Part II
 Linear Constrained Optimization Chapter 18 NONSIMPLEX METHODS

Chia－Hui Chang（張嘉惠）
National Central University

2008．12．08

Introduction

- The simplex algorithm for solving LP problem has complexity $\mathrm{O}\left(2^{\mathrm{n}}-1\right)$, where n is the number of variables
- Khachiyan (also translated as Hacijan) proposed an algorithm (called the ellipsoid algorithm) with complexity $\mathrm{O}\left(\mathrm{n}^{4} \mathrm{~L}\right)$, where L represents the number of bits used in the computations.
- Another nonsimplex algorithm for solving LP was proposed in 1984 by Karmarkar which has complexity of $\mathrm{O}\left(\mathrm{n}^{3.5} \mathrm{~L}\right)$.

Khachiyan's Method

- Primal LP + Dual LP

$$
\begin{aligned}
& \operatorname{minimize} c^{T} x \\
& \text { subject to } A x \geq b \\
& \qquad x \geq 0 .
\end{aligned}
$$

$$
\text { maximize } b^{T} \lambda
$$

subject to $A^{T} \lambda \leq c$

$$
\lambda \geq 0 .
$$

- Using Theorem 17.1 $\quad \mathrm{c}^{\mathrm{T}} \mathrm{x}=b^{T} \lambda \Leftrightarrow\left\{\begin{array}{c}\mathrm{c}^{\mathrm{T}} \mathrm{x}-b^{T} \lambda \leq 0, \\ -\mathrm{c}^{\mathrm{T} \mathrm{x}+b^{T} \lambda \leq 0 .} \text {. } \quad \text { c } c^{T} x=b^{T} \lambda, ~\end{array}\right.$

$$
\begin{aligned}
& c^{T} x=b^{T} \lambda, \\
& A x \geq b, \\
& A^{T} \lambda \leq c, \\
& x \geq 0, \\
& \lambda \geq 0 .
\end{aligned}
$$

$$
\underbrace{\left[\begin{array}{cc}
c^{T} & -b^{T} \\
-c^{T} & b^{T} \\
-A & 0 \\
-I_{n} & 0 \\
0 & A^{T} \\
0 & -I_{m}
\end{array}\right]}_{P}\left[\begin{array}{c}
x \\
\lambda
\end{array}\right] \leq \underbrace{\left[\begin{array}{c}
0 \\
0 \\
-b \\
0 \\
c \\
0
\end{array}\right]}_{q} .
$$

Ellipsoid Method

- Let $z \in R^{m+n}$ be a given vector and let Q be an $(m+n) \times(m+n)$ nonsingular matrix. The ellipsoid associated with Q centered at z is defined as the set

$$
\mathrm{E}_{Q}(z)=\left\{\mathrm{z}+\mathrm{Qy}: \mathrm{y} \in \mathrm{R}^{\mathrm{m}+\mathrm{n}},\|y\| \leq 1\right\} .
$$

- Assume the entries in P and q are all integers.
- At each iteration, the associated ellipsoid contains a solution to the given system of $P z \leq q$.
- The algorithm updates z and Q in such a way that the ellipsoid at the next step is smaller than the current step.
- The number of iterations N is computed based on L and $m+n$.
- The algorithm inspired other researches.

Interior Point Method

- Recall: Simplex method
- Jumps from vertex to vertex of the feasible set seeking an optimal vertex
- Interior-point method
- Starts inside the feasible set and moves within it toward an optimal vertex

Affine Scaling Method

- Basic Algorithm
- Suppose we have a feasible point $x^{(0)}$ that is strictly interior.
- Search in a direction $d^{(0)}$ to decrease the objective value while remains feasible. $x^{(1)}=x^{(0)}+\alpha_{0} d^{(0)}$
$\Rightarrow d^{(0)}$ must be a vector in the nullspace of A.
- Choose $\mathrm{d}^{(0)}$ to be the orthogonal projection of the negative gradient -c.
$\Rightarrow P(v)=v-A^{\top}\left(A A^{\top}\right)^{-1} A v=\left[I_{n}-A^{\top}\left(A A^{\top}\right)^{-1} A\right] v$.
$\operatorname{ker}(A) \perp \operatorname{im}\left(A^{\top}\right)$

Affine Scaling

- Observation
- The initial point should be chosen close to the center of the feasible set such that we can take a larger step in the search direction.
- Solution
- Transform a feasible interior point to the center by applying affine scaling:
- Ex: the center for $\underbrace{\frac{1}{n}}_{A} \begin{array}{lll}1 & \cdots & 1\end{array}] x=\underbrace{[1]}_{b}$ is $\mathrm{e}=[1, \ldots, 1]$

