8.3 Singular Values

Example 1 Show that if $L(\vec{x})=A \vec{x}$ is a linear transformation from R^{2} to R^{2}, then there are two orghogonal unit vectors \vec{v}_{1} and \vec{v}_{2} in R^{2} such that $L\left(\vec{v}_{1}\right)$ and $L\left(\vec{v}_{2}\right)$ are orthogonal as well.

Solution This statement is clear for some classes of transformation, for example,

1. If L is an orthogonal transformation, then any two orghogonal unit vectors \vec{v}_{1} and \vec{v}_{2} will do, by Fact 5.3.2.
2. If A is symmetric, then we can choose two orthogonal unit eigenvectors, by the spectral theorem.

However, for an arbitrary linear transformation L, the statement isn't that obvious.

Hint: Consider an orthonormal eigenbasis \vec{v}_{1}, \vec{v}_{2} of the symmetric matrix $A^{T} A$, with associated eigenvalues $\lambda_{1}, \lambda_{2} . L\left(\vec{v}_{1}\right)=A \vec{v}_{1}$ and $L\left(\vec{v}_{2}\right)=A \vec{v}_{2}$ are orthogonal, as claimed:

$$
\begin{gathered}
\left(A \vec{v}_{1}\right) \cdot\left(A \vec{v}_{2}\right)=\left(A \vec{v}_{1}\right)^{T} A \vec{v}_{2}=\vec{v}_{1}^{T} A^{T} A \vec{v}_{2} \\
=\vec{v}_{1}^{T}\left(\lambda_{2} \vec{v}_{2}\right)=\lambda_{2}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=0
\end{gathered}
$$

Note that \vec{v}_{1}, \vec{v}_{2} need not be eigenvectors of matrix A.

Example 2 Consider the linear transformation $\vec{x})=A \vec{x}$, where $A=\left[\begin{array}{cc}6 & 2 \\ -7 & 6\end{array}\right]$.

1. Find an orthonormal basis \vec{v}_{1}, \vec{v}_{2} of R^{2} such that $L\left(\vec{v}_{1}\right)$ and $L\left(\vec{v}_{2}\right)$ are orthogonal.
2. Show that the image of the unit circle under transformation L is an ellipse. Find the lengths of the two semiaxes of this ellipse, in terms of the eigenvalues of matrix $A^{T} A$.

Solution

1. Using the ideas of Example 1

$$
A^{T} A=\left[\begin{array}{cc}
6 & -7 \\
2 & 6
\end{array}\right]\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]=\left[\begin{array}{cc}
85 & -30 \\
-30 & 40
\end{array}\right]
$$

The characteristic polynormial of $A^{T} A$ is

$$
\lambda^{2}-125 \lambda+2500=(\lambda-100)(\lambda-25),
$$

so the corresponding eigenspaces are

$$
\begin{aligned}
& E_{100}=\operatorname{ker}\left[\begin{array}{cc}
15 & 30 \\
30 & 60
\end{array}\right]=\operatorname{span}\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
& E_{25}=\operatorname{ker}\left[\begin{array}{cc}
-60 & 30 \\
30 & -15
\end{array}\right]=\operatorname{span}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

For orthonormal basis

$$
\vec{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \vec{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

2. The unit circle consists of the form $\vec{x}=\cos (t) \vec{v}_{1}+$ $\sin (t) \vec{v}_{2}$, and the image of the unit circle consists of the form

$$
L(\vec{x})=\cos (t) L\left(\vec{v}_{1}\right)+\sin (t) L\left(\vec{v}_{2}\right)
$$

The image is the ellipse whose semimajor and seminor axes are $\left\|L\left(\vec{v}_{1}\right)\right\|$ and $\left\|L\left(\vec{v}_{2}\right)\right\|$:

$$
\left\|L\left(\vec{v}_{1}\right)\right\|^{2}=\left(A \vec{v}_{1}\right)\left(A \vec{v}_{1}\right)=\vec{v}_{1}^{T} A^{T} A \vec{v}_{1}=\vec{v}_{1}^{T}\left(\lambda_{1} \vec{v}_{1}\right)=\lambda_{1}
$$

