since s((k(1)+m(1=s+(m(k)>s (by m>k).

(3) At least two quorums are of form-1:

Let Q1 and Q2 be two of the quorums of form-1. Then either of Q1 and Q2 takes s((k(1) sites of Cl. This is a contradiction because s((k(1)+s((k(1)>s ( by s>max(2k(2, k) ).
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Satisfaction of the minimality property:

Any form-1 quorum is not a super set of any form-2 quorum because a quorum under Coh(k,l(1) is not contained in any set with s(k+1 sites of Cl. Also, any form-2 quorum is not a super set of any form-1 quorum because s(k+1>1 (by s>max(2k(2, k) ). And it is obvious that any form-1 quorum is not a super set of another form-1 quorum, and any form-2 quorum is not a super set of another form-2 quorum (note that by hypothesis any quorum under Coh(k,l(1) is not a super set of another quorum under Coh(k,l(1) ).

By now, on the basis of induction hypothesis, we have shown that the collection of quorums under Coh(k,l) is a k-coterie. Therefore, by the induction principle, the theorem holds for any l, l(1. 


�

5. Analysis and comparison

In this section we analyze and compare quorums under Coh(k,l) with some other types of quorums in terms of availability and quorum size. Below, we assume that all sites have the same up-probability p, the probability that a single site is up (i.e., accessible). We also use Si to denote (Ci( for 1(i(l, where Ci is the ith item of Coh(k,l)=(C1,...,Cl). And we use PR(s, a, b) to denote 
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5.1. Availability

The availability of a coterie is defined as the probability that a quorum can be successfully formed. Since up to k pairwise disjoint quorums can be simultaneously formed in a k-coterie, we should discuss up to k cases for the availability of a k-coterie: the probability of a quorum being formed successfully, the probability of two pairwise quorums being formed successfully,..., and the probability of k pairwise disjoint quorums being formed successfully. The (k,h)-availability, 1(h(k, [8] is defined to be the probability that h pairwise disjoint quorums of a k-coterie can be formed successfully; it is used as a measure for the fault-tolerant ability of a solution using k-coterie.

Let AV(h,l) be the function evaluating the probability that h pairwise disjoint quorums under Coh(k,l) can be formed simultaneously. Function AV(h,l) has the following two boundary conditions:

(i)
AV(0,l) = 1.

(ii)
AV(h,1) = PR(S1, h, S1). (Note that a quorum takes only one member from the first cohort to make it the primary cohort because S1(k+1=k(k+1=1).

There are two possibilities for h quorums under Coh(k,l) to be (recursively) constructed:

(i) One quorum is constructed with Sl(k+1 up sites of Cl (Cl thus serves as the primary cohort), and each of the other h(1 quorums is constructed with a quorum under Coh(k,l(1) and an up site in Cl (Cl thus serves as a supporting cohort). Note that no two pairwise disjoint quorums can take Cl as their primary cohort, for (P2) Sl>max(2k(2, k) implies 2(Sl(k+1)>Sl.

(ii) Each of the h quorums is constructed with a quorum under Coh(k,l(1) and an up site in Cl (Cl thus serves as a supporting cohort).

For the first case, Cl should have at least (Sl(k+1)+(h(1)=Sl(k+h up members to be the primary cohort for one quorum and supporting cohorts for the remaining h(1 quorums. And for the second case, Cl should have at least h up sites to be supporting cohorts for the h quorums. However, the possibility of Cl having at least Sl(k+h up members should be ruled out from the second case since it has already been considered in the first case. Hence, we have

AV(h, l)
=
AV(h(1, l(1) ( PR(Sl, Sl(k+h, Sl) +




AV(h, l(1) ( PR(Sl, h, Sl(k+h(1)
(1)