To transform $x^{(0)}$ to e, we use the scaling transformation $\mathrm{D}_{0}{ }^{-1}$

New Formulation

- New coordinate system: $\bar{x}=D_{0}^{-1} x_{0}$

$$
\begin{aligned}
\operatorname{minimize} & \overline{\boldsymbol{c}}_{0}^{T} \bar{x} \\
\text { subject to } & \overline{\boldsymbol{A}}_{0} \overline{\boldsymbol{x}}=\boldsymbol{b} \\
& \overline{\boldsymbol{x}} \geq \mathbf{0},
\end{aligned}
$$

where $\quad \bar{c}_{0}=D_{0} c$
$\overline{\boldsymbol{A}}_{\mathbf{0}}=\boldsymbol{A D} \mathbf{D}_{\mathbf{0}}$.
set direction to be $\overline{\boldsymbol{d}}^{(0)}=-\overline{\boldsymbol{P}}_{0} \overline{\boldsymbol{c}}_{0}$.
where $\quad \bar{P}_{0}=I_{n}-\bar{A}_{0}^{T}\left(\bar{A}_{0} \check{\boldsymbol{A}}_{0}^{T}\right)^{-1} \bar{A}_{0}$
compute $\bar{x}^{(1)}$ using

$$
\overline{\boldsymbol{x}}^{(1)}=\overline{\boldsymbol{x}}^{(0)}-\alpha_{0} \overline{\boldsymbol{P}}_{0} \bar{c}_{0},
$$

obtain the point in the original coordinates:

$$
x^{(1)}=D_{0} \bar{x}^{(1)} .
$$

Final Format

- Iteration step: $x^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} d^{(k)}$

$$
\begin{aligned}
\boldsymbol{D}_{k} & =\operatorname{diag}\left[x_{1}^{(k)}, \ldots, x_{n}^{(k)}\right] \\
\overline{\boldsymbol{A}}_{\boldsymbol{k}} & =\boldsymbol{A} \boldsymbol{D}_{k} \\
\overline{\boldsymbol{P}}_{\boldsymbol{k}} & =\boldsymbol{I}_{n}-\overline{\boldsymbol{A}}_{k}^{T}\left(\overline{\boldsymbol{A}}_{k} \overline{\boldsymbol{A}}_{k}^{T}\right)^{-1} \overline{\boldsymbol{A}}_{k} \\
\boldsymbol{d}^{(k)} & =-\boldsymbol{D}_{k} \overline{\boldsymbol{P}}_{k} \boldsymbol{D}_{k} \boldsymbol{c} .
\end{aligned}
$$

- choosing α_{k} such that $x_{i}^{(k+1)}=x_{i}^{(k)}+\alpha_{k} d_{i}^{(k)}>0$ for $i=1, \ldots, n$.
$r_{k}=\min _{\left\{:: d_{i}^{(k)}<0\right\}}-\frac{x_{i}^{(k)}}{d_{i}^{(k)}} . \quad \begin{aligned} & \alpha_{k}=\alpha r_{k}, \text { where } \alpha \in(0,1) . \\ & \alpha=0.9 \text { or } 0.99\end{aligned}$
- Stopping criteria: $\frac{\left|c x^{(k+1)}-\boldsymbol{c x}(k)\right|}{\max \left(1,\left|c x^{(k)}\right|\right)}<\varepsilon$

Two Phase Method

- Phase I
- Let \boldsymbol{u} be an arbitrary vector with positive components
- Let $\boldsymbol{v}=\boldsymbol{b}$-A \boldsymbol{u}.
- If $\boldsymbol{v}=0$, let $\boldsymbol{x}^{(0)}=\boldsymbol{u}$.
- Else solve the following LP minimize $\quad y$
subject to $\quad[\boldsymbol{A}, \boldsymbol{v}]\left[\begin{array}{l}\boldsymbol{x} \\ y\end{array}\right]=\boldsymbol{b}$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \geq 0
$$

- The objective function is bounded below by 0 , thus the affine scaling method will terminate with some optimal solution.

