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ABSTRACT

Online auction has become a very popular e-commerce trans-
action type. The immense business opportunities attract a
lot of individuals as well as online stores. With more sellers
engaged in, the competition between sellers is more intense.
For sellers, how to maximize their profit by proper auction
setting becomes the critical success factor in online auction
market. In this paper, we provide a selling recommendation
service which can predict the expected profit before listing
and, based on the expected profit, recommend the seller
whether to use current auction setting or not. We collect
data from five kinds of digital camera from eBay and ap-
ply machine learning algorithm to predict sold probability
and end-price. In order to get genuine sold probability and
end-price prediction (even for unsold items), we apply prob-
ability calibration and sample selection bias correction when
building the prediction models. To decide whether to list a
commodity or not, we apply cost-sensitive analysis to decide
whether to use current auction setting. We compare the
profits using three different approaches: probability-based,
end-price based, and our expected-profit based recommen-
dation service. The experiment result shows that our rec-
ommendation service based on expected profit gives higher
earnings and probability is a key factor that maintains the
profit gain when ultra cost incurs for unsold items due to
stocking.
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1. INTRODUCTION

Online auction has become a very popular e-commerce
transaction type. With very low entering barrier, online
auction has attracted a lot of individuals as well as small
online stores. Though sellers enjoy the enormous business
opportunities on online auction, they also faced a variety
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of competitors on the same marketplace. How to maximize
the profit has become the critical success factor in online
auction.

One of the key questions that sellers encounter is how to
list their commodities. For online auctions, sellers need to
decide many auction settings like starting bid price, reserve
price, duration time, and whether to use buy-it-now or ad-
vertising option, etc. Some sellers give a high starting price
in order to get a high revenue, while some sellers lower the
price and purchase advertising to increase sold probability
In fact, in the pursuit of maximized profit, the seller has
to make a tradeoff between sold probability and revenue.
How to find an auction setting that could maximize sellers’
profit is a challenging problem. However, it is not easy to
determine the best auction setting. Thus, we turn to an
easier question: Given an auction setting, should the
current auction setting be used for the given item?
Furthermore, if there exists a service that could predict the
expected profit, then we might apply such services to deter-
mine the best auction setting a commodity should use for a
particular seller.

There are several researches on end-price (or closing price)
prediction for online auction [1][3][6]. Ghani and Simmons
apply three models, including regression, multi-class classi-
fication and multiple binary classification tasks, to predict
auction end-price and show that the last model with neural
network outperforms other approaches [1]. Heijst et al. in-
corporate textual information contained in the item descrip-
tion and ensemble decision trees using boosting algorithms
for prediction [3]. They show that item description is more
important predictor than sellers’ feedback score and items’
pictures. Wang et al. develop a dynamic forecasting model
based on functional data analysis which can predict the end-
price of an “in-progress” auction [6]. Such a service is bene-
ficial for bidders to skip auctions items with high end-price
and focus on others with potentially low price. However,
for the decision support of commodity listing, dynamic fore-
casting is not necessary since sellers could not change the
auction setting when an auction begins. Thus, Ghani and
Simmons’ methods are more suitable in this context.

A potential problem in Ghani and Simmons’ work is that
they use historical “sold items” for end-price predication,
which violates the assumption of most machine learning al-
gorithms that examples for training are randomly drawn
from the same distribution of as the test set. The prob-
lem, know as sample selection bias in econometrics is
studied and formalized in Zadrozny’s paper in [7]. In this
paper, we consider our case as feature bias and apply the



cost-proportionate rejection sampling method in [7] to cor-
rect our biased training examples which contains only “sold
items”. We use starting price and sellers’ feedback score as
the sample selection probability. We show in experiments
that the predicted end-price is closer to the actual end-price.

On the other hand, end-price alone is not enough for auc-
tion sellers to predict their net revenue. As described above,
end-price prediction and sold probability are two things that
could not be maximized at the same time. Thus, we argue
in this paper that sold probability should also be considered
in sellers’ decision process and a decision based on both sold
probability and end-price should give higher profit than con-
sidering them alone. To this end, an accurate probability
for each class membership is necessary. Although most su-
pervised classifiers output ranking scores for examples, they
need to be calibrated into probability. In this paper, we
use Platt’s parametric approach to map SVM scores into
well-calibrated sold probability [4]. We show in experiments
that we can get higher profit gain with the support from
calibrated probability than probability without calibration.

