
Application to Data Compression

Suppose a satellite transmits a picture con-

taining 1000×1000 pixels. If the color of each

pixel is digitized, this information can be rep-

resented in a 1000×1000 matrix A.

Suppose we know an SVD

A = σ1~u1~vT
1 + . . . + σr~ur~v

T
r

Even if the rank r of the matrix A is large, most

of the singular values will typically be very small

(relatively to σ1). If we neglect those, we get a

good approximation A ≈ σ1~u1~vT
1 + . . .+σs~us~vT

s ,

where s is much smaller than r.

For example, if we choose s = 10, we need to

transmit only the 20 vectors σ1~u1, . . . , σ10~u10

and ~v1, . . . , ~v10 in R1000, that is, 20,000 num-

bers.
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Application to Information Retrieval

Consider the problem of searching a database

for documents. If there are m possible key

words and a total of n documents. Then the

database can be represented by a m×n matrix

A.

Two of the main problems are polysemy (words

having multiple meanings) and synonymy (mul-

tiple words having the same meaning).

If we think of our database as an approxima-

tion. Some of the entries may contain ex-

traneous components due to polysemy, and

some may miss including components because

of synonymy.

Suppose it were possible to correct for these

problems and come up with a perfect database

matrix P . Let E = A − P , then A = P + E.
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We can think of E as a matrix representing the

errors.

Latent semantic indexing (LSI)

The idea of LSI is that the lower-rank matrix

may still provide a good approximation to P

and, may actually involve less error.

The lower-rank approximation can be obtained

by truncating the outer product expansion of

the singular value decomposition of A. This is

equivalent to setting

σs+1 = σs+2 = . . . = σn = 0

and then setting As = UsΣsV T
s , the compact

form of the singular value decomposition.

Speedup

The matrix vector multiplication AT~q requires

a total of mn scalar multiplications.



On the other hand, AT
s = VsΣsUT

s , and the

multiplication AT
s ~q = Vs(Σs(UT

s ~q)) requires a

total of s(m + n + 1) scalar multiplications.

Reference

S. J. Leon, Linear algebra with applications,

6th Ed., Prentice Hall. 2002.



Applications to Statistics

Matrix of observations

An example of two-dimensional data is given

by a set of weights and heights of N college

students. Let Xj denote the observation vec-

tor in R2 that lists the weight and height of the

jth student. Then, the matrix of observation

has the form
[

w1 w2 . . . wN
h1 h2 . . . hN

]

↑ ↑ ↑
X1 X2 . . . XN

Mean and Covariance

To prepare for principle component analysis,

let
[

X1 . . . XN

]
be a p×N matrix of obser-

vations. The sample mean, M, of the obser-

vation vectors is given by

M =
1

N
(X1 + . . . + XN)
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Let

X̂k = Xk −M

The columns of the p×N matrix

B =
[

X̂1 X̂2 . . . X̂N

]

have a zero sample mean, and B is said to be

in mean-deviation form.

The (sample) covariance matrix is the p × N

matrix S defined by

S =
1

N − 1
BBT

The entries sjj is called the variance of xj.

The total variance of the data is the sum of

the variances on the diagonal of S, totalvariance =

trace(S).

The entries sij for i 6= j is called the covariance

of xi and xj.



Principle Component Analysis

Assume that the matrix X =
[

X1 . . . XN

]

is already in mean-deviation form. The goal

of principle component analysis is to find an

orthogonal p×p matrix P =
[

u1 . . . up

]
that

determines a change of variable, X = PY , or



x1
x2
...

xp


 =

[
u1 u2 . . . up

]



y1
y2
...
yp




such that the new variables y1, y2, . . . , yp are

uncorrelated and are arranged in order of de-

creasing variance.

Let S = 1
N−1XXT be the covariance matrix

of X. Since the covariance matrix of Y =[
Y1 . . . YN

]
is 1

N−1Y Y T = 1
N−1(P

TX)(PTX)T =

PTSP . So the desired orthogonal matrix P is

one that makes PTSP diagonal.
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Let D be a diagonal matrix with the eigenval-

ues λ1, . . . , λp of S on the diagonal, arranged

that λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, and let P be an

orthogonal matrix whose columns are the cor-

responding unit eigenvectors u1, . . . , up. Then

PTSP = D and S = PDPT .

The unit eigenvectors u1, . . . , up are called the

principle components of the data. The first

principle component u1 determines the new

variable y1 in the following way. Let c1, . . . , cp

be the entries in u1. Since uT
1 is the first row

of PT , the equation Y = PTX shows that

y1 = uT
1X = c1x1 + c2x2 + . . . + cpxp

Thus, y1 is a linear combination of the original

variables x1, x2, . . . , xp, using the entries in the

eigenvector u1 as weights.



Reducing the Dimension

Principle component analysis is potentially valu-

able for applications in which most of the vari-

ation in the data is due to variations in only a

few of the new variables, y1, y2, . . . , yp.

The variance of yj is λj, and the quotient

λj/trace(S) measures the fraction of the total

variance that is captured by yj.

Reference

D. C. Lay, Linear algebra and its applications,

2nd Ed. Addison-Wesley, 2000.
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