5.2 Quorum size

In this section we analyze the size of the quorums under Coh(k,l). As mentioned earlier, for a quorum Q under Coh(k,l), the larger Q's primary cohort's index (subscript) is, the fewer the number of Q's supporting cohorts is. No supporting cohort is necessary when Cl is selected as Q's primary cohort. In such a case, Q has size S, S=Sl((k(1). For l=1, we have S=C1(k+1=1 since by (P1) C1=k. For l>1, we have S>max(2k(2, k)((k(1) since by (P2) Sl>max(2k(2, k). If k=1, max(2k(2, k)=k; thus, we have S>max(2k(2, k)((k(1)=k((k(1)=1 (i.e., S(2). If k>1, then max(2k(2, k)=(2k(2); thus, we have S>max(2k(2, k)((k(1)=2k(2((k(1)=k(1 (i.e., S(k). To sum up, the lower bound of the sizes of quorums under Coh(k,l) is k if l>1 and k>1, is 2 if l>1 and k=1. As for the upper bound of the size of quorums under Coh(k,l), it depends on the structure of Coh(k,l); it may be of O(n), however. For example, under Cohorts structure Coh(2, (n(2)/3)=({u1, u2}, {u3, u4, u5}, {u6, u7, u8},...,{un(2, un(1, un}), the largest quorum is of size O(n). Such a case occurs when C1 is chosen as the primary cohort with others being supporting cohorts.

The lower and the upper bounds of the quorum size may be too optimistic and too pessimistic, respectively. Below, we analyze the expected size of quorums under Coh(k,l).

We apply the parameter f, as also used in [1], to indicate the fraction of quorums that take the last cohort as the primary cohort. Thus, 1(f is the fraction of quorums that take the last cohort as a supporting cohort rather than the primary cohort. 

Let ES(l) denote the expected size of quorums under Coh(k,l). When l > 1, we have

ES(l)= f(Sl(k+1)+ (1(f)(1+ES(l(1))
(2)

The term f(Sl(k+1) arises because there are f quorums of size (Sl(k+1); such quorums take Cl as the primary cohort and are composed of (Sl(k+1) sites of Cl. And the term (1(f)(1+ES(l(1) arises because there are (1(f) quorums of size ES(l(1)+1 that are composed of one site of Cl and one quorum under Coh(k,l(1). Since C1 contains k site, a quorum under Coh(k,1) has size (C1((k+1=k(k+1=1. That is, ES(1)=1.

If we further restrict cohorts C2,...,Cl to have an equal size s (i.e., S2=...=Sl=s), equation (4.2) can be regarded as a first-order linear equation [4]* and be solved analytically. Note that below we use Coh(k,l,s) to denote such Cohorts structure. For l>1 and f>0, we have

ES(l)=(1(f)l(1(1(s+k((1/f))  + (s(k+(1/f))
(3)

When l goes to infinity (and so does n), the term 
(1(f)l(1 goes to 0, and hence ES(l) goes to s(k+(1/f), which is a constant. In other words, the expected size of the quorum under Coh(k,l,s) remains constant when n grows. It is easy to see that smaller s or larger f produces smaller asymptotic expected quorum size. Take the following four cases for example: (case 1) f=0.5, s=3 (case 2) f=0.5, s=5 (case 3) f=0.25, s=3 and (case 4) f=0.25, s=5. When k=2, the asymptotic expected quorum sizes for these four cases are 3, 5, 5 and 7, respectively.

When Coh(k,l,s), l>>s, is considered, the case of f=1 corresponds to the lower bound of the quorum size, which occurs when Cl is always chosen as the primary cohort. On the other hand, the case of f=0 corresponds to the upper bound of the quorum size, which occurs when a larger quorum is always chosen instead of a smaller one. Note that the probability that at least Cl(k+1 sites in Cl are up (i.e., PR(s,s(k+1,s)) can reflect the value of f. For example, the value of f can be reflected by PR(3,2,3)=0.71825 when s=3, k=2 and p=0.65.

5.3 Comparison

In this section we compare the cohort coterie with the k-majority coterie [8] and the k-singleton coterie [8] in terms of quorum size and availability.