Finally, although some researches suggest the use of pre-
dicted end-price for selling strategy, their papers did not
address the problem of how to apply predicted end-price
in decision making but only focus on precision of end-price
prediction. For this problem, we proposed the use of cost-
sensitive decision making to resolve whether to list a com-
modity or not. We compare three different decision criteria
respectively: one depends on sold probability), another de-
pends on end-price, and the other depends on both of them.
We use profit gain over average profit of similar items sold
by similar sellers as our measure and show that CS (cost-
sensitive) approach provides highest profit gain than the first
two approaches.

The rest of the paper is organized as follows: In Section
2, we describe the data and features used by our learning
algorithms. Section 3 discusses the criteria to support the
decision whether to use current auction setting. Section 4
and 5 details the procedure for sample bias correction and
sold probability calibration, respectively. We report our ex-
perimental evaluations to prove our argument in Section 6.
Finally, in Section 7, we summarize the contribution of this
paper and suggest the directions for future work.

2. DATA

We write a crawler to collect auction data from eBays in
the category of digital cameras over a period of two months
in March-April 2006. We select five models (A530, SD600,
SD550, S2, A620) of digital camera with maximum transac-
tions. There are a total of 4,852 records extracted for our
research. Table 1 shows the statistical information of the
data set. Note that we exclude old commodities from our
data set because they are highly affected by their descrip-
tions and pictures which is hard to predict by our collected
data.

We preprocess the collected data to extract for each auc-
tion item 72 features which are classified into 3 classes as
used in [1]:

e Seller Features: feedback score, negative feedback,
positive feedback, IsPowerSeller, HasAboutMePage,
HasEBayStore, ActivePeriod, number of products listed
by the seller, etc.

e Item Features: memory size, warranty, bundled kits

Table 1: Statistics of the collected data set

Model | No. of | Sale | Average | Standard
Items | Ratio | end-price | Deviation
A530 881 0.63 177 34
SD600 831 0.64 296 38
SD550 807 0.44 321 44
S2 1021 0.73 361 62
A620 1312 0.61 269 47

Table 2: Comparison of auction listing and BuylIt-
Now listing

Auction Listing BuyltNow Listing

Model No. Sale End- No. Sale End-
Items | Ratio | Price | Items | Ratio | Price
A530 427 0.92 | 172.12 | 454 0.35 | 189.46
SD600 394 0.96 | 292.75 | 437 0.34 | 304.06
SD550 322 0.76 | 313.31 485 0.22 | 338.07
S2 538 0.96 | 339.98 | 483 0.46 | 409.95
A620 626 0.94 | 258.30 686 0.30 | 301.06

(bag, battery, memory, tripod, lens, memory, reader,
etc.).

e Auction Features: auction listing or BuyltNow list-
ing, starting price, BuyltNow price, shipping cost, start
date, end date, auction duration, pictures, presence of
reserve price, payment method, listing upgrade fea-
tures (bold, subtitle, etc.) some predefined words in
title or subtitle (no reserve, fast ship, etc.).

Generally speaking, sellers have two ways to sell items on
eBay - Auction listing and BuyltNow listing. For auction
listing, sellers give a starting price and then the buyers bid
for the item until the auction duration is over. For Buy-
ItNow listing, sellers give a direct price (BuyItNow price).
Once any buyer is willing to pay the price, the bid is over. As
shown in Table 2, except the SD550, almost all items were
sold out (Sale Ratio: 0.92~0.96) for auction listing. For
BuyItNow listing, the sale ratio is much lower (0.22~0.35)
and the average end-price is higher since most sellers are
professional sellers and the sale is usually associated with
more kits as we will see later.

Table 3 shows the average starting price and listing cost
for sold and unsold items, respectively. Listing cost refers to
money paid to eBay, which depends on the auction setting.
As we can see, unsold items have higher starting price and
listing cost than those of sold items. This can be explained as
auction sellers set higher starting bids in order to get higher
end-price, but the auction fails due to the same reason. In
this situation, auction sellers also incur additional lost due to
higher starting price. As for BuyltNow listing, items with
higher BuyltNow price seem to scare many buyers away.
Thus, sellers need to spend more listing cost to promote their
commodities (e.g. via advertisement), showing the intense
competition. This analysis demonstrates that we need to
consider both sold probability and end-price in order to get
high profit.

