

Outline

- Linear Algebra
- Concepts from Geometry
- Elements of Differential Calculus

Data Fitting

- Examples
- Find the least-squares solution \vec{x}^{*} of the system $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right]
$$

- Fit a quadratic function to the four data points $\left(a_{1}, b_{1}\right)=(-1$, $8),\left(a_{2}, b_{2}\right)=(0,8),\left(a_{3}, b_{3}\right)=(1,4)$, and $\left(a_{4}, b_{4}\right)=(2,16)$.

Data Fitting

- Given data points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$
- L_{2} regression (QP): $\underset{\mathrm{x}}{\arg \max _{j}} \sum_{j}\left(b_{j}-\mathbf{x} a_{j}\right)^{2}$
- L_{1} regression: $\underset{\underset{x}{a r g}}{\max } \sum_{j}\left\|b_{j}-\mathbf{x} a_{j}\right\|$
- Least-square regression $\left(\mathrm{L}_{2}\right)$
$\left\|\vec{b}-A \vec{x}^{*}\right\| \leq\|\vec{b}-A \vec{x}\|$

Quadratic Form

- Example
- Consider the quadratic form
$q\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}-6 x_{2} x_{3}$.
Find a symmetric matrix A such that $q(\vec{x})=\vec{x} \cdot A \vec{x}$ for all \vec{x} in R^{3}.
- Matrix form $q(\mathbf{x})=\mathbf{x}^{T} Q \mathbf{x}$

Hyperplanes

- Hyperplane
- $H=\left\{x \in R^{n} \mid u_{1} x_{1}+u_{2} x_{2}+\ldots+u_{n} x_{n}=u^{\top} x=v\right\}$
- $a \in H, H=\left\{x \in R^{n} \mid u^{\top}(x-a)=0\right\}$
- Halfspace
- $H_{+}=\left\{x \in R^{n} \mid u^{\top} x \geq v\right\}$
- $H_{-}=\left\{x \in R^{n} \mid u^{\top} x \leq v\right\}$

Convex Set

- Line segment
- $x, y \in R^{n},\{v \mid v=\alpha x+(1-\alpha) y, \alpha \in[0,1]\}$
- Convex set
- A set Θ is convex if, for all $x, y \in \Theta$, the line segment between x and y lies in Θ.

Polytopes and Polyhedra

- Convex polytope
- A set that can be expressed as the intersection of a finite number of half-spaces
- Polyhedron
- A nonempty bounded polytope

Differential calculus

- Consider a function $f: R^{n} \rightarrow R^{m}$

$$
f(x)=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right]
$$

- Affine function
- A function $\mathrm{A}: R^{n} \rightarrow R^{m}$ is affine if there exists a linear function L : $R^{n} \rightarrow R^{m}$ and a vector $y \in R^{m}$ such that $\mathrm{A}(x)=L(x)+y$.
- In $R \rightarrow R$, an affine function has the form $\mathrm{A}(x)=a x+b$, with $a, b \in R$.
- Idea: Approximating an arbitrary function $f: R^{n} \rightarrow R^{m}$ near point x_{0} by an affine function L.
- $\mathrm{A}\left(x_{0}\right)=f\left(x_{0}\right) \quad f\left(x_{0}\right)=A\left(x_{0}\right)=L\left(x_{0}\right)+y$
- $\mathrm{A}(x)=L\left(\mathrm{x}-x_{0}\right)+f\left(x_{0}\right) \quad y=f\left(x_{0}\right)-L\left(x_{0}\right)$
- $\lim _{x \rightarrow x_{0}} \frac{\|f(x)-A(x)\|}{\left\|x-x_{0}\right\|}=0 \quad \begin{aligned} & A(x)=L(x)+\left(f\left(x_{0}\right)-L\left(x_{0}\right)\right)=L\left(x-x_{0}\right)+f\left(x_{0}\right) \\ & \lim _{x \rightarrow x_{0}} \frac{\left\|f(x)-\left(L\left(x-x_{0}\right)+f\left(x_{0}\right)\right)\right\|}{\left\|x-x_{0}\right\|}=0\end{aligned}$

Differentiability

- Differentiable
- A function f is said to be differentiable at x_{0} if there is an affine function L that approximates f near x_{0}; that is, there exists L : $R^{n} \rightarrow R^{m}$ such that

$$
\lim _{x \rightarrow x_{0}} \frac{\left\|f(x)-\left(L\left(x-x_{0}\right)+f\left(x_{0}\right)\right)\right\|}{\left\|x-x_{0}\right\|}=0
$$