Likewise,

$$
\left\|L\left(\vec{v}_{2}\right)\right\|^{2}=\lambda_{2}
$$

Thus

$$
\begin{gathered}
\left\|L\left(\vec{v}_{1}\right)\right\|=\sqrt{\lambda_{1}}=\sqrt{100}=10 \\
\left\|L\left(\vec{v}_{2}\right)\right\|=\sqrt{\lambda_{2}}=\sqrt{25}=5
\end{gathered}
$$

We can also compute $L\left(\vec{v}_{1}\right)$ and $L\left(\vec{v}_{2}\right)$ directly:

$$
\begin{gathered}
L\left(\vec{v}_{1}\right)=A \vec{v}_{1}=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
10 \\
-20
\end{array}\right] \\
L\left(\vec{v}_{2}\right)=A \vec{v}_{2}=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
2
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
10 \\
5
\end{array}\right]
\end{gathered}
$$

So that

$$
\left\|L\left(\vec{v}_{1}\right)\right\|=10,\left\|L\left(\vec{v}_{2}\right)\right\|=5
$$

Definition 8.3.1 Singular values

The singular values of an $m \times n$ matrix A are the square roots of the eigenvalues of the symmetric $n \times n$ matrix $A^{T} A$, listed with their algebraic multiplicities. It is customary to denote the singular values by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$, and to list them in decreasing order:

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}
$$

Fact 8.3.2 The image of the unit circle Let $L(\vec{x})=A \vec{x}$ be an invertible linear transformation from R^{2} to R^{2}. The image of the unit circle under L is an ellipse E. The lengths of the semimajor and the seminor axes of E are the singular values σ_{1}, and σ_{2} of A, respectively.

Fact 8.3.3

Let $L(\vec{x})=A \vec{x}$ be a linear transformation from R^{n} to R^{m}. Then there is an orghonormal basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of R^{n} such that

1. vectors $L\left(\vec{v}_{1}\right), L\left(\vec{v}_{2}\right), \ldots, L\left(\vec{v}_{n}\right)$ are orthogonal, and
2. the lengths of these vectors are the singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ of matrix A.

To construct $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, find an orthonormal eigenbasis for matrix $A^{T} A$. Make sure that the corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ appear in descending order:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

Proof

$$
\begin{aligned}
& \text { 1. } L\left(\vec{v}_{i}\right) \cdot L\left(\vec{v}_{j}\right)=\left(A \vec{v}_{i}\right) \cdot\left(A \vec{v}_{j}\right)=\left(A \vec{v}_{i}\right)^{T} A \vec{v}_{j} \\
& =\vec{v}_{i}^{T} A^{T} A \vec{v}_{j}=\vec{v}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j}\left(\vec{v}_{i} \cdot \vec{v}_{j}\right)=0 \\
& \text { when } i \neq j \text {, and }
\end{aligned}
$$

2. $\left\|L\left(\vec{v}_{i}\right)\right\|^{2}=\left(A \vec{v}_{i}\right) \cdot\left(A \vec{v}_{i}\right)=\vec{v}_{i}^{T} A^{T} A \vec{v}_{i}$
$=\vec{v}_{i}^{T}\left(\lambda_{i} \vec{v}_{i}\right)=\lambda_{i}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)=\lambda_{i}=\sigma_{i}^{2} \geq 0$, so that $\left\|L\left(\vec{v}_{i}\right)\right\|=\sigma_{i}$.

Example 3 Consider the linear transformation

$$
L(\vec{x})=A \vec{x}, A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

a. Find the singular values of A.
b. Find orthonormal vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, in R^{3} such that $L\left(\vec{v}_{1}\right), L\left(\vec{v}_{2}\right), L\left(\vec{v}_{3}\right)$ are orthogonal.
c. Sketch and describe the image of the unit sphere under the transformation L.