For items using auction listing, there is no BuyltNow
price; while for items using BuyltNow listing, the starting
price is typically null. If we mix these two types of items,
the trained model will be greatly affected by the null values
in the data set. Meanwhile, the end-price for items using



Table 3: Starting price (SP) and listing cost (LC)
comparison

Model | SP/ | Auction Listing | BuyItNow Listing
LC Sold | Unsold | Sold Unsold
A530 SP 55.28 101.13 | 189.56 211.59
LC 1.27 1.81 7.04 3.91
SD600 | SP | 67.50 | 232.73 | 304.29 354.25
LC 1.37 2.91 6.01 4.88
SD550 | SP | 102.89 | 323.35 | 338.07 | 373.50
LC 1.93 2.27 6.11 4.26
S2 SP 87.07 104.23 | 410.15 425.63
LC 1.62 1.84 6.82 4.94
A620 | SP | 55.10 88.23 | 301.22 303.33
LC 1.41 2.30 6.11 3.71
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Figure 1: Two separate tasks: sold probability esti-
mation and end-price predication.

BuyItNow listing is exactly the BuyltNow price. There will
be no need to predict the end-price. Thus, we separate the
data into auction listing D4 and BuyltNow listing Dp. For
BuyItNow listing D, we need to estimate and calibrate the
sold probability. For auction listing data D4, we also need
to build an end-price prediction model and solve the sample
selection bias problem as well as the sold probability esti-
mation model (see Figure 1).

3. TO SELL OR NOT TO SELL?

Upon deciding whether to use a given auction setting,
the major problem is how the predicted end-price and sold
probability be used for judgment and how to evaluate vari-
ous approaches. Intuitive criteria like sold probability could
be used to maximize sale amount by suggesting sell when
the sold probability is greater than 0.5. End-price, however,
could not be easily modeled since every seller has his own
profit expectation or requirement.

To be more specific, given the predicted end-price, the
seller would use an auction setting (i.e. decide to sell) if the
profit satisfies the sellers’ expectation. Since we do not know
the seller’s cost and his requirement of profit, the judgment
is hard to formularize. Thus, instead of comparing to one’s
absolute requirement, we suggest a comparison to the end-
price of other similar items sold by similar sellers. In a way,
this judgment denotes whether the current auction setting

Table 4: Profit gain matrix

Profit Gain SOLD UNSOLD
SUGGEST Profit(x) — AvgP(z) | —lc(x) — uc
SELL
SUGGEST AvgP(z) — Profit(z) | le(z) + uc
NOT TO SELL

has higher revenue than average auction setting. Thus, cri-
teria based on end-price can be formularized as suggesting
sell if the predicted end-price of item x is greater than the
average end-price of similar items sold by similar sellers’.

However, approaches based on sold probability alone or
end-price alone are not enough. Both tips should be used
for the decision support. On the other hand, a measurement
to evaluate whether sale amount based or end-price based
performs better is necessary. Again, we compare the profit
of an item with the average profit of other similar items?
sold by similar sellers®. Let y(x) and lc(x) be the end-price
and listing cost for item =z, respectively. The profit that
item x generates is defined as Profit(x) = y(x) — le(z) and
the average profit of this item can be calculated from other
similar items by equation 1.

AvgP(z) = nix Z Profit(z") (1)

z'~x

where n, is the number of items similar to x and sold by
similar sellers. Thus, the gain of adopting this auction set-
ting against others could be defined as Profit(z) — AvgP(x)
if item x is sold; or if it is not sold, the seller would in-
cur the loss of listing cost and other cost due to stock or
value decreasing. We denote such a cost by uc. From the
other aspect, we can save the seller from less earning of
AvgP(z) — Profit(z) or le(x) + uc by suggesting not to use
current auction setting. Table 4 shows the profit matrix we
use to measure the gain of current auction setting for item
x against others. To evaluate the performance of a decision
criterion, we sum up all M (i, j.) for every z in the testing
set, which is the gain of predicting class i when the true
class is jg.

