
OLERA: OnLine Extraction Rule Analysis for
Semi-structured Documents

Chia-Hui Chang and Shih-Chien Kuo
Dept. of Computer Science and Information Engineering

National Central University, Chung-Li 320, Taiwan
chia@csie.ncu.edu.tw, bruce@db.csie.ncu.edu.tw

ABSTRACT
Information extraction (IE) from semi-structured Web doc-
uments plays an important role for a variety of informa-
tion agents. Over the past decade, researchers have devel-
oped a rich family of generic IE techniques based on su-
pervised approach which learn extraction rules from user-
labelled training examples. However, annotating training
data can be expensive when a lot of data sources need to
be extracted. In this article, we introduce annotation-free
IE using pattern mining and string alignment techniques.
We describe OLERA, a semi-supervised IE system that
produces extraction rules by aligning similar contents of
multiple input records together and presents the result in a
spreadsheet-like table. Therefore, users do not need to an-
notate the input documents but only to specify the scheme
for the extracted data after the extraction pattern is discov-
ered. Another plus is that this approach works not only for
multi-record Web pages (as a limitation of some unsuper-
vised IE approaches) but also single-record Web pages.

KEY WORDS
information extraction, semi-structured documents, string
alignment, approximate matching

1 Introduction

The explosive growth and popularity of the world-wide
web has resulted in a huge number of information sources
on the Internet. However, due to the heterogeneity and
the lack of structure of Web information sources, informa-
tion integration systems and software agents often require
a lot of efforts for manipulation among various data for-
mats. The problem to translate the contents of input docu-
ments into structured data is called information extraction
(IE), and the problem of information extraction from a Web
page is to apply information extraction to Web pages. Un-
like information retrieval (IR), which concerns how to iden-
tify relevant documents from a collection, information ex-
traction produces structured data ready for post-processing,
which is crucial to many applications of Web mining and
searching tools.

Tailoring an IE system to new requirements is a task
that varies in scale dependent on the text type, domain, and
scenario [5]. Therefore, designing a trainable IE system has

been an attractive application in machine learning research
and the computational linguistics forum, message under-
standing conference (MUC). The task of Web IE differs
greatly from traditional IE tasks [8]. Traditional IE involves
free texts that are written in natural language and fully un-
structured. Web IE, on the other hand, process online doc-
uments that are marked by HTML tags and presented in
semi-structured format (e.g. Web pages generated by CGI
scripts). Free-text information extraction roots from lin-
guistic analysis and message understanding [15], whereas
Web IE often relies on landmark identification marked by
HTML tags and other delimiters.

Programs that perform the tasks of information ex-
traction are referred to as wrappers. A wrapper is a proce-
dure, specific to a single information resource, that trans-
late the input into relational form. Wrappers can be hand-
coded in general programming language or specialized lan-
guages, or they can be produced via wrapper generators.
Wrapper generators are software tools that generate wrap-
pers via induction. A typical wrapper induction system re-
ceives labelled training examples which “tell” the IE sys-
tem what to extract. Previous researches, e.g. WIEN [10],
Softmealy [9], Stalker [13], focus on rule generalization
and wrapper architecture design, and leave the problem of
obtaining labelled training examples to some oracles. As
labelling training examples are tedious, recent researches
have focused on developing tools that can reduce labelling
effort. For instance, several researches propose supervised
interactive wrapper generation tools for rule generalization
and writing [14, 11, 1]. Chidlovskii, et al, design a wrap-
per generation system that requires a small amount (one
training record) of labelling by the user [4]. Some re-
searches develop object/record extraction systems that rec-
ognize record boundaries without labelling, e.g. [6, 2].
However, the assumption of such systems is that the input
is a multi-record Web page. If the training page contains
only one record (called singular pages), these approaches
simply fail.

This paper provides a novel framework – OLERA,
for training extraction rules from Web pages with arbitrary
number of records. Most of all, labelling of the training
pages is replaced by three operators: enclosing an informa-
tion block of interest, drill-down through an encoding hi-
erarchy, and specifying relevant information slots for each

411-043 736

debbie

attribute of the record. Extraction rules are learned by
approximate pattern matching and string alignment tech-
niques in a way similar to how people generalize rules.
The experiments are conducted for both multi-record pages
and single-record pages. In addition, OLERA can be easily
adapted to different document sets.

