
A General and Multi-lingual Phrase Chunking Model
Based on Masking Method

Yu-Chieh Wu1, Chia-Hui Chang1, and Yue-Shi Lee2

1 Department of Computer Science and Information Engineering, National Central University,
No.300, Jhong-Da Rd., Jhongli City, Taoyuan County 32001, Taiwan, R.O.C.

bcbb@db.csie.ncu.edu.tw, chia@csie.ncu.edu.tw
2 Department of Computer Science and Information Engineering, Ming Chuan University,

No.5, De-Ming Rd, Gweishan District, Taoyuan 333, Taiwan, R.O.C.
leeys@mcu.edu.tw

Abstract. Several phrase chunkers have been proposed over the past few years.
Some state-of-the-art chunkers achieved better performance via integrating
external resources, e.g., parsers and additional training data, or combining
multiple learners. However, in many languages and domains, such external
materials are not easily available and the combination of multiple learners will
increase the cost of training and testing. In this paper, we propose a mask
method to improve the chunking accuracy. The experimental results show that
our chunker achieves better performance in comparison with other deep parsers
and chunkers. For CoNLL-2000 data set, our system achieves 94.12 in F rate.
For the base-chunking task, our system reaches 92.95 in F rate. When porting to
Chinese, the performance of the base-chunking task is 92.36 in F rate. Also, our
chunker is quite efficient. The complete chunking time of a 50K words
document is about 50 seconds.

1 Introduction

Automatic text chunking aims to determine non-overlap phrases structures (chunks)
in a given sentence. These phrases are non-recursive, i.e., they cannot be included in
other chunks [1]. Generally speaking, there are two phrase chunking tasks, including
text chunking (shallow parsing) [15], and noun phrase (NP) chuncking [16]. The
former aims to find the chunks that perform partial analysis of the syntactic structures
in texts [15], while the later aims to identify the initial portions of non-recursive noun
phrase, i.e., the first level noun phrase structures of the parsing trees [17] [19]. In this
paper, we extend the NP chunking task to arbitrary phrase chunking, i.e.,
base-chunking. In comparison, shallow parsing extracts not only the first level but
also the other level phrase structures of the parsing tree into the flat non-overlap
chunks.

Chunk information of a sentence is usually used to present syntactic relations in
texts. In many Natural Language Processing (NLP) areas, e.g., chunking-based full
parsing [1] [17] [24], clause identification [3] [19], semantic role labeling (SRL) [4],
text categorization [15] and machine translation, the phrase structures provide
down-stream syntactic features for further analysis. In many cases, an efficient and

high-performance chunker is required. In recent years, many high-performance
chunking systems were proposed, such as, SVM-based [9], Winnow [13] [20],
voted-perceptrons [3], Maximum Entropy model (ME) [12], Hidden Markov Model
(HMM) [11] [14], Memory-based [17] [19], etc. Although some of the outstanding
methods gave better results, they were not efficient. In average the chunking speed is
about 3-5 sentences per second. Moreover, some of them require external resources,
i.e., parser (Winnow[20]), and more training data (HMM[14]), or combining multiple
learners (memory-based [19] and SVM-based [9]) to enhance chunking performance.
However, the use of multiple learners does not only complicate the original system
but also increase chunking time largely. In practice, external resources are not always
available in many domains and languages. On the other hand, although some
chunkers (e.g., HMM and memory-based chunkers), are quite efficient, they do not
have exhilarating performances.

In this paper, we present a novel chunking method to improve the chunking
accuracy. The mask method we propose is designed to solve the “unknown word
problem” as many chunking errors occur due to unknown words. Imagine the cases
when unknown words occur in the testing data, all lexical-related features, for
example, unigram, can not be properly represented, thus the chunk type has to be
determined by other non-lexical features. To remedy this, we propose a mask method
to collect unknown word examples from the original training data. These examples
are derived from mapping variant incomplete lexical-related features. By including
these instances, the chunker can handle testing data, which contains unknown words.
In addition, we also combine a richer feature set to enhance the performance. Based
on the two constituents, the mask method and richer feature sets, higher performance
is obtained. In the two main chunking tasks, our method outperforms the other famous
systems. Besides, this model is portable to other languages. In the Chinese
base-chunking task, our chunking system achieves 92.19 in F rate. In terms of time
efficiency, our model is satisfactory, and thus able to handle the real-time processes,
for example, information retrieval and real-time web-page translation. In a 500K
words document, the complete chunking time is about 50 seconds.