Such a measurement implies that minimization of classi-
fication error in general approaches do not work since each
outcome of the four cases has different profit gain. For this
kind of problem, cost-sensitive decision making is a good
approach that could changes decision boundary to help us
choose the class with maximum profit gain. Suppose we
can estimate the probability for each class j, P(c = j|z),
Bayes’ risk theory suggests that we choose class i with the
maximum expected profit gain as follows.

arg max X; P(c = jl|a) M (i, j) 2

'Readers might wonder why not using reserve price for
seller’s cost? The reason is that reserve price is optional,
thus could not be adopted here.

2Note that items of the same model have different values
when they come with different kits. In this paper, we assume
items with the same kits amount have the same value and
are similar.

3Different sellers have different profit expectation. To dis-
tinguish such sellers, we divide sellers into four types by
their feedback score: range 0~100, 100~1000, 1000~5000,
and above 5000.



The idea is similar to Zadrozny and Elkan’s work on KDD-
Cup98 data set [8], where they apply direct cost-sensitive
decision making to send mail only when the expected dona-
tion is greater than mailing cost. In this case, we suggest
the use of current auction setting only when the expected
profit gain is greater than listing cost plus ultra cost.

In summary, we have three approaches of decision criteria:

e Sold Probability Based Approach: When the pre-
dicted sold probability is greater than 50%, i.e. P(c =

1jz) > P(c = —1|z), we suggest the seller list the
auction. Thus, this approach depends only on sold
probability.

e End-price Based Approach: When the predicted
end-price is higher than the average end-price of sim-
ilar items, i.e. y(x) > Avgy(x), we suggest the seller
list the auction. Thus, this approach depends only on
end-price.

Expected Profit Based Approach: When the ex-
pected profit gain for suggesting sell is greater than
zero, i.e.

P(c = 1|z)[Profit(z) — AvgP(z)] > 3)
P(c=—1|z)[le(z) + uc]

we suggest the seller use the current auction setting.
Thus, this approach combines both sold probability
and end-price.

4. END-PRICE PREDICTION

There are two types of auction end-price predication: static
and dynamic. The former uses machine learning algorithms
and is more useful for auction bidders while the later applies
functional data analysis and is important to auction sellers.
To support auction sellers in commodity listing, we only
need static end-price predication as auction setting must be
determined before the auction begins.

4.1 Multiple Binary Classification

In this paper, we use multiple binary classifiers to predict
the end-price for auction listing items [1]. The idea is to
sort auction items by their prices and divide data into two
classes at various prices. For each price $Y;, we train a bi-
nary classifier which judges whether the end-price is greater
than $Y; or not. The output for a test example z upon this
binary classifier is then a three-tuple (">8$Y,”, true/false,0)
showing that x is greater than $Y; (true; or false otherwise)
with confidence 6. Finally, the end-price is determined by
the largest $Y; (and its larger neighbor $Y;11) which pre-
dicts x as true. For example, if the outputs of three binary
classifiers $50, $45, and $40 are (">$50”, -1, 0.8), (">$45”,
1, 0.85), (">$407, 1, 0.9), we determine the end-price locates
between segment 50 and 45 and take the mean value 47.5
as the predicted end-price. As discussed in [1], each binary
classifier can use the full data set as training data, which is
important for data sets with few transaction items.

4.2 Sample Selection Bias Correction

As described above, since we can only use sold items as the
training data for end-price prediction, the selection of exam-
ples for training is biased. We can interpret this situation
as many high end-price items are not selected from training
set due to their lower sold probability. In other words, the

negative correlation between sold probability and end-price
will cause the prediction price lower than its real value.

Sample selection bias problem has been studied in econo-
metrics and statistics. Heckman [2] proposed a two-step pro-
cedure to solve the problem in 1979. However, the method
is limited to linear regression model. In recent years, there
are some researches from machine learning field [5, 7] which
focus on discrete predication, i.e. classification problem.
There are four kinds of sample selection bias [7]:

e Complete Independent: Selection variable s is in-
dependent of attribute = and label y, that is, P(s =
1|z,y) = P(s = 1), then the selection is not biased.

e Feature Bias: Selection variable s is dependent of
attribute « and independent of label y with attribute
x, that is, P(s = 1l|z,y) = P(s = 1|z).

e Class Bias: Selection variable s is dependent of label
y and is independent of attribute x with label y, that
is, P(s = 1|z, y) = P(s = 1|y).

e Complete Bias: Selection variable s is dependent of
both attribute = and label y, that is, P(y|ls = 1) #
P(y) and P(aly,s = 1) # P(zly).