The remainder of the paper is organized as follows.
Section 2 reviews background material on information ex-
traction. Section 3 describe OLERA’s system framework
and the implementation details. Section 4 gives the imple-
mentation of the OLERA extractors. Experimental results
are shown in Section 5. Finally, Section 6 concludes the
paper.

2 Background and Motivation

Information Extraction (IE) is concerned with extracting
relevant data from a collection of documents. The goal is
not necessarily to produce a general-purpose IE system, but
to create tools that would allow users to build customized
IE systems quickly. Web IE is an important problem for in-
formation integration and many approaches have been pro-
posed with various degree of automation. Related work
on IE has been studied and compared in [12], where the
author discusses IE systems for free text and online docu-
ments. One of the comparing metrics discussed in this pa-
per is whether the IE systems generate single-slot or multi-
slot extraction rules. Multi-slot extraction rules are more
difficult to generate because the input can contain missing
attributes or several attribute permutations. If the input is
a single-record document, we can simply design IE sys-
tems that generate single-slot extraction rules for each at-
tribute. For multi-record documents, we need multi-slot ex-
traction rules or the documents have to be segmented in ad-
vance. Therefore, multi-record input can be a problem for
IE systems that generate only single-slot rules. However,
multi-record input can be an advantage for some IE systems
[2, 6], for they rely on this characteristic for record/object
identification.

Another metric is rule expression: some use extrac-
tion patterns based on syntactic/semantic constraints, some
use delimiter-based constraints, and still some use both
constraints. For example, most semi-structured IE systems
use delimiter-based constraints from HTML tags. Some IE
systems, e.g. SRV [7] imposes content constraints based
on orthographic features, part-of-speech tags, WordNet se-
mantic classes, etc. These various constraints reflect the
common features that present in the input and can be gen-
eralized by rule learners. Since it relies on system devel-
opers’ knowledge to add such features, it is desirable that
such background knowledge is separate from the underly-
ing learning mechanism for rapid adaptation.

In addition to these metrics discussed in [12], we can
also compare IE systems from their input. Most machine-
learning based IE systems require precise annotation (in-
cluding the boundaries for each field in the object/record)
of the extraction targets as training examples because they

����������

(a)

����������

(b)

Figure 1. Singular Web pages – Barnes&Noble (a) enclos-
ing one record and (b) the corresponding result.

are supervised learning approaches. However, labelling is
often a burdensome task even with the help of graphic user
interface design. Therefore, some approaches have been
proposed to alleviate the labelling task. For example, Kush-
merick, et al. use heuristic knowledge for automatic la-
belling [10]. Chidlovskii, et al. design a wrapper gener-
ation system that requires a small amount of labelling by
the user [4]. Besides these supervised IE systems, more in-
teresting works are unsupervised IE systems that recognize
record boundaries without labelling, e.g. [2, 6]. For such
systems, relevant slots will be chosen by the user through
an attribute designation operation [3]. Note that
attribute designation is different from labelling and requires
less human effort since it is operated after the extraction
pattern is discovered, while labelling is conducted before
the extraction rule is generated. However, current unsu-
pervised IE systems can only work on multi-record docu-
ments. If the training page contains only one record, these
approaches simply fail.

In summary, designing IE systems that can reduce la-
belling efforts is the main research stream. Therefore, it

737

is our goal to build an IE system that requires minimum
labelling effort and works for both single record or multi-
record HTML pages. In addition, it is desirable that the
interpretation of the input document sets can be separate
from the underlying learning mechanism for rapid adapta-
tion.

3 System Framework

In this section, we present the framework of our novel ap-
proach, called OLERA. The main goal of this system is to
learn extraction rules for pages containing single records,
but with no annotation information. One possible way to
achieve this goal is to include multiple pages and align
them for attribute designation as in IEPAD. However, align-
ing the whole pages is much difficult and it often results in
too many slots which is inconvenient for attribute desig-
nation. Therefore, we adopt an eclectic approach where
users enclose a data block to indicate his/her interest. Un-
like traditional learning approaches, users do not need to
annotate each interested data block in the training pages or
the exact locations for each attribute in the record. Instead,
the system would automatically discover other records that
are similar to the enclosed example and present the data in
form of a spreadsheet for attribute designation.

