
8.3 Singular Values

Example 1 Show that if L(~x) = A~x is a linear

transformation from R2 to R2, then there are

two orghogonal unit vectors ~v1 and ~v2 in R2

such that L(~v1) and L(~v2) are orthogonal as

well.

Solution This statement is clear for some classes

of transformation, for example,

1. If L is an orthogonal transformation, then

any two orghogonal unit vectors ~v1 and ~v2

will do, by Fact 5.3.2.

2. If A is symmetric, then we can choose two

orthogonal unit eigenvectors, by the spec-

tral theorem.
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However, for an arbitrary linear transformation

L, the statement isn’t that obvious.

Hint: Consider an orthonormal eigenbasis ~v1,

~v2 of the symmetric matrix ATA, with asso-

ciated eigenvalues λ1, λ2. L(~v1) = A~v1 and

L(~v2) = A~v2 are orthogonal, as claimed:

(A~v1) · (A~v2) = (A~v1)
TA~v2 = ~vT

1 ATA~v2

= ~vT
1 (λ2~v2) = λ2(~v1 · ~v2) = 0

Note that ~v1, ~v2 need not be eigenvectors of

matrix A.



Example 2 Consider the linear transformation

~x) = A~x, where A =

[

6 2
−7 6

]

.

1. Find an orthonormal basis ~v1, ~v2 of R2 such

that L(~v1) and L(~v2) are orthogonal.

2. Show that the image of the unit circle un-

der transformation L is an ellipse. Find the

lengths of the two semiaxes of this ellipse,

in terms of the eigenvalues of matrix ATA.

Solution

1. Using the ideas of Example 1

ATA =

[

6 −7
2 6

] [

6 2
−7 6

]

=

[

85 −30
−30 40

]

The characteristic polynormial of ATA is

λ2 − 125λ + 2500 = (λ − 100)(λ − 25),
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so the corresponding eigenspaces are

E100 = ker

[

15 30
30 60

]

= span

[

2
−1

]

,

E25 = ker

[

−60 30
30 −15

]

= span

[

1
2

]

For orthonormal basis

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

2. The unit circle consists of the form ~x = cos(t)~v1 +
sin(t)~v2, and the image of the unit circle consists of
the form

L(~x) = cos(t)L(~v1) + sin(t)L(~v2)

The image is the ellipse whose semimajor and semi-
nor axes are ||L(~v1)|| and ||L(~v2)||:

||L(~v1)||2 = (A~v1)(A~v1) = ~vT
1 ATA~v1 = ~vT

1 (λ1~v1) = λ1

Likewise,

||L(~v2)||2 = λ2.

Thus

||L(~v1)|| =
√

λ1 =
√

100 = 10

||L(~v2)|| =
√

λ2 =
√

25 = 5



We can also compute L(~v1) and L(~v2) directly:

L(~v1) = A~v1 =

[

6 2
−7 6

]
1√
5

[

2
−1

]

=
1√
5

[

10
−20

]

L(~v2) = A~v2 =

[

6 2
−7 6

]
1√
5

[

1
2

]

=
1√
5

[

10
5

]

So that

||L(~v1)|| = 10, ||L(~v2)|| = 5

See Figure 2.



Definition 8.3.1 Singular values

The singular values of an m × n matrix A are

the square roots of the eigenvalues of the sym-

metric n×n matrix ATA, listed with their alge-

braic multiplicities. It is customary to denote

the singular values by σ1, σ2, . . . , σn, and to list

them in decreasing order:

σ1 ≥ σ2 ≥ . . . ≥ σn

Fact 8.3.2 The image of the unit circle

Let L(~x) = A~x be an invertible linear transfor-

mation from R2 to R2. The image of the unit

circle under L is an ellipse E. The lengths of

the semimajor and the seminor axes of E are

the singular values σ1, and σ2 of A, respec-

tively.
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Fact 8.3.3

Let L(~x) = A~x be a linear transformation from

Rn to Rm. Then there is an orghonormal basis

~v1, ~v2, . . . , ~vn of Rn such that

1. vectors L(~v1), L(~v2), . . . , L(~vn) are orthogo-

nal, and

2. the lengths of these vectors are the singular

values σ1, σ2, . . . , σn of matrix A.