In our work, whether an item is sold can be taken as
a selection variable s, label y is the discretized end-price
segment, and property x means the features (including seller
features, item features, and auction features). Since the data
used for end-price prediction are all sold items (s=1), we
only have data sets for (z, y, s=1) and (x, s=0) but not (z,
y, $=0), which is the most complicated complete bias case (s
is dependent of both z and y). In theory, we cannot predict
under complete bias. Thus, we need further assumption to
solve the complete bias problem.

We assume that items with the same features have the
same end-price, and therefore the same label, no matter it
is sold or not, that is, P(y|z) = P(y|z,s = 1). With this
assumption, the problem can be simplified to feature bias
problem as shown in equation (4).

P(S _ 1|33, y) _ P(:c,y\;(:;jy})’(s:l)
= P(z]s = ))P(y|z,s = 1) x Z=) @
= P(a]s = 1)P(yle) x 2=

_ P(s=1lz)P(z) P(z,y) P(s=1) _ _
= 56 X Pey X Pagy = Pls=1)

Comparing to complete bias problem, feature bias calibra-
tion is solvable and there exists methods for bias correction.
Since we model the end-price predication problem by mul-
tiple binary classifiers, we can apply Zadrozny’s reweighting
method [7] to calibrate sample selection bias. Assume that
we know the selection probabilities P(s = 1|x) and they are
greater than zero for all . The idea of Zadrozny’s reweight-
ing method is to calibrate data distribution by equation (5):

D(z,y,s) = Pf:()isfl\l;) x D(z,y,s) (5)

We can consider each record (x, y, s) of data distribu-
tion D(z,y, s) as a record D(z,y, s) of distribution D with
weight P(s = 1)/P(s = 1|z). Zadrozny proved that, after
calibration by the above formula, the expected loss function
l(h(z),y) of a classifier h learned from feature bias data set
(]5) is equal to the result for non-bias data, that is,

E, yopll(h(®),y)ls = 1] = Evy~pll(h(2),y)]  (6)



Algorithm 1 Modified Costing
Input: Learner A, Training set D, iteration ¢
fori=1tot do
Si=10
for j=1tomdo
sample z from D and u from U(0, 1)
if u < P(s =1)/P(s = 1|z) then S; = S; U {z}
endfor
for each price Y do h) = A(S;)
endfor
for each price Y do hY = VotingOf(hY ,hY,...,hi)

Figure 2: Modified costing algorithm

However, to obtain a sample from a weighted distribution is
not completely straightforward. Zadrozny recommends the
use of Costing method for feature bias correction 0. Costing
is an ensemble learning algorithm which aggregates multi-
ple base classifiers learned from each sampled data set using
rejection sampling. The algorithm was originally designed
to solve problems with non-uniform misclassification costs,
where straightforward sampling (with or without replace-
ment) does not work well since samples are not drawn in-
dependently from D. Rejection sampling on the other hand
ensures that the sampled examples are distributed indepen-
dently according to D.

Algorithm 1 shows the modified costing algorithm with
selection ratio P(s = 1)/P(s = 1|z) as a weight for each
example. We repeat t iterations to produce t sample sets
S; (i =1 to t) and use them to train ¢ binary classifiers h}
(¢ =1 to t) for each price Y. The outputs of the aggregated
hY for each price are then used to predict the end-price for
testing examples. As shown in Figure 1, this reject sampling
procedures are conducted first to correct data distribution
before the application of multiple binary classification tasks.
While averaging over multiple learners gives better result
both in theoretical and empirical views, the overall compu-
tation time is also reduced since the size of S; is smaller
compared with the whole training set D.

5. SOLD PROBABILITY CALIBRATION

To estimation the sold probability for an item, we can
use any binary classification to train a model for predicting
whether an item would be sold (¢ = 1) or not (¢ = —1).
The output of this model is then mapped into posterior
probability. In this paper, we use SVM (Support Vector
Machine) as our classifier. SVM is a very popular classifi-
cation algorithm in recent years, and it is used to solve a
variety of classification problems. However, SVM produces
an uncalibrated value that is not a probability. To yield
well-calibrated probability, we adopt Platt Scaling (1999) to
transfer a value f(z;) into probability P(c = 1|z;). Platt
Scaling assumes a parametric model of a sigmoid mapping
with two parameters o and 8 (equation 7).