Solution

a.

$$
A^{T} A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=3, \lambda_{2}=1, \lambda_{3}=0$.
The singular values of A are

$$
\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{3}, \sigma_{2}=\sqrt{\lambda_{2}}=1, \sigma_{3}=\sqrt{\lambda_{3}}=0
$$

b. Find an orthonormal eigenbasis $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, for $A^{T} A$:

$$
\begin{gathered}
E_{3}=\operatorname{span}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], E_{1}=\operatorname{span}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], E_{0}=\operatorname{span}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
\vec{v}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \vec{v}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{gathered}
$$

Compute $L\left(\vec{v}_{1}\right), L\left(\vec{v}_{2}\right), L\left(\vec{v}_{3}\right)$ and check orthogonality:

$$
A \vec{v}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
3 \\
3
\end{array}\right], A \vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right], A \vec{v}_{3}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

c. The unit sphere in R^{3} consists of all vectors of the form $\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}$, where $c_{1}^{2}+$ $c_{2}^{2}+c_{3}^{2}=1$.
The image of the unit sphere consists of the vectors

$$
L(\vec{x})=c_{1} L\left(\vec{v}_{1}\right)+c_{2} L\left(\vec{v}_{2}\right)
$$

where $c_{1}^{2}+c_{2}^{2} \leq 1$. The image is the full ellipse shaded in Figure 3.

Figure 3

Example 3 shows that some of the singular values of a matrix may be zero. Suppose the singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ are nonzero, while $\sigma_{s+1}, \sigma_{s+2}, \ldots, \sigma_{n}$ are zero. Choose eigenbasis $\vec{v}_{1}, \ldots, \vec{v}_{s}, \vec{v}_{s+1}, \ldots, \vec{v}_{n}$ of $A^{T} A$ for R^{n}. Note that $\left\|A \vec{v}_{i}\right\|=\sigma_{i}=0$ and therefore $A \vec{v}_{i}=\overrightarrow{0}$ for $i=$ $s+1, \ldots, n$.

We claim that the vectors $A \vec{v}_{1}, \ldots, A \vec{v}_{s}$ form a basis of the image of A, since any vector in the image of A can be written as

$$
\begin{aligned}
A \vec{x} & =A\left(c_{1} \vec{v}_{1}+\ldots+c_{s} \vec{v}_{s}+\ldots+c_{n} \vec{v}_{n}\right) \\
& =c_{1} A \vec{v}_{1}+\ldots+c_{s} A \vec{v}_{s}
\end{aligned}
$$

This shows that $s=\operatorname{dim}(\operatorname{im} A)=\operatorname{rank}(A)$.

Fact 8.3.4

If A is an $m \times n$ matrix of rank r, then the singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ are nonzero, while $\sigma_{r+1}, \ldots, \sigma_{n}$ are zero.

Singular Value Decomposition

Fact 8.3.3 can be expressed in terms of a matrix decomposition.

Consider a linear transformation $L(\vec{x})=A \vec{x}$ from R^{n} to R^{m}, and choose an orthonormal basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ as in Fact 8.3.3. Let $r=$ $\operatorname{rank}(A)$. We know that the vectors $A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{r}$ are orthogonal and nonzero, with $\|A \vec{v}\|=\sigma_{i}$. We introduce the unit vectors

$$
\vec{u}_{1}=\frac{1}{\sigma_{1}} A \vec{v}_{1}, \ldots, \vec{u}_{r}=\frac{1}{\sigma_{r}} A \vec{v}_{r}
$$

We can write

$$
A \vec{v}_{i}=\sigma_{i} \vec{u}_{i} \text { for } i=1,2, \ldots, r
$$

and

$$
A \vec{v}_{i}=\overrightarrow{0} \text { for } i=r+1, r+2, \ldots, n
$$

We can express these equations in matrix form as follows:

The vector space $\operatorname{ker}\left(A^{T}\right)$ has dimesion $m-$ r. Let $\left\{\vec{u}_{r+1}, \vec{u}_{r+2}, \ldots, \vec{u}_{m}\right\}$ be an orthonormal basis for $\operatorname{ker}\left(A^{T}\right)$. Then $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}$ form an orthonormal basis for R^{m}.