The rest of this paper is organized as follows. Section 2 introduces the two main
tasks: shallow parsing and base phrase chunking. Section 3 explains our chunking
model. The mask method will be described in Section 4. Experimental results are
showed in Section 5. Concluding remarks and future work are given in Section 6.

2 Descriptions of the Chunking Tasks

A chunk (phrase) is a syntactic structure, which groups several consecutive words to
form a phrase. In this section, we define the two phrase chunking tasks,
base-chunking and shallow parsing.

Fig. 1. A Parsing tree for “Formed in August, the venture weds AT&T ‘s newly

expanded 900 service”

2.1 Base-Chunking

The phrase structures of base-chunking task is similar to that of baseNP chunking
[16], but includes all atomic arbitrary phrase chunks in text. In Li and Roth’s works
[13], they also compared their chunking system in the base-chunking tasks. Consider
the following sentence: “Formed in August, the venture weds AT&T ‘s newly
expanded 900 service”. As shown in Fig. 1, the parent node of each word (leaf node)
is the part-of-speech (POS) tag. The first level chunks of the parsing tree are the
pre-terminals that contain no sub-phrases. The base chunks of the above sentence are
oval-shaped rectangles including “August”, “the venture”, “AT&T ‘s” and “newly
expand”. The other phrase structures can not form the base chunk since they contain
sub-phrases, for example, VP (verb phrase).

The phrase structures of the sentence can also be encoded using IOB2 style [18].
The major constituents of the IOB2 style are B/I/O tags and the phrase type, which
represent the begin (B) of a phrase, the interior (I) of a phase and other words (O). For
example, the chunk class of each token of the above sentence can be tagged as:

Formed (O) in (O) August (B-NP) , (O) the (B-NP) venture (I-NP) weds (O) AT&T (B-NP)
‘s (I-NP) newly (B-ADJP) expanded (I-ADJP) 900 (O) service (O)

When the chunk structure is encoded as IOB-like style, a chunking problem can be
viewed as a word-classification task, i.e., identify IOB chunk tag for each word. Many
chunkers [9] [13] [20] learn to label the IOB chunk tags using a classic classification
scheme. We also follow the same scheme to design our model. More details of our
model can be found in Section 3.

2.2 Shallow Parsing

Shallow parsing is also as known as text chunking which performs partial analysis of
the parsing tree. It was the shared task of CoNLL-2000. The phrase structure of the
shallow parsing is quite different from the base-chunking. Roughly speaking, in
shallow parsing, a chunk contains everything to the left of and including the syntactic

head of the constituent of the same name. Shallow parsing focuses on dividing a text
into phrases in such a way that syntactically related words become member of the
same phrase type. So far, there are no annotated chunk corpora available which
contain specific information about dividing sentences into chunks of words of variant
phrase types. Thus, CoNLL-2000 [18] defines the shallow parsing phrase structures
from parsing trees. Following the chunk definition in [18], the shallow parsing phrase
structures are:

Formed (B-VP) in (B-PP) August (B-NP) , (O) the (B-NP) venture (I-NP) weds (B-VP)
AT&T (B-NP) ‘s (I-NP) newly (B-ADJP) expanded (I-ADJP) 900 (B-NP) service (I-NP)

In this case, even the term “Fomed” does not belong to the first level, it is specified as
a verb phrase. A formal detail definition of the phrase structures of the shallow
parsing can refer to the web site1 and literatures [18].

3 Chunking Model

As described in Section 2.1, the chunking problem can be viewed as a series of
word-classification [13] [16]. Many common NLP components, for example
Part-of-Speech (POS) taggers [7] and deep parsers [17] [19] were represented
according to the “word-classification” structure. The proposed general chunking
model is also developed following the same scheme. In general, the contextual
information is often used as the seed feature type; the other features can then be
derived based on the surrounding words. In this paper, we adopt the following feature
types.

 Lexical information (Unigram)
 POS tag information (UniPOS)
 Affix (2~4 suffix and prefix letters)
 Previous chunk information (UniChunk)
 Possible chunk classes for current word: For the current word to be tagged, we

recall its possible chunk tags in the training data and use its possible chunk class
as a feature.

