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Data Fitting
 Examples

 Find the least-squares solution of the system ,
where

and

 Fit a quadratic function to the four data points (a1, b1) = (-1,
8), (a2, b2) = (0, 8), (a3, b3) = (1, 4), and (a4, b4) = (2, 16).
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Data Fitting
 Given data points (a1, b1), (a2, b2), …, (an, bn)

 L2 regression (QP):

 L1 regression:

 Least-square regression (L2)
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Quadratic Form

 Example
 Consider the quadratic form

Find a symmetric matrix A such that for all in
R3.

 Matrix form
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Hyperplanes

Hyperplane
 H= {xRn | u1x1+u2x2+…+unxn =uTx=v}
 a H, H= {xRn | uT(x-a)=0}

Halfspace
 H+={xRn | uTxv}
 H-={xRn | uTxv}
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Convex Set

 Line segment
 x, y Rn, { v | v=x+(1-)y, [0,1] }

Convex set
 A set is convex if, for all x, y , the line

segment between x and y lies in .

Polytopes and Polyhedra

Convex polytope
 A set that can be expressed as the intersection of

a finite number of half-spaces

 Polyhedron
 A nonempty bounded polytope
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Differential calculus

 Consider a function : RnRm

 Affine function
 A function : RnRm is affine if there exists a linear function L:

RnRm and a vector yRm such that (x)= L(x)+y.
 In R R, an affine function has the form (x)=ax+b, with a,b R.

 Idea: Approximating an arbitrary function : RnRm near
point x0 by an affine function L.
 (x0)= (x0)
 (x)= L(x- x0)+(x0)
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Differentiability
 Differentiable

 A function is said to be differentiable at x0 if there is an affine
function L that approximates near x0; that is, there exists L:
RnRm such that

 The linear transformation above is called the derivative of at x0.
 Any linear transformation can be represented by an mxn matrix.
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Partial Derivative

 Derivative of : RnRm at x0

 Partial derivative of : RnRm along ej
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Special Cases

 Special cases
 For : RR, Df(x)=a.

 For : RnR, Df is a 1xn vector.

 For : RnRm, Df is a mxn matrix.
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Gradient & Hessian Matrix

 Gradient
 If : RnR is differentiable at every point of its domain, the the

gradientis defined by

: RnRn

 Hessian Matrix
 If is differentiable,
 then is twice differentiable.
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Level Sets and Gradients

 Level Set
 The level set of a function : RnR at level c is the

set of points S={x| (x)=c}.

 Theorem
 The gradient vector is orthogonal or normal to

an arbitrary smooth curve passing through x0 on
the level set S determined by (x)=(x0).

i.e. (x0)T(x-x0)=0, if (x0)0.
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Theorem

 Orthogonality of the gradient to the level set
 Gradient is the direction of maximum rate of increase

of at x0.

The graph of : RnR

 The graph of : RnR is the
set {[xT, (x)]T: xRn} Rn+1
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Taylor’s Series

 Theorem
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