Karmarkar's Canonical Form

- (all entries in A and c are integers) minimize $\boldsymbol{c}^{T} \boldsymbol{x}$

$$
\begin{aligned}
\operatorname{minimize} & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A x}=\mathbf{0}
\end{aligned}
$$

- Nullspace of $\mathrm{A}: \Omega=\left\{x \in R^{n}: A x=0\right\}$
- Simplex Δ in $\mathrm{R}^{\mathrm{n}}: \Delta=\left\{x \in R^{n}: e^{T} x=1, x \geq 0\right\} . \quad \boldsymbol{x} \geq \mathbf{0}$,
- Center of the simplex Δ :

$$
a_{0}=\frac{e}{n}=\left[\frac{1}{n}, \cdots, \frac{1}{n}\right] \quad\left[\begin{array}{c}
n \text {-simplex: } \\
\operatorname{det}\left[\begin{array}{cccc}
p_{0} & p_{1} & \cdots & p_{n} \\
1 & 1 & \cdots & 1
\end{array}\right] \neq 0 .
\end{array}\right.
$$

$$
\begin{aligned}
\Omega \cap \Delta & =\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}, \boldsymbol{e}^{T} \boldsymbol{x}=1, \boldsymbol{x} \geq \mathbf{0}\right\} \\
& =\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{e}^{T}
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right], \boldsymbol{x} \geq \mathbf{0}\right\}
\end{aligned}
$$

Example 18.1 Consider the following LP problem, taken from [90]:

$$
\begin{aligned}
\operatorname{minimize} & 5 x_{1}+4 x_{2}+8 x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Example 18.2 Consider the following LP problem, taken from [80]:

$$
\begin{aligned}
\operatorname{minimize} & 3 x_{1}+3 x_{2}-x_{3} \\
\text { subject to } & 2 x_{1}-3 x_{2}+x_{3}=0 \\
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Karmarkar's Restricted Problem

Karmarkar's algorithm solves LP problems in Karmarkar's canonical form, with the following assumptions:
A. The center a_{0} of the simplex Δ is a feasible point, that is, $a_{0} \in \Omega$;
B. The minimum value of the objective function over the feasible set is zero;
C. The $(m+1) \times n$ matrix

$$
\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{e}^{T}
\end{array}\right]
$$

has rank $m+1$;
D. We are given a termination parameter $q>0$, such that if we obtain a feasible point \boldsymbol{x} satisfying

$$
\frac{\boldsymbol{c}^{T} \boldsymbol{x}}{\boldsymbol{c}^{T} \boldsymbol{a}_{0}} \leq 2^{-q}
$$

then we consider the problem solved.

How to satisfy the assumptions?

- Assumption A can be achieved when we convert an LP into Karmarkar's canonical form
- Assumption B can be achieved if we know beforehand the minimum value of its objective function value.

$$
f(x)=c^{T} x-M=c^{T} x-M e^{T} x=\left(c^{T}-M e^{T}\right) x=\tilde{c}^{T} x
$$

Example 18.3 Recall the LP problem in Example 18.1:

$$
\begin{aligned}
\operatorname{minimize} & 5 x_{1}+4 x_{2}+8 x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

From Standard Form to Karmarkar's Canonical Form

minimize	$\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}, \quad \boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$	
subject to	$\boldsymbol{A x}=\boldsymbol{b}$	
	$\boldsymbol{x} \geq \mathbf{0}$.	

$\operatorname{minimize}$	$\boldsymbol{c}^{\prime} \boldsymbol{z}, \quad \boldsymbol{z} \in \mathbb{R}^{n+1}$
subject to	$\boldsymbol{A}^{\prime} \boldsymbol{z}=\mathbf{0}$
	$\boldsymbol{z} \geq \mathbf{0}$.

where $\quad c^{\prime}=\left[c^{T}, 0\right]^{T}$ and $\boldsymbol{A}^{\prime}=[\boldsymbol{A},-\boldsymbol{b}] . z=\left[\begin{array}{l}x \\ 1\end{array}\right]$.
let $\boldsymbol{y}=\left[y_{1}, \ldots, y_{n}, y_{n+1}\right]^{T} \in \mathbb{R}^{n+1}$, projective transformation

$$
\begin{aligned}
y_{i} & =\frac{x_{i}}{x_{1}+\cdots+x_{n}+1}, & i=1, \ldots, n \\
y_{n+1} & =\frac{1}{x_{1}+\cdots+x_{n}+1} . & \begin{aligned}
\text { minimize } & \boldsymbol{c}^{\prime T} \boldsymbol{y}, \quad \boldsymbol{y} \in \mathbb{R}^{n+1} \\
\text { subject to } & \begin{array}{l}
\boldsymbol{A}^{\prime} \boldsymbol{y}=\mathbf{0} \\
\boldsymbol{e}^{T} \boldsymbol{y}=1 \\
\boldsymbol{y} \geq 0 .
\end{array} \\
&
\end{aligned}
\end{aligned}
$$