Additionally, we also add more N-gram features, including Bigram, BiPOS,
BiChunk, and TriPOS. In addition, we design an orthographic feature type called
Token feature, where each term will be assigned to a token class type via the
pre-defined word category mapping. Table 1 lists the defined token feature types.
Although this feature type is language dependent, many languages still contain Arabic
numbers and symbols.

We employ SVMlight [8] as the classification algorithm, which has been shown to
perform well on classification problems [7][8][15]. Since the SVM algorithm is a
binary classifier, we have to convert it into several binary problems. Here we use the
“One-Against-All” type to solve the problem. To take the time efficiency into account,
we choose the linear kernel type. As discussed in [7], working on linear kernel is

1 http://www.cnts.ua.ac.be/conll2000/chunking/

much more efficient than polynomial kernels. In Section 5, we also demonstrated that
the training/testing time of the polynomial kernel is longer than linear kernels while
causing a slight improvement.

Table 1. Token feature category list

Feature description Example text Feature description Example text
1-digit number 3 Number contains alpha and slash 1/10th
2-digit number 30 All capital word SVM
4-digit number 2004 Capital period (only one) M.
Year decade 2000s Capital periods (more than one) I.B.M.
Only digits 1234 Alpha contains money US$
Number contains one slash 3/4 Alpha and periods Mr.
Number contains two slash 2004/8/10 Capital word Taiwan
Number contains money $199 Number and alpha F-16
Number contains percent 100% Initial capitalization Mr., Jason
Number contains hyphen 1-2 Inner capitalization WordNet
Number contains comma 19,999 All lower case am, is, are
Number contains period 3.141 Others 3\/4
Number contains colon 08:00

4 Mask Method

In real world, training data is insufficient, since only a subset of the vocabularies can
appear in the testing data. During testing, if a term is an unknown word (or one of its
context words is unknown), then the lexical related features, like unigram, and bigram
are disabled, because the term information is not found in the training data. In this
case, the chunk class of this word is mainly determined by the remaining features.
Usually, this will low down the system performance.

The most common way for solving unknown word problem is to use different
feature sets for unknown words and divide the training data into several parts to
collect unknown word examples (Brill, 1995; Nakagawa et al., 2001; Gimenez &
Marquez, 2003). However, the selection of these feature sets for known word and
unknown word were often arranged heuristically and it is difficult to select when the
feature sets are different. Moreover, they just extract the unknown word examples and
miss the instances that contain unknown contextual words.

To solve this problem, the mask method is designed to produce additional
examples that contain “weak” lexical information to train. If the classification
algorithm can learn these instances, in testing, it is able to classify the examples,
which contain insufficient lexical information. The mask method is described in Fig.
2. The method works as follows. First, the training data is divided into k
non-overlapped partitions. For each partition, we create a mask, which is used to
conceal part of the features for each example in the training set. New representations
for each training example are generated, thus increasing the size of training set. The
mask is created as follows. Suppose we have derived the feature dictionary, F, from
the training set T. By remove partition i, we have a smaller training set with feature
dictionary (Fi) smaller than F. We then generate new training examples by mapping
the new dictionary set Fi, that is, lexicon-related features that do not occur in Fi are

masked. Technically, we create a mask mi of length |F| where a bit is set for a lexicon
in Fi and clear if the lexicon is not in Fi. We then generate new vectors for all
examples by logical “AND” it with mask mi. Thus, items which appear only in part i
are regarded as unknown words. The process is repeated for k times and a total of
(k+1)*N example vectors are generated (N is the original number of training
examples). Computationally, we do not need to generate Fi from scratch. Instead, Fi
can be created from F by replace lexicon-related features UDi, BDi, and IDi generated
from T’, the training set except from partition i (since other non-lexicon related
features are not masked).

Step 0. Let F be the feature dictionary constructed from T. Let output S=T.

Let lexical-related unigram dictionary UD: the unigram dictionary, BD: the bigram
dictionary, ID: the known label dictionary (UD⊆ F, BD⊆ F, and ID⊆ F)

Step 1. Divide the training data into k (k=2) parts.