To construct ~v1, ~v2, . . . , ~vn, find an orthonormal

eigenbasis for matrix ATA. Make sure that the

corresponding eigenvalues λ1, λ2, . . . , λn appear

in descending order:

λ1 ≥ λ2 ≥ . . . ≥ λn
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Proof

1. L(~vi) · L(~vj) = (A~vi) · (A~vj) = (A~vi)
TA~vj

= ~vT
i ATA~vj = ~vT

i (λj~vj) = λj(~vi · ~vj) = 0

when i 6= j, and

2. ||L(~vi)||2 = (A~vi) · (A~vi) = ~vT
i ATA~vi

= ~vT
i (λi~vi) = λi(~vi · ~vi) = λi = σ2

i ≥ 0,

so that ||L(~vi)|| = σi.
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Example 3 Consider the linear transformation

L(~x) = A~x, A =

[

0 1 1
1 1 0

]

a. Find the singular values of A.

b. Find orthonormal vectors ~v1, ~v2, ~v3, in R3

such that L(~v1), L(~v2), L(~v3) are orthogonal.

c. Sketch and describe the image of the unit

sphere under the transformation L.

Solution

a.

ATA =






0 1
1 1
1 0






[

0 1 1
1 1 0

]

=






1 1 0
1 2 1
0 1 1






The eigenvalues are λ1 = 3, λ2 = 1, λ3 = 0.
The singular values of A are

σ1 =
√

λ1 =
√

3, σ2 =
√

λ2 = 1, σ3 =
√

λ3 = 0
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b. Find an orthonormal eigenbasis ~v1, ~v2, ~v3,

for ATA:

E3 = span





1
2
1



 , E1 = span





1
0
−1



 , E0 = span





1
−1
1





~v1 =
1√
6





1
2
1



 , ~v2 =
1√
2





1
0
−1



 , ~v3 =
1√
3





1
−1
1





Compute L(~v1), L(~v2), L(~v3) and check orthog-
onality:

A~v1 =
1√
6

[

3
3

]

, A~v2 =
1√
2

[

−1
1

]

, A~v3 =

[

0
0

]

c. The unit sphere in R3 consists of all vectors

of the form ~x = c1~v1 + c2~v2 + c3~v3, where c21 +

c22 + c23 = 1.

The image of the unit sphere consists of the

vectors

L(~x) = c1L(~v1) + c2L(~v2)

where c21 + c22 ≤ 1. The image is the full ellipse

shaded in Figure 3.





Example 3 shows that some of the singular

values of a matrix may be zero. Suppose the

singular values σ1, σ2, . . . , σs are nonzero, while

σs+1, σs+2, . . . , σn are zero. Choose eigenbasis

~v1, . . . , ~vs, ~vs+1, . . . , ~vn of ATA for Rn. Note that

||A~vi|| = σi = 0 and therefore A~vi = ~0 for i =

s + 1, . . . , n.

We claim that the vectors A~v1, . . . , A~vs form a

basis of the image of A, since any vector in the

image of A can be written as

A~x = A(c1~v1 + . . . + cs~vs + . . . + cn~vn)
= c1A~v1 + . . . + csA~vs

This shows that s = dim(imA) = rank(A).

Fact 8.3.4

If A is an m × n matrix of rank r, then the

singular values σ1, σ2, . . . , σr are nonzero, while

σr+1, . . . , σn are zero.
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Singular Value Decomposition

Fact 8.3.3 can be expressed in terms of a ma-

trix decomposition.

Consider a linear transformation L(~x) = A~x

from Rn to Rm, and choose an orthonormal

basis ~v1, ~v2, . . . , ~vn as in Fact 8.3.3. Let r =

rank(A). We know that the vectors

A~v1, A~v2, . . . , A~vr are orthogonal and nonzero,

with ||A~v|| = σi. We introduce the unit vectors

~u1 =
1

σ1
A~v1, . . . , ~ur =

1

σr
A~vr

We can write

A~vi = σi~ui for i = 1,2, . . . , r

and

A~vi = ~0 for i = r + 1, r + 2, . . . , n
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We can express these equations in matrix form
as follows:

A





| | | |
~v1 . . . ~vr ~vr+1 . . . ~vn

| | | |





︸ ︷︷ ︸

V

=





| | | |
σ1~u1 . . . σr~ur ~0 . . . ~0
| | | |





=





| | | |
~u1 . . . ~ur ~0 . . . ~0
| | | |











σ1
. . .

σr

0

0 0







=





| | | |
~u1 . . . ~ur ~ur+1 . . . ~um

| | | |





︸ ︷︷ ︸







σ1
. . .

σr

0

0 0







︸ ︷︷ ︸

U Σ

The vector space ker(AT ) has dimesion m −
r. Let {~ur+1, ~ur+2, . . . , ~um} be an orthonormal

basis for ker(AT ). Then ~u1, ~u2, . . . , ~um form an

orthonormal basis for Rm.



