8.2 Quadratic Forms

Example 1 Consider the function

$$q(x_1, x_2) = 8x_1^2 - 4x_1x_2 + 5x_2^2$$

Determine whether q(0,0) is the global minimum.

Solution based on matrix technique Rewrite

$$q\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = 8x_1^2 - 4x_1x_2 + 5x_2^2$$
$$= \begin{bmatrix} x_1\\x_2\end{bmatrix} \begin{bmatrix} 8x_1 - 2x_2\\-2x_1 + 5x_2\end{bmatrix}$$

Note that we split the contribution $-4x_1x_2$ equally among the two components.

More succinctly, we can write

$$q(\vec{x}) = \vec{x} \cdot A\vec{x}, \quad where \quad A = \begin{bmatrix} 8 & -2 \\ -2 & 5 \end{bmatrix}$$

or

$$q(\vec{x}) = \vec{x}^T A \vec{x}$$

The matrix A is symmetric by construction. By the spectral theorem, there is an orthonormal eigenbasis \vec{v}_1, \vec{v}_2 for A. We find

$$\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\-1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$

with associated eigenvalues $\lambda_1 = 9$ and $\lambda_2 = 4$.

Let $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$, we can express the value of the function as follows:

 $q(\vec{x}) = \vec{x} \cdot A\vec{x} = (c_1\vec{v}_1 + c_2\vec{v}_2) \cdot (c_1\lambda_1\vec{v}_1 + c_2\lambda_2\vec{v}_2)$

$$=\lambda_1 c_1^2 + \lambda_2 c_2^2 = 9c_1^2 + 4c_2^2$$

Therefore, $q(\vec{x}) > 0$ for all nonzero \vec{x} . q(0,0) = 0 is the global minimum of the function.

Def 8.2.1 Quadratic forms

A function $q(x_1, x_2, ..., x_n)$ from R^n to R is called a quadratic form if it is a linear combination of functions of the form $x_i x_j$. A quadratic form can be written as

$$q(\vec{x}) = \vec{x} \cdot A\vec{x} = \vec{x}^T A\vec{x}$$

for a symmetric $n \times n$ matrix A.

Example 2 Consider the quadratic form $q(x_1, x_2, x_3) = 9x_1^2 + 7x_2^2 + 3x_3^2 - 2x_1x_2 + 4x_1x_3 - 6x_2x_3$ Find a symmetric matrix A such that $q(\vec{x}) = \vec{x} \cdot A\vec{x}$ for all \vec{x} in R^3 .

Solution As in Example 1, we let $a_{ii} = (\text{coefficient of } x_i^2),$ $a_{ij} = \frac{1}{2} (\text{coefficient of } x_i x_j), \text{ if } i \neq j.$ Therefore,

$$A = \begin{bmatrix} 9 & -1 & 2 \\ -1 & 7 & -3 \\ 2 & -3 & 3 \end{bmatrix}$$

2

Change of Variables in a Quadratic Form

Fact 8.2.2 Consider a quadratic form $q(\vec{x}) = \vec{x} \cdot A\vec{x}$ from R^n to R. Let B be an orthonormal eigenbasis for A, with associated eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

$$q(\vec{x}) = \lambda_1 c_1^2 + \lambda_2 c_2^2 + \ldots + \lambda_n c_n^2,$$

where the c_i are the coordinates of \vec{x} with respect to B.

Let x = Py, or equivalently, $y = P^{-1}x = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$, if change of variable is made in a quadratic form x^TAx , then

 $x^{T}Ax = (Py)^{T}A(Py) = y^{T}P^{T}APy = y^{T}(P^{T}AP)y$ Since *P* orghogonally diagonalizes *A*, the $P^{T}AP = P^{-1}AP = D$.

Classifying Quadratic Form

Positive definite quadratic form

If $q(\vec{x}) > 0$ for all nonzero \vec{x} in \mathbb{R}^n , we say A is positive definite.

If $q(\vec{x}) \ge 0$ for all nonzero \vec{x} in \mathbb{R}^n , we say A is positive semidefinite.

If $q(\vec{x})$ takes positive as well as negative values, we say A is indefinite.

Example 3 Consider $m \times n$ matrix A. Show that the function $q(\vec{x}) = ||A\vec{x}||^2$ is a quadratic form, find its matrix and determine its definiteness.