Ensuring Assumption A ($\left.a_{0} \in \Omega\right)$

- Suppose we are given a point $\mathbf{a}=\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}\right]$ that is a strictly interior feasible point: $\mathrm{A} \boldsymbol{a}=\boldsymbol{b}$ and $\boldsymbol{a}>0$.
- P_{+}: positive orthant of $\mathrm{R}^{\mathrm{n}}: P_{+}=\left\{\mathbf{x} \in R^{n}: \mathbf{x} \geq \mathbf{0}\right\}$.
- Δ : the simplex in $R^{n+1}: \Delta=\left\{\mathbf{z} \in R^{n+1}: \mathbf{e}^{T} \mathbf{z}=1, \mathbf{z} \geq 0\right\}$.
- Define T: $P_{+} \rightarrow \Delta$ by

$$
\boldsymbol{T}(x)=\left[T_{1}(x), \ldots, T_{n+1}(x)\right]^{T}
$$

with

$$
\begin{aligned}
& T_{i}(\boldsymbol{x})=\frac{x_{i} / a_{i}}{x_{1} / a_{1}+\cdots+x_{n} / a_{n}+1} \\
& T_{n+1}(\boldsymbol{x})=\frac{1}{x_{1} / a_{1}+\cdots+x_{n} / a_{n}+1} \\
&
\end{aligned} . \quad \begin{array}{cl}
i=1, \ldots, n \\
\hline \begin{array}{c}
\text { minimize } \\
\text { subject to }
\end{array} & \begin{array}{l}
\boldsymbol{c}^{\prime} \boldsymbol{y}, \quad \boldsymbol{y} \in \mathbb{R}^{n+1} \\
\boldsymbol{A}^{\prime} \boldsymbol{y}=\mathbf{0} \\
\boldsymbol{e}^{T} \boldsymbol{y}=1
\end{array} \\
& \begin{array}{l}
\boldsymbol{y} \geq \mathbf{0} .
\end{array}
\end{array}
$$

- $\mathrm{T}(\boldsymbol{a})$ is the center of the simplex and is teasiore.

Karmarkar's Algorithm

- Restricted Karmarkar problem

minimize
subject to
$\boldsymbol{c}^{T} \boldsymbol{x}, \quad \boldsymbol{x} \in \mathbb{R}^{n}$
$x \in \Omega \cap \Delta$,

- Steps:

1. Initialize: Set $k:=0, \boldsymbol{x}^{(0)}=\boldsymbol{a}_{0}=\boldsymbol{e} / n$.
2. Update: Set $\boldsymbol{x}^{(k+1)}=\Psi\left(\boldsymbol{x}^{(k)}\right)$
3. Check the stopping criterion: $\boldsymbol{c}^{\top} \boldsymbol{x}^{(k)} / \boldsymbol{c}^{\top} \boldsymbol{x}^{(0)} \leq 2^{-q}$
4. Iterate: Set $k:=k+1$; go to step 2.

Update for $\mathbf{X}^{(1): ~} x^{(1)}=x^{(0)}+\alpha d^{(0)}$,

- Constraints: $\Omega \cap \Delta \quad \Omega \cap \Delta=\left\{x \in \mathbb{R}^{n}: A x=0, e^{T} x=1, x \geq 0\right\}$

$$
B_{0}=\left[\begin{array}{c}
A \\
e^{T}
\end{array}\right] .
$$

$$
\begin{aligned}
& =\left\{x \in \mathbb{R}^{n}:\left[\begin{array}{c}
A \\
e^{T}
\end{array}\right] x=\left[\begin{array}{l}
0 \\
1
\end{array}\right], x \geq 0\right\} \\
& =\left\{x \in \mathbb{R}^{n}: B_{0} x=\left[\begin{array}{l}
0 \\
1
\end{array}\right], x \geq 0\right\}
\end{aligned}
$$

- Choose $\mathrm{d}^{(0)}$ to be the orthogonal projection of -C onto the nullspace of $\mathrm{B}_{0} . \quad \boldsymbol{P}_{0}=\boldsymbol{I}_{n}-\boldsymbol{B}_{0}^{T}\left(\boldsymbol{B}_{0} \boldsymbol{B}_{0}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{B}_{0}$.
- Let $d^{(0)}=-r \hat{c}^{(0)}$.
where $\hat{\boldsymbol{c}}^{(0)}=\frac{\boldsymbol{P}_{\mathbf{0}} \boldsymbol{c}}{\left\|\boldsymbol{P}_{0} \boldsymbol{c}\right\|}$,
and $r=1 / \sqrt{n(n-1)}$

Update for $\mathbf{x}^{(k)}, \mathbf{k}>1$

- Since $\boldsymbol{x}^{(k)}$ is not in the center of the simplex, we need to transform this point to the center.