1
" 1+ eap(af(zi) + B)

The parameters can be fit using maximum likelihood esti-
mation from a training set (f;,t;), where t; are target prob-
abilities defined as t; = QQ—H (i.e. 1 for ¢; = 1 and 0 for
¢i = —1). By minimizing the negative log likelihood of
the training data, which is a cross-entropy error function

pi = P(c=1]zi) (7)

Table 5: Classification accuracies for SoldOrNot pre-
diction

MODEL AUCTION LISTING | BUYITNOW
A530 91.9 71.5
SD600 96.1 76.8
SD550 92.9 84.8
S2 94.5 71.4
A620 92.1 76.5
AVERAGE 93.5 76.2

(Kullback-Liebler divergence between f; and ¢;),

arg miin{— Z tilogps + (1 —t;)log(1 —pi)}  (8)

xz; €D

we have an unconstrained optimization function which can
be solved using gradient descent algorithm.

To avoid overfitting to a small number of examples, Platt
suggests using non-binary targets (equation 9) instead of
regularization for parameter space (o, 3),

T S
TN 42T T N_+2

9)

where Ny and N_ are numbers of positive and negative
examples, respectively.

6. EXPERIMENTS

We use the data described in Section 2 for the following
experiments. For each camera model, we randomly select
70% data as training data and the remaining 30% as test-
ing data. The process repeats five times to have 5 sets of
training and testing data. For each experiment, we take
the average result of the five data sets. The experiments
can be divided into three parts: The first part reports the
performance on item sold prediction, and the relationship
between sold probability and auction features. The second
part shows the accuracy of end-price prediction by using
multiple binary classifiers, and the effects of sample selec-
tion bias correction. The third part compares performance
of three approaches: probability-based, end-price based, and
expected profit based approaches.

6.1 Accuracy of Sold Probability Estimation

We use SVM as our classifier for predicting whether an
item is sold or not. The accuracy of prediction whether an
item will be sold is about 93.5% and 76.2% for auction listing
and BuyItNow listing, respectively (Table 5). The accuracy
for BuyItNow is lower than the corresponding items in auc-
tion listing. We found that some items even with the same
auction setting have different outcome. This is because some
sellers have multiple items to sell. Some might be sold while
others might not. Thus, the accuracy for BuyltNow is much
lower than Auction listing.

To analyze the relationship between sold probability and
auction settings, we apply Platt scaling to transfer the SVM
output into probability and divide the data into ten bins
according to their sold probability. We then calculate the
average starting price and kits amount of the commodities
in each bin. We also examine the average feedback score
of sellers for those items to see if seller’s feedback is also
relevant to sold probability.
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Figure 3: Negative correlation between difference of starting price and sold probability
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Figure 4: Difference in starting price, feedback score
and kits amount vs sold probability for Auction data
with high starting price

Recall from Table 3 that sold items have lower starting
price. Thus, we expect to see that items with higher start-
ing price should have lower probability. Figure 3(a) shows
the result between sold probability and difference of starting
price for A620 and SD550 under the BuyItNow category 2.
This product shows typical negative correlation between the
price difference and sold probability: if the BuyltNow price
is greater than the average price of similar items, the items
would have very low sold probability.

As for auction listing, the negative correlation between

4Due to space limitation, we are not able to show all figures
for all products.

starting price and sold probability is not so obvious as shown
in Figure 3(b). Thus, we further examine other factors.
Since most items are sold for auction listing, we extract
data with starting price greater than average end-price from
the auction listing to analyze the relationship between sold
probability and other relevant factors. Figure 4 shows two
such factors as well as difference of starting price: the solid
bars represent the difference in starting price, the white bars
represent seller’s average feedback score, while the strip bars
represent the average amount of kits associated with items
(all of them are normalized between 0~1). As the figure
shows, feedback score and kits amount has positive correla-
tion with sold probability, while difference in starting price
shows negative correlation with sold probability. Although
the relationship is not very definite for A620, the trend is
apparent for SD600 as shown in the figure.

From the analysis above, we confirm our argument that
starting price could strongly affect sold probability, espe-
cially in BuyltNow category. Thus, when sellers use high
starting price or BuyltNow price approach to ensure higher
end-price, they should also consider sold probability as well.
For auction listing, there are several factors that affecting
the sold probability, the influence strength varies for differ-
ent product. Note that, probability calibration is necessary;
otherwise the probability will be either 0 or 1 and cannot
indicate the relationship between probability and listing set-
ting.