To illustrate, in Figure 1(a), three singular pages (each
containing one record) are given as the training set. Instead
of enclose each data block from the training pages, we only
enclose a block of book information from one training page
for analysis. The corresponding result of this operation is
as shown in Figure 1(b), where two other books from the
training pages are discovered automatically. The records
are then presented in rows of a spreadsheet where informa-
tion of the same kind, say, book image, is aligned at the
same column. The spreadsheet presentation is designed for
easy understanding such that users can designate relevant
slots for each attribute in a record.

The idea of enclosing a data block for extraction rule
analysis not only works for singular pages but also for
multi-record pages. In addition, the training pages are not
necessarily all singular or multi-record pages. We may
choose one singular page for the enclosing operation, and
take other multiple-record pages for approximate pattern
matching. As long as one record pattern can be identi-
fied, approximate occurrence identification can be applied
to other training page, either singular or multi-record, to
recognize other records in the training set.

Spreadsheet presentation and the concept of attribute
designation were introduced in IEPAD [3]. In this paper,
we further introduce two operations: drill-down and roll-
up operations for users to manipulate the information of in-
terest. The inclusion of these two operations offers a sum-
marized or detailed view of the data. For example, Figure 2
demonstrates the drill-down operation on the 7th column of
Figure 1, where the text “Paperback, 1st ed., 992pp.” is fur-
ther divided into three components “Paperback”, “1st ed.”
and “992pp.” by delimiter “,”. In addition, column 3 to col-

����������

Figure 2. Drill down operation on column 7 from Figure 1

umn 5 are combined to demonstrate the roll-up operation.
Finally, information slots of interest can then be specified
by the checkbox above each column and saved for later use
by OLERA extractors.

In summary, OLERA provides three kinds of oper-
ations: enclosing, drill-down/roll-up, and attribute desig-
nation for users to manipulate the information of interest.
Formal description of these operations and the correspond-
ing actions by OLERA are given below:

• Enclosing an information block of interest
Users can mark a block to indicate the boundaries of a
record. The enclosed block is the target where extrac-
tion rule analysis is carried out. In response to this op-
eration, OLERA automatically discover other records
that are similar to the enclosed one and arrange infor-
mation of the same kind in the same column, finally
present the data in a spreadsheet for users.

• Drilling-down/rolling-up an information slot
Drill-down operations allow users to navigate from a
text fragment to more detailed components, while roll-
up operations allow the combinations of several slots
to form a meaningful information unit. Drill-down op-
erations are realized by translating the text fragments
of the same slot according to a specified encoding
scheme and aligning all encoded strings by multiple
string alignment.

• Designating relevant information slots
The result of the above operations is presented by a
spreadsheet with multiple slots decomposed from the
enclosed information block. Users can then specify
relevant slot for each attribute to specify the scheme
of the extraction target.

Figure 3 shows the framework of the system OLERA.
The ellipses denote the operations performed by the users
in the training process and the rectangles denotes the cor-
responding actions taken by OLERA in response to users’

738

���

����� ������	�

���	����

���	
���	��

�	�� �����

���� ��

����������

	���
���

	��
 �����
�

����������

��������

�������
 ������

������
��

	��
 �����
�

�������
 ������

������
��

�������� ���	
�� �
����������	����

	��
 �����
�

	���
��

��������

��������

����

��	

Figure 3. The OLERA’s framework

operations. For example, the corresponding procedures for
the enclosing operation is performed by three steps. First,
translate the training page using an encoding scheme in the
encoding hierarchy. Second, match the pattern of the en-
closed block to discover possible/similar records in training
pages by approximate matching. Third, align matched
records by multiple string alignment and present the re-
sult in a spreadsheet with m rows (records) and n columns
(slots). In the following, we will describe these three pro-
cedures one by one.

3.1 Encoding Hierarchy

The core technique of OLERA is a well-known algorithm
called string alignment. However, aligning different book
titles in the same column requires more than comparing
characters by characters. To construct the alignment for
HTML documents, translation of the pages is performed
where each HTML tag is regarded as an individual delim-
iter token and any texts between two delimiter tokens are
ignored and represented as a special token called ¡TEXT¿
token. Formally, given a set of delimiters, the encoding
procedure translates each delimiter, X, in the input page as
a delimiter token X and translates any text string between
two delimiters as a special token ¡TEXT¿.