- The linear transformation above is called the derivative of f at x_{0}.
- Any linear transformation can be represented by an mxn matrix.

$$
D f\left(x_{0}\right)=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \left(x_{0}\right) & \cdots
\end{array} \frac{\partial f}{\partial x_{n}}\left(x_{0}\right)\right]=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{0}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{0}\right) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}\left(x_{0}\right) \\
\frac{\partial \partial_{2}}{\partial x_{1}}\left(x_{0}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{0}\right) & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}\left(x_{0}\right) & \frac{\partial f_{m}}{\partial x_{2}}\left(x_{0}\right) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\left(x_{0}\right)
\end{array}\right]
$$

Partial Derivative

- Derivative of $f: R^{n} \rightarrow R^{m}$ at x_{0}

$$
D f\left(x_{0}\right)=\left\lfloor\begin{array}{lll}
\frac{\partial f}{\partial x_{1}}\left(x_{0}\right) & \cdots & \frac{\partial f}{\partial x_{n}}\left(x_{0}\right)
\end{array}\right]
$$

- Partial derivative of $f: R^{n} \rightarrow R^{m}$ along $\mathrm{e}_{\mathrm{j}} \frac{\partial f}{\partial x_{j}}\left(x_{0}\right)=L e_{j}$

$$
\left.\begin{array}{ll}
x_{j}=x_{0}+t e_{j}, \text { where } e_{j}= & , \\
\Rightarrow \lim _{t \rightarrow 0} \frac{\left\|f\left(x_{j}\right)-\left(t L e_{j}+f\left(x_{0}\right)\right)\right\|}{t}=0 & \text { if } f(x)=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right], \text { then } \frac{\partial f}{\partial x_{j}}\left(x_{0}\right)=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{j}}\left(x_{0}\right) \\
\vdots \\
\Rightarrow \lim _{t \rightarrow 0} \frac{\left\|f\left(x_{j}\right)-f\left(x_{0}\right)\right\|}{t}=L e_{j} .
\end{array}\right. \\
\frac{\partial f_{m}}{\partial x_{j}}\left(x_{0}\right)
\end{array}\right],
$$

Special Cases

- Special cases
- For $f: R \rightarrow R, D f(x)=a$.
- For $f: R^{n} \rightarrow R$, Df is a $1 \times n$ vector.
- For $f: R^{n} \rightarrow R^{m}$, Df is a mxn matrix.

$$
D f(x)=\left[\begin{array}{lll}
\frac{\partial f(x)}{\partial x_{1}} & \cdots & \frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

Gradient \& Hessian Matrix

- Gradient
- If $f: R^{n} \rightarrow R$ is differentiable at every point of its domain, the the gradient ∇f is defined by

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]=D f(x)^{T} \quad \nabla f: R^{n} \rightarrow R^{n}
$$

- Hessian Matrix
- If ∇f is differentiable,
- then f is twice differentiable.

$$
\nabla^{2} f=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Level Sets and Gradients

- Level Set
- The level set of a function $f: R^{n} \rightarrow R$ at level c is the set of points $\mathbf{S}=\{\mathbf{x} \mid f(x)=c\}$.
- Theorem
- The gradient vector ∇f is orthogonal or normal to an arbitrary smooth curve passing through x_{0} on the level set S determined by $f(x)=f\left(x_{0}\right)$.
i.e. $\quad \nabla f\left(x_{0}\right)^{\top}\left(x-x_{0}\right)=0$, if $\nabla f\left(x_{0}\right) \neq 0$.

Theorem

- Orthogonality of the gradient to the level set
- Gradient is the direction of maximum rate of increase of f at x_{0}.

The graph of $f: \boldsymbol{R}^{n} \rightarrow R$

- The graph of $f: R^{n} \rightarrow R$ is the set $\left\{\left[\mathrm{x}^{\top}, f(\mathrm{x})\right]^{\top}: \mathrm{x} \rightarrow R^{n}\right\} \subset R^{n+1}$

Taylor's Series

- Theorem

$f(x)=f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{1!} f^{(1)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{(2)}\left(x_{0}\right)+\ldots+\frac{\left(x-x_{0}\right)^{m-1}}{(m-1)!} f^{(m-1)}\left(x_{0}\right)+R_{m}$,
where $f^{(i)}$ is the ith derivative of f, and
$R_{m}=\frac{\left(x-x_{0}\right)^{m}}{m!} f^{(m)}\left(x_{0}+\theta\left(x-x_{0}\right)\right)$,
with $\theta \in(0,1)$.

