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Dual Linear Programs

Table 17.1 Symmetric Form of Duality
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Table 17.2 Asymmetric Form of Duality
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Dual Problem for an LP in
Standard Form
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Example s3l:

e \Write the dual of the following linear programming

problem:minimize ¢” x MAX  —C wx |
subject to Ax > b. st —Ax<-b
— M’»]
J
ptn  — LT% w |
st -Ayy ¢
_ %0
Moy LT;rf
;




Example: Dual of the Diet Problem

Xj the amount of the
Jth food consumed.

minimize C1T1 + C2T2 + *** + CnTn

cj the cost per unit
of the j th food

subject to @112 +@1222 + -+ + A nZn
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o
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2171 +Q29%2 + -+ 4+ AonTn

IV ees

Am1Z] + @p2Z2 + ' - + CnTn bon bi the amount of thej

i th nutrient required.

LlyeveyIp .>. 0.
aij the amount of .
the jth nutrient per Ai the price of the
unit of the jth i th nutrient pill.
fAanA
R maximize ATp
n food Mair+ -+ Amam1 < 0
m nutrients :
A (m xn) composing matrix MO+ + Amlmn < Cn.



Example 17.2 Consider the following linear programming problem: 25_ | E s E :
maximize 2z, + 5x2 + T3 = krb b:{ i) ::.
subject to 2z; — 23 +7x3 < 6 L -4
Ty +3z2+4z3 < 9 ?
3z, +6z2+23 < 3
Ti1,z2,x3 > 0.

Find the corresponding dual problem and solve it.
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Properties of Dual Problems sess

Lemma 17.1 Weak Duality Lemma. Suppose that x and A\ are feasible solutions to

primal and dual LP lems, respectively (either in the symmetric or asymmetric

form). The @ ATb. T - O
Ax 2 b A4ys Chx

Proof : (Hint(%j) X 7 © A77?

~

2 AAx - Mb Ax=b

—I|f the cost of one of the problems is unbounded, the other problem has
no feasible solution.



Theorem 17.1 Suppose that xy and A are feasible solutions to the primal and dual,
respectively (either in symmetric or asymmetric form). If cT:L'Q = A'b, then z and
Ao are optimal solutions to their respective problems. O

Proof : (Hint) ¢ x 2@[5: ¢’ ﬁJ
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Theorem 17.2 Duality Theorem. If the primal problem (either in symmetric or
asymmetric form) has an optimal solution, then so does the dual, and the optimal
values of their respective objective functions are equal. O

Proof: (For asymmetric) (For symmetric)
(1) Find solution to dual: At=ceTB-1 Convert|the primal into the standard form
(2) Prove Atb=ctx by adding surplus variables




Obtaining the optimal solution
to the dual

HREP &) T

Therefore, if we define 7 = [07, 7], then combining the equations
A'D =cl — 7% and AT B = c}; yields
A'A =T =77,

If rank D=m, then we can solve for A using the vector
1)




Example 17.4 In Example 17.2, the tableau for the primal in standard form is EEE :
@y @ a3 a4 as ag b -4
2 -1 7 1 0 0 6 -
1 3 4 0 1 0 9
3 6 1 ¢ 0 1 3
¢c" -2 -5 -1 0 0 0 0
15 6 1 39
KA. R A
TP P A
43 43 i3 43
P2 00 5 0 3% L4

We can now find the solution of the dual from the above simplex tableau using the

equation A’ D = ¢}, — r¥:

2 1 0
24 1 36
XA 1 = |- - i
P12, Ao] [3 8 ?l =2,0.0] [43’43’43]
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Summary of Prime and Dual

l:ll...

e If one has unbounded objective function
values, the other has no feasible solution

e If one has an optimal feasible solution, then
so does the other.

e If one has no feasible solution, then
o Either has no feasible solution

o Or has unbounded objective function



Theorem 17.3 Complementary Slackness Condition. The feasible solutions x and 0000
A to a dual pair of problems (either in symmetric or asymmetric form) are optimal if
and only if

I (€T = ATA)z =0; and

2. \T(Az-b) =0.

Proof. We first prove the result for the asymmetric case. Note that condition 2 holds
trivially for this case. Therefore, we only consider condition 1.

=: If the two solutions are optimal, then by Theorem 17.2, ¢Tz = A7'b. Because
Az = b, we also have (¢T — A" A)z = 0.

&: If (T — ATA)z = 0, then Tz = AT Az = ATb. Therefore, by Theo-
rem 17.1,  and A are optimal.

We now prove the result for the symmetric case.

=>: We first show condition 1. If the two solutions are optimal, then by Theo-
rem 17.2, ¢"z = ATb. Because Az > b and A > 0, we have

T - ATA)z =cTz - ATAz =A"Tb-ATAz = 2T(b- Az) <0.

On the other hand, since A” A < ¢T and z > 0, we have (¢T — AT A)z > 0. Hence,
(et - ATA)m = 0. To show condition 2, note that since Ax > band A > 0, we
have AT (Az — b) > 0. On the other hand, since A" A < ¢7 and z > 0, we have
M'(Az -b)=(ATA-cT)z <0.

<: Combining conditions 1 and 2, we get ¢z = AT Az = ATb. Hence, by
Theorem 17.1, & and A are optimal. [ |




Example 17.5 Suppose you have 26 dollars and you wish to purchase some gold.
You have a choice of four vendors, with prices (in dollars per ounce) of 1/2,1,1/7,
and 1/4, respectively. You wish to spend your entire 26 dollars by purchasing gold
from these four vendors, where z; is the dollars you spend on vendori, 1 = 1, 2, 3, 4.

a. Formulate the linear programming problem (in standard form) that reflects
your desire to obtain the maximum weight in gold.

b. Write down the dual of the linear programming problem in part a, and find the
solution to the dual.

¢. Use the complementary slackness condition together with part b to find the
optimal values of z;,...,24.






DUAL LINEAR PROGRAMS

Table 17.1 Symmetric Form of Duality

Primal Dual
minimize ¢’ X maximize b y
subject to Ax> b subjectto 4"y <c¢
x2>0. y=0.
Table 17.2 Asymmetric Form of Duality
Primal Dual
minimize ¢’ X maximize b” y
subject to Ax =5 subjectto 4" y<c.

x20.