A k-singleton coterie is a family {{u1},...,{uk}}, where ui(U, 1(i(k, and ui's are distinct. It can be regarded as a special type of cohort coteries if we assume Cohorts structure Coh(k,1)=({u1},...,{uk}) when generating quorums. Any set of ((n+1)/(k+1)( sites can constitute a quorum of the k-majority coterie. Therefore, the quorum size of the k-majority coterie is 
((n+1)/(k+1)(, which is of O(n). The lower bounds and upper bounds of the quorum sizes of the cohort coterie and the k-majority coterie are shown in Table 1.

Now, we compare the availabilities of the cohort coterie and the k-majority coterie. If there are at least h(((n+1)/(k+1)(, 1(h(k, up sites, then h quorums of the k-majority coterie can be formed simultaneously. Let H=h(((n+1)/(k+1)(. The (k,h)-availability of k-majority quorums is then 

Probability(H sites are available) +

Probability(H+1 sites are available) + ... +

Probability(n sites are available)=
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Figure 2 illustrates the (k,h)-availability, k=1,...,4 and h=1,..,k, of the cohort coterie for the 53-site system. Note that we choose the 53-site system so that the Cohorts structure Coh(k, l, 2k(1), for k>1, or Coh(1, l, 2), for k=1, may fit for the system size. The curves for the k-majority coterie are also depicted for comparison. When k=1, the availability (i.e., (1,1)-availability) of cohort coterie is better (resp., worse) than that of the k-majority coterie when up-probability p is smaller (resp., larger) than 0.5. And when k>1, cohort coterie are better than k-majority coterie for almost every up-probability in (3,3)-, (3,4)-, and (4,4)-availability (i.e., when both k and h are large). The cohort coterie are better (resp., worse) than the k-majority coterie in (2,1)-, (2,2)-, (3-1), and (3,2)-availability (i.e., when either k or h is small) if p is smaller (resp., larger) than a specific value (e.g., for k=3 and h=2, the specific value is about 0.5).

6 Conclusion

In this paper, we have proposed a fault-tolerant solution to k-mutual exclusion and formalized it as constructing quorums of a k-coterie. With the aid of a logical structure named Cohorts, the solution constructs quorums of constant size in the best case. When some sites are inaccessible, the quorum size increases gradually and may be as large as O(n), where n is the number of sites. However, the expected quorum size has been shown to remain constant as n grows. This is a desirable property since the message cost to access the critical section is directly proportional to the quorum size. We have also analyzed the availability of the constructed quorums and found that the availability of the constructed quorums is comparably high.
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	the k-majority coterie
	the cohort coterie

(under Coh(k,l), l>1) 

	Quorum size

(Lower Bound)
	((n+1)/(k+1)(
	2 (if k=1)

k (if k>1)

	Quorum size

(Upper Bound)
	((n+1)/(k+1)(
	O(n)


Table 1  Bounds on quorum sizes for the cohort coterie  and the k-majority coterie.

Function Get_Quorum( Coh(k,l)=(C1,...,Cl): Cohorts Structure): Set;

VAR S: Set;


If l < 1 Then Exit(failure);


// Illegal function call, claim failure //

S = Obtain(Cl);


If (S( = (Cl(((k(1) Then Return(S);
// Cl can be the primary cohort //


If (S( = 1 Then Return(S(Get_Quorum(Coh(k,l(1)=(C1,...,Cl(1)));











// Cl can be a supporting cohort but not the primary cohort //


If  S = ( Then Exit(failure); 

// Unable to form a quorum, claim failure //

End Get_Quorum

Figure 1  A function that can generate quorums under Coh(k,l).
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Figure 2  The (k,h)-availability comparison of the the cohort coterie (CC) and
 the k-majority coterie (k-MC) for the 53-site system.

*	A first-order linear difference equation of the form �Xl=aXl(1+b for k(2 with X1 being the first term has as its lth term Xl=al(1(X1+b/(a(1))((b/(a(1)) if a(1.
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