U
k

i
iTT

1=

=

Step 2. For each part i, mask Ti by compute T’ = T-Ti
2.1 Generate lexical-related dictionaries from T’

UDi: the unigram dictionary of T’;
BDi: the bigram dictionary of T’;
IDi: the known label dictionary of T’
Fi is created from F by replacing UD/BD/ID with UDi/BDi/IDi

2.2 Create a vector mi of length |F| where a bit is set for a lexicon in Fi and clear if
the lexicon is not in Fi.

2.3 For each training example vj represented by feature F,
vj

‘= vj AND mi

2.4 Output
U
N

j
ji vS

1

'

=

=

Step 3. S=S∪Si, Go to Step 1 until all parts has been processed

Fig. 2. The mask method to generate incomplete information examples

Let us illustrate a simple example. Assume that the unigram is the only one

selected feature, and each training instance is represented via mapping to the unigram
dictionary. At the first stage, the whole training data set generates the original
unigram dictionary, T: (A,B,…,G). After splitting the training data (Step 1), two
disjoint sub-parts are produced. Assume step 2.1 produces new unigram dictionaries,
T1: (B,C,D,E) by masking the first part, and T2: (A,C,D,F,G) by masking the second
part. Thus, the mask for the first partition is (0,1,1,1,1,0,0) which reserves the
common items in T0 and T1. For a training example with features (A,C,F), the
generated vectors is (C) since A and F are masked (Step 2.3). We use the same way to
collect training examples from the second part.

The mask technique can transform the known lexical features into unknown lexical
features and add k times training materials from the original training set. Thus, the
original data can be reused effectively. As outlined in Fig. 2, new examples are
generated through mapping into the masked feature dictionary set Fi. This is quite

different from previous approaches, which employed variant feature sets for unknown
words. The proposed method aims to emulate examples that do not contain lexical
information, since chunking errors often occur due to the lack of lexical features.
Traditionally, the learners are given sufficient and complete lexical information;
therefore, the trained models cannot generalize examples that contain incomplete
lexical information. By including incomplete examples, the learners can take the
effect of unknown words into consideration and adjust weights on lexical related
features.

5 Experimental Results

In this section, four experiments are presented. First, we report the effects of various
feature combinations, and the masking method on three chunking tasks, shallow
parsing, base-chunking and Chinese base-chunking. Second, we compare our
chunking performance to the other chunking systems using the same benchmarking
corpus. The third experiment reports the detail performance on Chinese chunking task.
The final experiments report the results using polynomial SVM kernel. The
benchmarking corpus of the base-chunking is Wall Street Journal (WSJ) of the
English Treebank, sections 02-21 for training and section 23 for testing. For the
shallow parsing task, the WSJ sections 15-18 for training and 20 for testing. The
POS-tag information of base-chunking and shallow parsing tasks is mainly generated
from Brill-tagger [2]. However, in Chinese, there is no benchmarking POS-tagger.
Thus, we use the gold POS-tags in Chinese Treebank.

The performance of the chunking task is measured by three rates, recall, precision,
and F(β=1). CoNLL released a perl-script evaluator that enabled us to estimate the three
rates automatically.

5.1 Analysis of Feature Combination and the Mask Method

There are three parameters in our chunking system: the context window size, the
frequent threshold for each feature dictionary, and the number of division parts for the
unknown word examples (N). We set the first two parameters to 2 as previous
chunking systems [9]. Since the training time taken by SVMs scales exponentially
with the number of input examples [8], we set N to 2 for all of the following
experiments.

The first experiment reports the system performance of different feature
combinations. Table 2 lists the chunking results of the added features on the shallow
parsing task. For the feature set (4), which combines uni-gram and bi-gram features, it
does a great improvement. On the contrary, the proposed “TokenFeature” marginally
improves the performance. The best system performance is achieved by combining all
of the features, i.e. feature set (5). The feature selection set in the following parts is
(5).

In another experiment, we concern the performance of the mask method. Table 3
lists the improvement of the method. The mask method improves system performance

in different chunking tasks and different language. Note that there is not a public and
well-known Chinese shallow parsing task definition. Thus, we did not perform the
shallow parsing task on the Chinese Treebank.