$$
\boldsymbol{D}_{k}^{-1}=\left[\begin{array}{ccc}
1 / x_{1}^{(k)} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 / x_{n}^{(k)}
\end{array}\right]
$$

- Let $U_{k}: \Delta \rightarrow \Delta$ be defined by $U_{k}(\mathbf{x})=D_{k}^{-1} \mathbf{x} / e^{T} D_{k}^{-1} \mathbf{x}$
- Note that $\mathrm{U}_{\mathrm{k}}\left(\boldsymbol{x}^{(\mathrm{k})}\right)=\boldsymbol{e} / \mathrm{n}=\boldsymbol{a}_{0}$.
- We need to state the original LP in the new coordinates:

$$
\begin{aligned}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{D}_{k} \overline{\boldsymbol{x}} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{D}_{k} \overline{\boldsymbol{x}}=\mathbf{0} \\
& \overline{\boldsymbol{x}} \in \Delta .
\end{aligned} \quad \boldsymbol{B}_{k}=\left[\begin{array}{c}
\boldsymbol{A}_{\boldsymbol{A}} \boldsymbol{D}_{k} \\
\boldsymbol{e}^{T}
\end{array}\right] \cdot \quad \hat{\boldsymbol{c}}^{(k)}=\frac{\boldsymbol{P}_{k} \boldsymbol{D}_{k} \boldsymbol{c}}{\left\|\boldsymbol{P}_{k} \boldsymbol{D}_{k} \boldsymbol{c}\right\|} .
$$

- Apply the update step as for $\boldsymbol{x}^{(1)} \quad \boldsymbol{P}_{k}=\boldsymbol{I}_{n}-\boldsymbol{B}_{k}^{T}\left(\boldsymbol{B}_{k} \boldsymbol{B}_{k}^{T}\right)^{-1} \boldsymbol{B}_{k}$.
- Finally apply the inverse transformation $\mathrm{U}_{\mathrm{k}}^{-1}$ to obtain $\boldsymbol{x}^{(k+1)}$

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{U}_{k}^{-1}\left(\overline{\boldsymbol{x}}^{(k+1)}\right)=\frac{D_{k} \overline{\boldsymbol{x}}^{(k+1)}}{\boldsymbol{e}^{T} \boldsymbol{D}_{k} \overline{\boldsymbol{x}}^{(k+1)}}
$$

1. Compute the matrices:

The update of $\mathbf{x}^{(k+1)}$

$$
\begin{aligned}
\boldsymbol{D}_{k} & =\left[\begin{array}{ccc}
x_{1}^{(k)} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & x_{n}^{(k)}
\end{array}\right] \\
\boldsymbol{B}_{k} & =\left[\begin{array}{c}
\boldsymbol{A} \boldsymbol{D}_{k} \\
\boldsymbol{e}^{T}
\end{array}\right] .
\end{aligned}
$$

2. Compute the orthogonal projector onto the nullspace of \boldsymbol{B}_{k} :

$$
\boldsymbol{P}_{k}=\boldsymbol{I}_{n}-\boldsymbol{B}_{k}^{T}\left(\boldsymbol{B}_{k} \boldsymbol{B}_{k}^{T}\right)^{-1} \boldsymbol{B}_{k} .
$$

3. Compute the normalized orthogonal projection of \boldsymbol{c} onto the nullspace of $\boldsymbol{B}_{\boldsymbol{k}}$:

$$
\hat{\boldsymbol{c}}^{(k)}=\frac{\boldsymbol{P}_{k} D_{k} c}{\left\|P_{k} D_{k} c\right\|}
$$

4. Compute the direction vector:

$$
\boldsymbol{d}^{(k)}=-r \hat{\mathbf{c}}^{(k)},
$$

where $r=1 / \sqrt{n(n-1)}$.
5. Compute $\overline{\boldsymbol{x}}^{(k+1)}$ using:

$$
\overline{\boldsymbol{x}}^{(k+1)}=\boldsymbol{a}_{0}+\alpha \boldsymbol{d}^{(k)}
$$

where α is the prespecified step size, $\alpha \in(0,1)$.
6. Compute $\boldsymbol{x}^{(k+1)}$ by applying the inverse transformation \boldsymbol{U}_{k}^{-1} :

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{U}_{k}^{-1}\left(\overline{\boldsymbol{x}}^{(k+1)}\right)=\frac{\boldsymbol{D}_{k} \overline{\boldsymbol{x}}^{(k+1)}}{\boldsymbol{e}^{T} \boldsymbol{D}_{k} \overline{\boldsymbol{x}}^{(k+1)}} .
$$