Note that V is an orthogonal $n \times n$ matrix, U is an orthogonal $m \times m$ matrix, and Σ is an $m \times n$ matrix whose first r diagonal entries are $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$, and all other entries are zero.

Fact 8.3.5 Singular-value decomposition

Any $m \times n$ matrix A can be written as

$$
A=U \Sigma V^{T}
$$

where U is an orthogonal $m \times m$ matrix; V is an orthogonal $n \times n$ matrix; and Σ is an $m \times n$ matrix whose first r diagonal entries are the nonzero sigular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ of A, and all other entries are zero (where $r=\operatorname{rank}(A)$).

Alternatively, this singular value decomposition can be written as

$$
A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\ldots+\sigma_{r} \vec{u}_{r} \vec{v}_{r}^{T}
$$

where \vec{u}_{i} and \vec{v}_{i} are the columns of U and V, respectively.

Proof

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& =\left[\begin{array}{llll}
\vec{u}_{1} & \ldots & \vec{u}_{r} & \ldots
\end{array}\right]\left[\begin{array}{lllll}
\sigma_{1} & & & & 0 \\
& \ddots & & & \\
& & \sigma_{r} & & \\
0 & & & \ddots & \\
0
\end{array}\right]\left[\begin{array}{c}
\vec{v}_{1}^{T} \\
\vdots \\
\vec{v}_{r}^{T} \\
\vdots
\end{array}\right] \\
& =\left[\begin{array}{lll}
\vec{u}_{1} & \ldots \vec{u}_{r} & \ldots
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \vec{v}_{1}^{T} \\
\vdots \\
\sigma_{r} \vec{v}_{r}^{T} \\
\vdots
\end{array}\right]=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\ldots+\sigma_{r} \vec{u}_{r} \vec{v}_{r}^{T} \\
& A=U \Sigma V^{T} \\
& \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
\end{aligned}
$$

Consider a singular value decomposition $A=$ $U \Sigma V^{T}$, where

$$
V=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \ldots & \vec{v}_{n} \\
\mid & & \mid
\end{array}\right] \text { and } U=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{u}_{1} & \ldots & \vec{u}_{m} \\
\mid & & \mid
\end{array}\right]
$$

We know that

$$
A \vec{v}_{i}=\sigma_{i} \vec{u}_{i} \text { for } i=1,2, \ldots, r
$$

and

$$
A \vec{v}_{i}=\overrightarrow{0} \quad \text { for } \quad i=r+1, \ldots, n
$$

These equations tell us that

$$
\operatorname{im}(A)=\operatorname{span}\left(\vec{u}_{1}, \ldots, \vec{u}_{r}\right)
$$

and

$$
\operatorname{ker}(A)=\operatorname{span}\left(\vec{v}_{r+1}, \ldots, \vec{v}_{n}\right)
$$

That is, SVD provides us with orthonormal bases for the kernel and image of A.