Table 2. System performance on different feature sets in the shallow parsing task
 Features Recall Precision F(β)

(1) Unigram+UniPOS+UniChunk+PossibleChunk 92.35 91.87 92.11
(2) (1)+TokenFeature 92.40 91.95 92.18
(3) (2)+Affix 92.64 92.18 92.41
(4) (3)+Bigram+BiPOS+BiChunk 93.52 93.51 93.52
(5) (4)+TriPOS 93.60 93.53 93.56

Table 3. The improvement by the mask method on Chinese and English corpus

CoNLL-2000 Base-chunking Shallow-parsing
English 91.96 → 92.95 93.56 → 94.12
Chinese 91.76 → 92.36 N/A

The three statistical tests, s-test, probability distributional test, and McNemar’s test

are applied to evaluate the improvement significance. Table 4 lists the results of the
three tests. “P<0.01” means the two systems have statistical significant difference
under the 99% confidence value. Three tests indicate that the mask method improves
the chunking performance on these chunking tasks.

To exploit the detail performance analysis of the mask method, Table 5 shows the
chunking performance on the known and unknown phrases. As listed in Table 5, the
percentage of unknown phrases in the testing set is in the testing set is about 13.53%
and the improvement for unknown words is from 89.84 to 90.84. The mask method
improves a lot in the unknown phrase chunking. Moreover, the mask method also
improves the chunking performance on known word. As discussed in Section 4, when
unknown word appears, its lexical features are not available. The main idea of the
mask method is to produce the training examples that contain incomplete lexical
features. In testing phase, when the unknown word appears, the classification
algorithm can identify the chunk class since it may “similar” to the incomplete
training examples.

Table 4. Statistical significance test results
Chunking task System A System B s-test p-test M’s-test

Shallow parsing P<0.01 P<0.01 P<0.01
Base-chunking P<0.01 P<0.01 P<0.01

Chinese base-chunking

mask method Without mask
method

P<0.01 P<0.01 P<0.01

Table 5. The improvement by the mask method
Shallow-parsing Percentage Improvement

Unknown 13.53% 89.84 → 90.84
Known 86.46% 94.34 → 94.76
Total 100.00% 93.56 → 94.12

5.2 Comparisons to Other Chunking Systems

In this section, we compare our model to currently state-of-the-art parsing systems [5]
[6]. Here, we employed the Brill-tagger [2] to generate POS tags for our chunker and
Collins’ parser. However, we do not feed the same POS tags to Charniak’s parser,
since it takes the global optimize of the parsing tree structure into account. Table 6
lists the experimental results of each chunk type.

Table 6. Base-chunking performance of our model in different phrase type
 Recall Precision F(β=1) Recall Precision F(β=1)

ADJP 70.00 78.24 73.89 PRN 12.50 100.00 22.22
ADVP 88.54 85.96 87.23 PRT 79.25 79.95 79.50
CONJP 71.43 83.33 76.92 QP 91.22 88.51 89.85
FRAG 0.00 0.00 0.00 UCP 18.18 100.00 30.77
INTJP 81.82 75.00 78.26 VP 84.33 93.72 88.78
LST 0.00 0.00 0.00 WHADJP 66.67 100.00 80.00
NAC 52.63 83.33 64.52 WHADVP 92.59 96.90 94.70
NP 95.70 94.41 95.05 WHNP 96.40 96.17 96.29
NX 8.64 77.78 15.56 X 66.67 66.67 66.67
PP 25.00 40.00 30.77 All 92.93 92.98 92.95

Table 7. Comparisons of chunking performance for base-chunking task

Chunking system Recall Precision F(β)
This paper 92.93 92.98 92.95

Charniak’s full parser [5] 91.81 92.73 92.27
Collins’ full parser [6] 89.68 89.70 89.69

Table 8. Statistical significance test results

System A System B s-test p-test M’s-test
This paper Charniak P<0.01 P<0.01 P<0.01
This paper Collins P<0.01 P<0.01 P<0.01
Charniak Collins P<0.01 P<0.01 P<0.01

Table 7 reports the base-chunking results of the other famous parsing systems,

Charniak’s maximum entropy inspired parser [5] and the Collins’ headword-driven
parser [6]. Among the three systems, the Charniak’s parser performs the second best
on the base-chunking tasks while the Collins parser achieves the third best
performance. The three statistical tests, s-test, probability distributional test, and
McNemar’s test again agree with the significant difference between our model and
the two parsers under the 99% confidence score. Table 8 displays the statistical test
results.