In order to construct a desired alignment, it often re-
quires a higher level encoding scheme to abstract the input
pages. However, a high level abstraction may not be ap-
propriate for extraction of finer information. Hence, we
further introduce the drill-down operation by incorporating
an encoding hierarchy as that for multi-dimensional models
in OLAP. The concept hierarchy for the drill-down opera-
tion in OLERA is composed of a set of encoding schemes
classified into three layers: markup-level encoding ¿ text-
level encoding ¿ word-level encoding (see Figure 4). The
greater-than sign indicates that the left encoding is a higher
level abstraction of the right one. Each level of the encod-
ing hierarchy contains finer classification of several encod-
ing schemes. For example, markup-level contains block-
level-tag encoding scheme and text-level-tag encoding

Level Encoding scheme Delimiters

Markup Block-level tag block-level tags
text-level tag text-level tags

Text Paragraph NL, CR, Tab
Sentence . ? !

Word Phrase : , ; [] () { }
Others Blank @ $ - /

Figure 4. The Encoding Hierarchy for Web Documents

scheme which are introduced in IEPAD. For word-level en-
coding schemes, we concern the constituents of sentences:
phrase separated by quotation marks, parenthesis, brack-
ets; words separated by blank spaces, and other symbols
such as dollar signs, dashes, slash, etc. Take the drill-down
operation in Figure 2 for example. We employ the phrase
encoding scheme to encode the three text segments “Pa-
perback, 1st ed., 992pp.”, “Paperback, 1st ed., 1362pp.”,
and “Paperback, 1st ed., 416pp.” into the same token string
“<TEXT>,<TEXT>,<TEXT>” for alignment.

3.2 Approximate Matching

To automatically discover other similar records of the en-
closed block in the training set, we use a variant of string
comparison called approximate matching. Approximate
matching of a pattern P in a text T can be computed by
dynamic programming with base conditions

V (i, 0) = 0;
V (0, j) = −d ∗ j; (1)

and general recurrence

V (i, j) = max

V (i − 1, j − 1) + match(P [i], T [j]);
V (i − 1, j) − d;
V (i, j − 1) − d;

(2)
where the value −d (d > 0) denotes the score of aligning
a character with a space and the function match(x, y) de-
notes the score of aligning two characters. Traditionally, a
match (x = y) of two characters get a value of s (> 0) and
a mismatch (x �= y) a value of −s. However, it is hard to
break ties when several alignments have the same optimal
similarity score. Therefore, we enforce the comparison of
the primitive data of two <TEXT> tokens to quantify the
similarity between 0 to s. Here, we define the similarity
score as the value of the optimal global alignment of the
primitive data. For long primitive data, they are further
translated by another encoding scheme before comparison.

We say a substring T ′ of T is an approximate oc-
currence of P if and only if the similarity ratio of P and
T ′ is greater than a given threshold θ. Therefore, to dis-
cover all approximate occurrence of P in T , we first iden-
tify the position j ′ in T such that V (m, j ′) has the largest

739

value among all V (m, j), and V (m, j ′) is greater than
δ = θ ∗ s ∗ m. For this j ′, output the approximate oc-
currence, T [k′, j′] by backtracking from (m, j ′) until a cell
in row zero (0, k′) is reached. We then apply this proce-
dure to T [1, k′−1] and T [j ′ +1, |T |] recursively to find all
approximate occurrence of P in T .

3.3 Multiple String Alignment

For those records identified by approximate matching, we
need a generalization over these instances. Let’s say k to-
ken strings are discovered after occurrence identification.
We will apply multiple string alignment procedure to the k
token strings to generalize the record extraction rule. Mul-
tiple string alignment of k(> 2) strings S1, S2, . . . , Sk is
a natural generalization of alignment for two strings. Cho-
sen spaces are inserted into or at either end of each of the
k strings so that the resulting strings have the same length,
defined to be l. Then the strings are arrayed in k rows of l
columns so that each character and space of each string is in
a unique column. For example, suppose we have three to-
ken strings “dtbtbt”, “dtbt” and “dtbat”, a multiple
string alignment for them can be illustrated as following:

d t b - t b t
d t b - t - -
d t b a t - -

With multiple string alignment, we can represent a
set of records in profile representation or signature rep-
resentation, which can be used for extraction in the test
pages. In this paper, we adopt signature representation
for extraction rules since the symbol set for each column
should not vary a lot. For example, the signature rep-
resentation of the above alignment will be expressed by
“dtb[a|-]t[b|-][t|-]”, which contains 7 columns.
Note that the score function can affect the optimal align-
ment of two strings. For example, if s is greater than 2d,
alignment with spaces is preferable than aligning two dif-
ferent characters. In OLERA, s is always given a value
greater than 2 ∗ d to prevent a mismatch of two different
tokens.

Multiple string alignment has been applied in IEPAD
to compensate the insufficiency of PAT trees. The major
problem in previous work is the decision of an alignment
when multiple alignments have the same similarity score.
Therefore, a large number of patterns can be produced. In
this paper, the proposed matching function for comparing
the primitive data of <TEXT> tokes is used to avoid such a
problem and find a best alignment.

3.4 Summary

In summary, for each enclosing operation, OLERA iden-
tifies approximate occurrences (after encoding) and gen-
eralizes them to an extraction pattern by multiple string
alignment. A drill-down operation on a column involves

two steps including encoding and multiple string alignment
over the contents of that column. Finally, information slots
of interest can be specified and given proper field names.
The corresponding encoding scheme used by each drill-
down operations as well as the positions of the specified
slots will be recorded in the extraction rule such that the
extractors of OLERA can perform the same encoding and
extraction as recorded.

4 The OLERA Extractors

Similar to IEPAD, the OLERA extractor is essentially a
pattern matching program which finds the occurrences of
the record pattern and then extracts information for each
designated slot. An OLERA extraction rule contains three
constituents: a grammar representation for record pattern,
the drill-down and roll-up operation applied, and the speci-
fied slots for output. For each drill-down operation, a gram-
mar representation is used for that column. A grammar
contains two encoding schemes and a signature representa-
tion for the pattern.

An OLERA extractor follows the encoding schemes
specified in the record grammar to translate a testing page.
It then searches for an instance of a record pattern R in the
encoded token string. For example, signature “a[b|−]c” can
match only “abc” or “ac”. The search for an instance of the
record pattern R can be solved by regular expression pat-
tern matching. However, regular expression matching lacks
the comparison of the primitive data for TEXT tokens and
requires additional alignment after matching, therefore we
do not use this approach. Instead, we adopt a variation of
approximate matching with two differences. First, each slot
R[i] can contain both tokens and spaces since the record
pattern R is now a signature representation. Second, no
insertion or deletion can be made to the signature patterns
except indicated in the signature patterns. To enforce the
restriction, the recurrence for the dynamic programming is
revised as

V (i, j) = max

V (i − 1, j − 1) + s; if T [j] ∈ R[i]
V (i − 1, j) + s; if space ∈ R[i]
−Max; o/w

(3)
with base condition

V (0, j) = 0;

V (i, 0) = max

{
V (i − 1, 0) + s; if space ∈ R[i]
−Max; o/w

(4)
Note that Max is a large value which is used to indicate
no proper token is matched with R[i] and any value added
to −Max still results in −Max. Once the instances are
identified, the extractor follows the drill-down operations
to the specified columns as indicated in the extraction rule.
Finally, information slots of interest are extracted accord-
ingly.

740

5 Experiments

OLERA has been tested on a set of 24 real world Web
sites. Ten of them are single-record pages. The others
are multi-record pages. Some of the information sources
have been used in WIEN and STALKER (like Bigbook,
IAF, OKRA, QuoteServer). A total of 2887 pages are col-
lected for experiments. The average number of attributes
in a record is 4.8 and 8.0 for multi-record and single-record
pages, respectively. Some of the data source contains miss-
ing attributes, or several permutations, or list attributes (e.g.
book’s authors). A total of 2964 pages are collected for ex-
periments.