6.2 End-price Prediction

To use multiple binary classifiers for end-price prediction,
we need to decide the reference value $Y for each binary clas-
sifier. We exclude the highest and lowest end-prices, and use
10% window of the average end-price as the interval size, i.e.
3Y (starting from the lowest end-price to the highest end-
price) is increased by 10% of the average end-price for each
binary classifier. The number of intervals for each model is
shown in the second column (denoted by “No. of Int”) in
Table 6. Again, SVM is used as the base classifier to predict
whether the end-price is greater than the reference value $Y.



Table 6: Accuracies of end-price prediction for sold
items without or with bias correction

MODEL | No. BEFORE BIAS AFTER BIAS
of CORRECTION CORRECTION

Int | TGT | £1 +2 | TGT | £1 +2

A530 17 | 48.7 | 83.6 | 95.0 | 47.2 | 84.0 | 94.8
SD600 29 | 59.8 | 954 | 99.6 | 58.5 | 95.5 | 99.5
SD550 31 | 46.3 | 87.4 | 98.9 | 42.8 | 92.7 | 99.5

S2 33 | 529 | 939 | 98.3 | 54.9 | 94.6 | 98.7
A620 25 | 46.9 | 89.1 | 98.0 | 48.2 | 90.1 | 98.7

For the collected digital camera data, the major factors af-
fecting end-price are the kits amount and the memory size.
Since there are a variety of kits can be associated, the price
varies greatly even for the same digital camera item, which
causes the difficulty for prediction. Table 6 shows the result
of multiple binary classifiers for sold items. Though the ac-
curacy is not high (51%) for the target interval, the accuracy
approximates 90% within +1 interval range.

As described above, due to sample selection bias problem,
the predicted model (based on training data with only sold
items) will underestimate the end-price of items with low
sold probability. With the assumption that items with the
same features will also have the same end-price, we apply
the modified costing algorithm to correct the feature bias
problem. Hence, we also need to ensure that p(x,s = 1)>0,
that is, the selected data contains all feature spaces of the
data and with enough examples in each feature space. As
starting price and feedback score are the main factors affect-
ing the sold probability, we use these two features to predict
p(s = 1|z) for each example. For each of the five training
sets (of each digital camera model), we calculate the weight
(i.e. p(s = 1)/p(s = 1|x)) for every example and use re-
jection sampling to generate 10 sample sets (t=10). Each
sample set has about 250 examples. We then apply SVM to
train classification models for each $Y, and use the vote of
the 10 predictions as the final result for each binary classifier
with judgment whether the end-price is greater than $Y.

To see how the correction of feature bias calibrates the
prediction of unsold items, we extract unsold items with
starting price greater than average end-price of similar items
and compare the predicted end-price before and after cali-
bration in Table 7. The result shows that the predicted end-
price based on sold items without costing correction is lower
than the average starting price of these items (i.e. under-
estimate), while the predicted end-price after calibration is
closer to the average starting price. Similarly, we compare
the predicted price before and after costing calibration for
linear regression. Contract to the result for multiple binary
classifiers, only SD550 presents visible change by the correc-
tion. We suspect it is because SD550 has more unsold items,
thus has more impact for linear regression approach based
on mean square errors. As shown in Table 6, the accuracy
before and after calibration is about the same. Thus, the
calibration for sample selection bias does not only maintain
the accuracy for sold items but also has better prediction
for unsold items.

6.3 Profit Gain Comparison

In order to validate our argument that end-price alone
does not guarantee high profit due to low sold probability,
we use profit gain over other sellers to compare the three ap-

Table 7: Increase of predicted end-price for unsold
items via sample bias correction

Model | Average Multiple Linear
Starting | Binary Classifier Regression

Price -Corr. | +Corr. | -Corr. | +Corr.
A530 190.77 | 181.02 | 180.17 | 190.85 | 192.83
SD600 | 389.09 | 310.80 | 328.1 | 300.27 | 300.04
SD550 | 366.46 | 341.60 | 355.22 | 293.03 | 323.52
S2 289.20 273.2 293.0 | 264.33 | 264.41
A620 296.21 294.0 304.5 | 259.21 | 261.38
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Figure 5: Average profit gain for BuyItNow listing.

proaches described in Section 3. Figure 5 and Figure 6 show
the average profit gain of the three approaches for Buylt-
Now listing and auction listing, respectively. We also use
“Sell All” approach as the baseline for comparison, which
suggest selling all the time.