In the shallow parsing task, we compare our chunker with other chunking systems
under the same constraint, i.e. all of the settings should be coincided with the
CoNLL-2000 shared task. In other words, the use of external resources or other
components is disabled. Table 9 lists our chunking results on each chunk type.

Table 10 reports the chunking results of other systems. In this test, the second best
chunking system is the voted-SVMs [9]. As listed in Table 10, our model outperforms

the other chunking systems. However, it is difficult to perform the statistical tests on
these chunkers. Since the outputs of these systems are not available easily.

Table 9. Shallow parsing performance of our model in different phrase type

 Recall Precision F(β=1) Recall Precision F(β=1)
ADJP 71.92 81.61 76.46 NP 94.51 94.67 94.59
ADVP 81.64 83.27 82.45 PP 98.27 96.87 97.57
CONJP 55.56 45.45 50.00 PRT 79.25 76.36 77.78
INTJP 50.00 100.00 66.67 SBAR 86.54 87.86 87.19
LST 0.00 0.00 0.00 VP 94.57 94.10 94.34

 All 94.12 94.13 94.12

Table 10. Comparison of chunking performance for text-chunking task
Chunking system Recall Precision F(β)

This paper 94.12 94.13 94.12
Voted-SVMs [9] 93.89 93.92 93.91

Voted-perceptrons [3] 94.19 93.29 93.74
Generalized Winnow [20] 93.60 93.54 93.57

5.3 Experimental Results on Chinese Base-Chunking Tasks

We port our chunker into Chinese base-chunking task with the same parameter
settings. There are about 0.4 million words in the Chinese Treebank. The front part of
0.32 million words forms the training data while the other 0.08 million words as the
testing part. The ratio of training and testing data is equivalent to 4:1. Table 11 lists
the experimental results of the Chinese base-chunking task.

Table 11. Chinese base-chunking performance of our model in different phrase type
 Recall Precision F(β=1) Recall Precision F(β=1)

ADJP 98.98 97.86 98.42 PP 0.00 0.00 0.00
ADVP 99.68 99.47 99.58 PRN 0.00 0.00 0.00
CLP 99.88 99.69 99.79 QP 97.61 97,52 97.56
CP 0.00 0.00 0.00 VCD 60.22 63.64 61.88

DNP 0.00 0.00 0.00 VCP 87.50 100.00 93.33
DP 99.40 99.10 99.25 VNV 20.00 100.00 33.33

DVP 0.00 0.00 0.00 VP 91.64 94.92 93.25
FRAG 98.07 98.64 98.36 VPT 100.00 55.56 71.43
LCP 0.00 0.00 0.00 VRD 87.98 88.95 88.46
LST 82.14 100.00 90.20 VSB 14.29 44.00 21.57
NP 88.04 90.31 89.16 All 91.48 93.27 92.36

It is worth to note that the affix feature in the Chinese base-chunking task is not
explicitly. Therefore, we use the atomic Chinese characters to form the affix feature.
Although, several Chinese shallow parsing systems were proposed in recent years,
like HMM-based [11] and maximum entropy-based [12] methods. It is difficult to
compare with these chunkers, because there is not a standard benchmark corpus and
grammar rules to represent the shallow parsing structures. Nevertheless, they were
performed on different training and testing set and employed various pre-defined

grammar rules. Thus, we only report the actual results of the proposed chunking
model for Chinese base-chunking task.

5.4 Working on polynomial kernel

Previous studies [7] indicated that using polynomial kernel to SVM is more accurate
than linear kernel but cause much time cost. In this section, we report the performance
of our method using polynomial kernel instead of the linear kernel. Table 12 lists the
chunking results on the English shallow parsing task. In this experiment, the training
time is about 4 days, besides it took 3 hours for chunking. Although the use of
polynomial kernel improves the performance, the time cost is largely increased. When
working on linear kernel, the training time of our model is less than 2.8 hours and 50
seconds for testing. The three statistical tests disagree with the significant difference
between the two kernels in 95% confidence score.