To wrap a data source, we start with one randomly
chosen page (two for single-record data sources), and en-
close one example record to approximate other records in
the training set. If not all records in the training set are
discovered, similarity threshold can be reduced to approx-
imate more records. When all records in the training set
are correctly extracted, the extraction rule is then applied
to other unseen pages for testing. If not all records in the
testing pages are extracted, another page that contains such
records is added in the training set for training. Repeat the
same procedure for 3, 4, . . . training pages until all test-
ing records are successfully extracted. This procedure is
repeated for 3 times and the numbers of training pages are
averaged for each data source. Extraction performances are
then evaluated by retrieval rate (recall) and accuracy rate
(precision).

For some cases, a CGI script can have several dis-
play templates to enhance the visualization for different
products (e.g. ByuBook). In this case, it is impossible
for one enclosed example to match all records presented
in different formats with reasonable similarity threshold θ.
Therefore, OLERA allows multiple enclosing to solve this
problem. For each enclosed example, the system identifies
its approximate occurrences in the training example. If a
text segment is similar to several enclosed examples, the
most similar one will be chosen. Similarly, if two enclosed
examples match two text segments that are mostly over-
lapped, such text segments are considered the same and the
above rule applies as well.

5.1 Singular pages

Table 1 shows the number of training pages required to
achieve best retrieval rate or accuracy rate for single-record
pages. For some data source (e.g. AlBook, IUniverse),
only a few training pages are needed to achieve 100% re-
trieval rate while some (e.g. Amazon, Barnes&Noble, E-
bay) require more training pages. The number of enclosing
operations (Pat) used for the last training and the similarity
threshold (Sim) are also recorded. We found that 0.5 (de-
fault) is a good similarity threshold for most data sources,
since it can most identify approximate occurrences of the
example enclosed. Therefore, only one enclosing opera-
tion is used for most data sources. The data source, Byu-

Source Pre Rec Pages Pat Sim Len
Amazon 100 100 12.0 1 0.5 158
AlBooks 95.7 100 3.3 1 0.5 168
BarnesNoble 100 100 17.0 1 0.45 116
BookPool 100 100 6.0 1 0.5 61
ByuBook 100 100 4.3 3 0.7 36
Ebay 100 100 10.7 1 0.5 466
IUniverse 100 100 1.7 1 0.5 85
JulliardBook 100 100 6.3 1 0.5 72
PMIBook 100 100 1.0 10 0.5 4
Zagat 100 100 5.0 1 0.5 44
Average 99.6 100 6.7 2.1 0.52 121

Table 1. Performance for single-record pages

Book, contains three presentation formats where missing
attributes might occur. Therefore, three enclosing opera-
tions and average 4.3 training pages are needed to extract
all instances.

The last column of Table 1 records the pattern length
which is defined as the number of tokens for the encoded
block. This information is presented here as a comparison
to the number of attributes that we want to extract and the
pattern length for multi-record pages presented next. The
pattern length for Barnes&Noble is 116 tokens even though
we are interested only in 8 slots. For longer patterns, they
often present more changes in the data structure. There-
fore, they require a lot more training pages than other data
sources. Amazon, Barnes&Noble, and E-Bay are three of
such examples.

5.2 Multi-record pages

Table 2 shows the parameter setting of the final experi-
ment for multi-record pages. The training pages needed for
multi-record page extraction are comparably less than those
for singular pages since each training page contains several
records where variations can occur. In fact, since the num-
ber of attributes in a record for multi-record pages is com-
parably smaller than that for singular pages, there are less
variations, too. This can be seen from pattern length too. To
illustrate, the average length of a record is 121 tokens for
singular pages, while the average length for multi-record
pages is 20 tokens. For these 14 information sources, thir-
teen can all be perfectly extracted as in IEPAD [3] except
for IAF.

6 Conclusion

In this paper, we propose a new approach – OLERA for
information extraction from unlabelled training set. This
approach not only deal with single-record pages but also
multi-record pages. It can also be easily adapted for non-
HTML documents by adding new encoding schemes since
the underlying learning mechanism is independent of the

741

Source Pre Rec Pages Pat Sim Len
∗AltaVista 100 100 2 1 0.6 19
DirectHit 100 100 3 1 0.45 11
∗Excite 100 100 1 1 0.5 10
HotBot 100 100 7 1 0.45 17
Infoseek 100 100 4 1 0.5 27
MSN 100 99 1 1 0.5 9
∗NorthernLight 100 100 1 1 0.5 34
Sprinks 100 99 4 1 0.45 16
Webcrawler 100 100 1 1 0.7 13
∗Yahoo 100 97 1 1 0.5 12
OKRA 100 100 1 1 0.5 35
BigBook 100 100 1 1 0.5 30
IAF 86 86 4 1 0.5 9
Quote Server 100 100 3 1 0.5 53
Average 99 99 2.4 1 0.51 21
* denotes block-level encodings are used.