Note that V is an orthogonal n × n matrix, U

is an orthogonal m × m matrix, and Σ is an

m× n matrix whose first r diagonal entries are

σ1, σ2, . . . , σr, and all other entries are zero.

Fact 8.3.5 Singular-value decomposition

Any m × n matrix A can be written as

A = UΣV T

where U is an orthogonal m × m matrix; V is

an orthogonal n× n matrix; and Σ is an m × n

matrix whose first r diagonal entries are the

nonzero sigular values σ1, σ2, . . . , σr of A, and

all other entries are zero (where r = rank(A)).

Alternatively, this singular value decomposition

can be written as

A = σ1~u1~vT
1 + . . . + σr~ur~v

T
r ,

where ~ui and ~vi are the columns of U and V ,

respectively.



Proof

A = UΣV T

= [ ~u1 . . . ~ur . . . ]









σ1 0
.. .

σr
. . .

0 0















~vT
1
...

~vT
r
...







= [ ~u1 . . . ~ur . . . ]







σ1~vT
1

...
σr~vT

r
...







= σ1~u1~v
T
1 + . . . + σr~ur~v

T
r



Consider a singular value decomposition A =

UΣV T , where

V =






| |
~v1 . . . ~vn

| |




 and U =






| |
~u1 . . . ~um

| |






We know that

A~vi = σi~ui for i = 1,2, . . . , r

and

A~vi = ~0 for i = r + 1, . . . , n

These equations tell us that

im(A) = span(~u1, . . . , ~ur)

and

ker(A) = span(~vr+1, . . . , ~vn)

That is, SVD provides us with orthonormal

bases for the kernel and image of A.
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Likewise, we have AT = (UΣV T )T = V ΣTUT

or ATU = V ΣT .

Reading the last equation column by column,

we find that

AT~ui = σi~vi for i = 1,2, . . . , r

and

AT~ui = ~0 for i = r + 1, . . . , m

As before

im(AT ) = span(~v1, . . . , ~vr)

and

ker(AT ) = span(~ur+1, . . . , ~um)

See Figure 5



Rn A : m × n−−−−−−−→ Rm

~v1 ~u1

im(AT ) ... ... im(A)
= Row(A) ~vr ~ur = Col(A)
−−−− −−− −−−−− −−− −−−−

~vr+1 ~ur+1

ker(A) ... ... ker(AT )
~vn ~um
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Example 5 Find an SVD for A =






0 1
1 1
1 0






Solution

V =

[

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

,

U =






1/
√

6 −1/
√

2 1/
√

3

−2/
√

6 0 −1/
√

3

1/
√

6 1/
√

2 1/
√

3




 ,

and

Σ =






√
3 0

0 1
0 0




 .

Check A = UΣV T .

Compare with Example 3 where A =

[

0 1 1
1 1 0

]

.
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Example 1 Consider an m × n matrix A of

rank r, and a singular value decomposition A =

UΣV T . Explain how you can express the least-

squares solutions of a system A~x = ~b as a linear

combinations of the columns ~v1, . . . , ~vn of V .

Solution Let ~x = c1~v1 + . . . + cn~vn is a least

squares solution if A~x =
∑n

i=1 ciA~vi =
∑r

i=1 ciσi~ui =

projimA
~b.

We know that projimA
~b =

∑r
i=1(

~b · ~ui)~ui since

~u1, . . . , ~ur is an orthonormal basis of im(A).

Comparing the coefficient of ~ui, we find that

ciσi = ~b · ~ui or ci =
~b·~ui
σi

, for i = 1, . . . , r, while

no condition is imposed on cr+1, . . . , cn. There-

fore, the least squares solutions are of the form

~x∗ =
r∑

i=1

~b · ~ui

σi
~vi +

n∑

i=r+1

ci~vi

where cr+1, . . . , cn are arbitrary.
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Example 2 Consider an SVD A = UΣV T of

an m × n matrix A. Show that the columns

of U form an orthonormal eigenbasis for AAT .

What are the associated eigenvalues? What

does your answer tell you about the relation-

ship between the eigenvalues of ATA and AAT .

Solution

AATU = (UΣV T )(UΣV T )TU = UΣV TV ΣTUTU

= UΣΣT

AAT~ui =

{

σ2
i ~ui for i = 1, . . . , r

~0 for i = r + 1, . . . , n

The columns of U form an orthonormal eigen-

basis for AAT . The associated eigenvalues are

the squares of the singular values.
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