For BuyltNow listing set, the end-price based approach
uses the BuyltNow price as end-price and suggests sale if
the BuyltNow price is greater than average BuyltNow price
of similar items sold by similar sellers; while profit based
approach uses sold probability either with or without sold
probability calibration. Figure 5 shows that the baseline ap-
proach (“Sell All”) makes a loss of $2.882 than average even
at uc=$%0 since the sale ratio is only 22%~46%. With the
help of sold probability prediction, we can obtain an average
profit gain of $0.967 at uc=3$0. As uc increases, probability
based approach gains even more profit than average since we
have ultra cost if the commodities are not sold. On the other
hand, end-price based approach although makes a high gain
of $4.578 than average at uc=%$0, the profit gain decreases to
$3.769 as uc increases to $6 due to the decrease in sold prob-
ability. Finally, approaches based on expected profit (either
with or without probability calibration) obtain the highest
profit gain. Even when extra cost uc increases, the average
profit gain increases as well, which means expected profit
based approaches avoid the loss of unsold items by balanc-
ing the expected profit. As seen from Figure 5, probability
calibration improves profit gain by making more accurate
estimation in sold probability.

Figure 6 shows a similar result in auction listing, though
the change with ultra cost is not as obvious: the base line
approach has a profit gain of $0.025 at uc=3%0, while proba-
bility based approach even makes a loss of $0.081 at uc=$0.
Thus, if most items could be sold, sellers could simply use
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Figure 6: Average profit gain for auction listing.

Table 8: Increase of profit gain by bias correction in

auction set
Model | End-Price Expected Profit Based

Based No Calibration | With Calibration
SD550 +0.759 +0.409 +0.689
AVG +0.089 +0.023 +0.1

“sell all” approach. However, sale amount based approach
does not deteriorate like the base line approach as ultra cost
increases.

Similar to BuyltNow listing, end-price based approaches
(either with or without correction by costing) show a nega-
tive correlation with ultra cost, while only profit based ap-
proach maintains an increasing profit as ultra cost increases
for auction listing. Figure 6 also shows that end-price based
approach with feature bias correction performs better than
without correction, though the difference is not obvious. The
reason why the profit gain by costing is not obvious can
be attributed to high sale ratio for auction listing data set.
Thus, we can observe more profit gain in SD550 (i.e. the
lowest sale ratio model), showing that sample selection bias
correction is more important in categories with a lot of un-
sold items in Table 8.

7. CONCLUSIONS AND FUTURE WORK

A critical question for online auction sellers is to find an
auction setting that could maximize profit for their com-
modities. Although several researches are proposed for end-
price prediction, how such information could support sellers’
decision has not been fully explored. In this paper, instead
of enumerating all possible auction settings, we provide a
selling recommendation service which suggests the use of
current auction setting based on comparing average profit
of other similar items sold by similar sellers. In a way, this
approach denotes whether the current auction setting is bet-
ter than average auction setting.

We apply machine learning algorithms for end-price pre-
diction and sold probability estimation. For end-price pre-
diction, since we can only use sold items to train the classi-
fiers, the model could under-estimate the end-price for un-
sold items. As shown in the experiments, approaches that do
not involve the consideration of sold probability (e.g. end-
price based and the baseline approaches) have deteriorating
profit as ultra cost increases. This proves our argument that

sold probability should also be considered for profit maxi-
mization. In conclusion, the approach based on both prob-
ability and end-price have the best performance among all
other approaches.

Although the service described in this paper can support
sellers in whether to use the current auction setting or not,
a more aggressive goal will be to find the optimal auction
setting that could maximize the profit of an item. Since
feedback score is an important factor affecting sold prob-
ability, simply imitating other sellers’ auction setting may
not have the same return. Meanwhile, analyzing description
text to provide guidance for writing commodity description
is also an interesting research direction. In practice, it is not
realistic to build prediction models for every kind of com-
modity. Transfer learning technique is a promising way to
predict “similar” commodity.
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