Table 2. Performance for multi-record pages

encoding schemes used. OLERA distinguishes itself from
other IE systems by its simplicity for extraction rule learn-
ing. The proposed operations: enclosing relevant blocks,
drilling down and specifying relevant information slots can
greatly reduce users’ burden for annotation. Because of this
simplicity, OLERA is very efficient, which makes it perfect
for online (CGI-generated) document extraction.

Encoding scheme plays an important in alignment.
For a good alignment, we need two encoding schemes: one
for representing the higher-level structure and the other for
text comparison. Though we have default encoding hi-
erarchy, it may require adjustment for individual sources.
Therefore, we hope to design an algorithm to analyze the
relationships of delimiters and decide what delimiters to
use for high-level structure presentation and text compari-
son in each alignment.

Acknowledgement

This work is sponsored by and Education Bureau, Taiwan
under grant�92-H-FA07-1-4.

References

[1] R. Baumgartner, S. Flesca, and G. Gottlob. Super-
vised wrapper generation with lixto. In Proceedings
of VLDB Demo, 2001.

[2] C.-H. Chang and S.-C. Lui. Iepad: Information ex-
traction based on pattern discovery. In Proceedings
of the 10th International Conference on World Wide
Web, pages 681–688, Hong-Kong, 2001.

[3] C.H. Chang, C.N. Hsu, and S.C. Lui. Automatic in-
formation extraction from semi-structured web pages

by pattern discovery. Decision Support Systems Jour-
nal, 35(1):129–147, 2003.

[4] B. Chidlovskii, J. Ragetli, and M. Rijke. Automatic
wrapper generation for web search engines. In Pro-
ceedings of the 1st International Conference on Web-
Age Information Management (WAIM’2000), LNCS
Series, Shanghai, China, 2000.

[5] H. Cunningham. Information extraction – a user
guide. Technical Report CS-97-02, Institute for Lan-
guage, Speech and Hearing (ILASH) and Dept. of
Computer Science, University of Sheffield, UK, 1997.

[6] D. Embley, Y. Jiang, and Y.-K. Ng. Record-boundary
discovery in web documents. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’99), pages 467–478,
Philadelphia, PA, 1999.

[7] D. Freitag. Information extraction from html: Ap-
plication of a general machine learning approach. In
Proceedings of the Fifteenth national Conference on
Artificial Intelligence, pages 517–523, 1998.

[8] R. Grishman and B. Sundheim. Message understand-
ing conference – 6: A brief history. In Proceedings of
the 16th International Conference on Computational
Linguistics, Copenhagen, Jun 1996.

[9] C.-N. Hsu and M.-T. Dung. Generating finite-state
transducers for semi-structured data extraction from
the web. Information Systems, 23(8):521–538, 1998.

[10] N. Kushmerick, D. Weld, and R. Doorenbos. Wrap-
per induction for information extraction. In Proceed-
ings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI), pages 729–737, Japan,
1997.

[11] L. Liu, C. Pu, and W. Han. Xwrap: An xml-
enabled wrapper construction system for web infor-
mation sources. In Proceedings of ICDE, 2000.

[12] I. Muslea. Extraction patterns for information extrac-
tion tasks: A survey. In Proceedings of AAAI’99:
Workshop on Machine Learning for Information Ex-
traction, 1999.

[13] I. Muslea, S. Minton, and C. Knoblock. A hierarchi-
cal approach to wrapper induction. In Proceedings
of the 3rd International Conference on Autonomous
Agents, pages 190–197, Seattle, WA, 1999.

[14] A. Sahuguet and F. Azavant. Building light-weight
wrappers for legacy web data-sources using w4f. In
Proceedings of VLDB, 1999.

[15] S. Soderland. Learning to extract text-based infor-
mation from the world wide web. In Proceedings of
the 3rd International Conference on Knowledge Dis-
covery and Data Mining, pages 233–272, CA, USA,
1997.

742

