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Optimization Problem
• Definition

• Objective function: f : Rn →R
• Decision variables: x=[x1, x2, …, xn]T ∈ Rn

• Feasible set: Ω ⊆ Rn

• Local minimizer
o If ∃ ε > 0 such that f(x)≥ f(x*), ∀x∈Ω and ||x - x*||<ε

• Global minimizer
o If f(x)≥ f(x*)∀x∈Ω



Preliminary

• First-order derivative ⋅ Second-order derivative
 (Tangent vector)

o Gradient and Hessian matrix F(x)





Feasible Direction

• Definition 6.2 
o A vector d is a feasible direction at x if



Directional Derivative

• Directional derivative
– Let ƒ : Rn →R be a real-valued function and let d be a feasible 

direction at x∈Ω. The direction derivative of ƒ in the direction d, 
denoted  ∂ƒ/∂d, is the real-valued function defined by
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First-Order Necessary Condition

• Theorem 6.1
o If x* is a local minimizer of ƒ over Ω, then for any 

feasible direction d at x*, we have



First-Order Necessary Condition 
(Cont.)
• Corollary 6.1 Interior Case

o If x* is a local minimizer of ƒ over Ω, and if x* is an 
interior point of Ω, we have

o Note: Necessary but not sufficient





Second-Order Necessary Condition

• Theorem 6.2
o Let x* be a local minimizer of ƒ over Ω, and d is a 

feasible direction at x*. We have

• Corollary 6.2 Interior Case
o Let x* be an interior point of Ω. If x* is an local 

minimizer of Ω, then

Acceleration



Example:

Indefinite



Second-order Sufficient Condition

• Theorem 6.3 Interior Case.
 Suppose that 

 Then x* is a strict local minimizer of f.



Proof of SOSC
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ƒ: R →R

ƒ : Rn →R



Example