Table 12. Shallow parsing performance of our model using polynomial kernel

 Recall Precision F(β=1) Recall Precision F(β=1)
ADJP 71.92 78.75 75.18 NP 94.74 94.67 94.71
ADVP 81.29 82.15 81.72 PP 98.32 97.01 97.66
CONJP 55.56 45.45 50.00 PRT 78.30 78.30 78.30
INTJP 100.00 100.00 100.00 SBAR 87.66 89.33 88.49
LST 0.00 0.00 0.00 VP 94.59 94.39 94.49

 All 94.26 94.16 94.21

6 Conclusion

This paper proposes a general and language dependent chunking model based on
combining rich features and the proposed mask method. In the two main chunking
tasks (shallow parsing and base-chunking), our method outperforms the other systems
which employed more training materials or complex models. The statistical tests also
report the proposed mask method significantly improves the system performance
under a 99% confidence score. The online demonstration of our chunkers can be
found at (http://140.115.155.87/bcbb/chunking.htm).

Acknowledgement

This work is sponsored by National Science Council, Taiwan under grant
NSC94-2524-S-008-002.

References

1. Abney, S.: Parsing by chunks. In Principle-Based Parsing. Computation and
Psycholinguistics (1991) 257-278.

2. Brill, E.: Transformation-based error-driven learning and natural language processing: a case
study in part of speech tagging. Computational Linguistics (1995) 21(4):543-565.

3. Carreras, X. and Marquez, L.: Phrase recognition by filtering and ranking with perceptrons.
Proceedings of the International Conference on Recent Advances in Natural Language
Processing (2003).

4. Carreras X. and Marquez, L.: Introduction to the CoNLL-2004 shared task: semantic role
labeling. Proceedings of Conference on Natural Language Learning (2004) 89-97.

5. Charniak, E.: A maximum-entropy-inspired parser. Proceedings of the ANLP-NAACL (2000)
132-139.

6. Collins, M.: Head-driven statistical models for natural language processing. Ph.D. thesis.
University of Pennsylvania (1998).

7. Giménez, J. and Márquez, L.: Fast and accurate Part-of-Speech tagging: the SVM approach
revisited. Proceedings of the International Conference on Recent Advances in Natural
Language Processing (2003) 158-165.

8. Joachims, T.: A statistical learning model of text classification with support vector machines.
In Proceedings of the 24th ACM SIGIR Conference on Research and Development in
Information Retrieval (2001) 128-136.

9. Kudoh, T. and Matsumoto, Y.: Chunking with support vector machines. Proceedings of the
2nd Meetings of the North American Chapter and the Association for the Computational
Linguistics (2001).

10. Li, H., Huang, C. N., Gao, J. and Fan, X.: Chinese chunking with another type of spec. The
Third SIGHAN Workshop on Chinese Language Processing (2004).

11. Li, H., Webster, J. J., Kit, C. and Yao, T.: Transductive HMM based chinese text chunking.
International Conference on Natural Language Processing and Knowledge Engineering (2003)
257-262.

12. Li, S. Liu, Qun, and Yang, Z.: Chunking based on maximum entropy. Chinese Journal of
Computer (2003) 25(12): 1734-1738.

13. Li, X. and Roth, D.: Exploring evidence for shallow parsing. In Proceedings of Conference
on Natural Language Learning (2001) 127-132.

14. Molina, A. and Pla, F.: Shallow parsing using specialized HMMs. Journal of Machine
Learning Research (2002) 2:595-613.

15. Park, S. B. and Zhang, B. T.: Co-trained support vector machines for large scale
unstructured document classification using unlabeled data and syntactic information. Journal
of Information Processing and Management (2004) 40: 421-439.

16. Ramshaw, L. A. and Marcus, M. P.: Text chunking using transformation-based learning.
Proceedings of the 3rd Workshop on Very Large Corpora (1995) 82-94.

17. Tjong Kim Sang, E. F.: Transforming a chunker to a parser. In Computational Linguistics
in the Netherlands (2000) 177-188.

18. Tjong Kim Sang , E. F. and Buchholz, S.: Introduction to the CoNLL-2000 shared task:
chunking. In Proceedings of Conference on Natural Language Learning (2000) 127-132.

19. Tjong Kim Sang, E. F.: Memory-based shallow parsing. Journal of Machine Learning
Research (2002) 559-594.

20. Zhang, T., Damerau, F., and Johnson, D.: Text Chunking based on a Generalization
Winnow. Journal of Machine Learning Research (2002) 2:615-637.