Likewise, we have $A^{T}=\left(U \Sigma V^{T}\right)^{T}=V \Sigma^{T} U^{T}$ or $A^{T} U=V \Sigma^{T}$.
Reading the last equation column by column, we find that

$$
A^{T} \vec{u}_{i}=\sigma_{i} \vec{v}_{i} \quad \text { for } \quad i=1,2, \ldots, r
$$

and

$$
A^{T} \vec{u}_{i}=\overrightarrow{0} \quad \text { for } \quad i=r+1, \ldots, m
$$

As before

$$
\operatorname{im}\left(A^{T}\right)=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{r}\right)
$$

and

$$
\operatorname{ker}\left(A^{T}\right)=\operatorname{span}\left(\vec{u}_{r+1}, \ldots, \vec{u}_{m}\right)
$$

See Figure 5

	R^{n}	$A: m \times n$	R^{m}	
	\vec{v}_{1}		\vec{u}_{1}	
$\operatorname{im}\left(A^{T}\right)$	\vdots		\vdots	$\operatorname{im}(A)$
$=\operatorname{Row}(A)$	\vec{v}_{r}		\vec{u}_{r}	$=\operatorname{Col}(A)$
----	---	-----	--	----
	\vec{v}_{r+1}		\vec{u}_{r+1}	
$\operatorname{ker}(A)$	\vdots		\vdots	$\operatorname{ker}\left(A^{T}\right)$
	\vec{v}_{n}		\vec{u}_{m}	

Example 5 Find an SVD for $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]$
Solution

$$
\begin{gathered}
V=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right], \\
U=\left[\begin{array}{rrc}
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
-2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right],
\end{gathered}
$$

and

$$
\Sigma=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Check $A=U \Sigma V^{T}$.
Compare with Example 3 where $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$.

Example 1 Consider an $m \times n$ matrix A of rank r, and a singular value decomposition $A=$ $U \Sigma V^{T}$. Explain how you can express the leastsquares solutions of a system $A \vec{x}=\vec{b}$ as a linear combinations of the columns $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of V.

Solution Let $\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}$ is a least squares solution if $A \vec{x}=\sum_{i=1}^{n} c_{i} A \vec{v}_{i}=\sum_{i=1}^{r} c_{i} \sigma_{i} \vec{u}_{i}=$ $\operatorname{proj}_{i m A} \vec{b}$.

We know that $\operatorname{proj}_{i m A} \vec{b}=\sum_{i=1}^{r}\left(\vec{b} \cdot \vec{u}_{i}\right) \vec{u}_{i}$ since $\vec{u}_{1}, \ldots, \vec{u}_{r}$ is an orthonormal basis of im(A). Comparing the coefficient of \vec{u}_{i}, we find that $c_{i} \sigma_{i}=\vec{b} \cdot \vec{u}_{i}$ or $c_{i}=\frac{\vec{b} \cdot \vec{u}_{i}}{\sigma_{i}}$, for $i=1, \ldots, r$, while no condition is imposed on c_{r+1}, \ldots, c_{n}. Therefore, the least squares solutions are of the form

$$
\vec{x}^{*}=\sum_{i=1}^{r} \frac{\vec{b} \cdot \vec{u}_{i}}{\sigma_{i}} \vec{v}_{i}+\sum_{i=r+1}^{n} c_{i} \vec{v}_{i}
$$

where c_{r+1}, \ldots, c_{n} are arbitrary.

Example 2 Consider an SVD $A=U \Sigma V^{T}$ of an $m \times n$ matrix A. Show that the columns of U form an orthonormal eigenbasis for $A A^{T}$. What are the associated eigenvalues? What does your answer tell you about the relationship between the eigenvalues of $A^{T} A$ and $A A^{T}$.

Solution

$$
\begin{gathered}
A A^{T} U=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T} U=U \Sigma V^{T} V \Sigma^{T} U^{T} U \\
=U \Sigma \Sigma^{T} \\
A A^{T} \vec{u}_{i}=\left\{\begin{array}{cl}
\sigma_{\overrightarrow{2}}^{2} \vec{u}_{i} & \text { for } i=1, \ldots, r \\
0 & \text { for }
\end{array} \quad=r+1, \ldots, n\right.
\end{gathered} ~ . ~ \$
$$

The columns of U form an orthonormal eigenbasis for $A A^{T}$. The associated eigenvalues are the squares of the singular values.