Solution $q(\vec{x}) = (A\vec{x}) \cdot (A\vec{x}) = (A\vec{x})^T (A\vec{x}) = \vec{x}^T A^T A \vec{x} = \vec{x} \cdot (A^T A \vec{x}).$

This shows that q is a quadratic form, with symmetric matrix $A^T A$.

Since $q(\vec{x}) = ||A\vec{x}||^2 \ge 0$ for all vectors \vec{x} in R^n , this quadratic form is positive semidefinite.

Note that $q(\vec{x}) = 0$ iff \vec{x} is in the kernel of *A*. Therefore, the quadratic form is positive definite iff $ker(A) = {\vec{0}}$.

Fact 8.2.4 Eigenvalues and definiteness

A symmetric matrix A is positive definite iff all its eigenvalues are positive.

The matrix is positive semidefinite iff all of its eigenvalues are positive or zero.

Fact: The Principal Axes Theorem

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, x = Py, that transforms the quadratic form x^TAx into a quadratic form y^TDy with no cross-product term.

Principle Axes

When we study a function $f(x_1, x_2, ..., x_n)$ from R^n to R, we are often interested in the solution of the equation

$$f(x_1, x_2, \ldots, x_n) = k,$$

for a fixed k in R, called the level sets of f.

Example 4 Sketch the curve

$$8x_1^2 - 4x_1x_2 + 5x_2^2 = 1$$

Solution In Example 1, we found that we can write this equation as

$$9c_1^2 + 4c_2^2 = 1$$

6

where c_1 and c_2 are the coordinates of \vec{x} with respect to the orthonormal eigenbasis

$$\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\-1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$

for $A = \begin{bmatrix} 8 & -2\\-2 & 5 \end{bmatrix}$. We sketch this ellipse in Figure 4.

The c_1 -axe and c_2 -axe are called the principle axes of the quadratic form $q(x_1, x_2) = 8x_1^2 - 4x_1x_2 + 5x_2^2$. Note that these are the eigenspaces of the matrix

$$A = \left[\begin{array}{rrr} 8 & -2 \\ -2 & 5 \end{array} \right]$$

of the quadratic form.

Constrained Optimization

When a quadratic form Q has no cross-product terms, it is easy to find the maximum and minimum of $Q(\vec{x})$ for $\vec{x}^T \vec{x} x = 1$.

Example 1 Find the maximum and minimum values of $Q(\vec{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\vec{x}^T \vec{x} x = 1$.

Solution

$$\begin{split} Q(\vec{x}) &= 9x_1^2 + 4x_2^2 + 3x_3^2 \le 9x_1^2 + 9x_2^2 + 9x_3^2 \\ &= 9(x_1^2 + x_2^2 + x_3^2) = 9 \\ \text{whenever } x_1^2 + x_2^2 + x_3^2 = 1. \quad Q(\vec{x}) = 9 \text{ when} \\ \vec{x} &= (1, 0, 0). \text{ Similarly,} \\ Q(\vec{x}) &= 9x_1^2 + 4x_2^2 + 3x_3^2 \ge 3x_1^2 + 3x_2^2 + 3x_3^2 \\ &= 3(x_1^2 + x_2^2 + x_3^2) = 3 \\ \text{whenever } x_1^2 + x_2^2 + x_3^2 = 1. \quad Q(\vec{x}) = 3 \text{ when} \\ \vec{x} &= (0, 0, 1). \end{split}$$

THEOREM Let \boldsymbol{A} be a symmetric matrix, and define

 $m = \min\{x^{T}Ax : \|\vec{x}\} = 1\}, M = \max\{x^{T}Ax : \|\vec{x}\} = 1\}.$

Then M is the greatest eigenvalues λ_1 of Aand m is the least eigenvalue of A. The value of $x^T A x$ is M when x is a unit eigenvector u_1 corresponding to eigenvalue M. The value of $x^T A x$ is m when x is a unit eigenvector corresponding to m.

Proof

Orthogonally diagonalize A, i.e. $P^TAP = D$ (by change of variable x = Py), we can transform the quadratic form $x^TAx = (Py)^TA(Py)$ into y^TDy . The constraint ||x|| = 1 implies ||y|| = 1 since $||x||^2 = ||Py||^2 = (Py)^TPy =$ $y^TP^TPy = y^T(P^TP)y = y^Ty = 1$.

Arrange the columns of *P* so that $P = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}$ and $\lambda_1 \ge \cdots \ge \lambda_n$. Given that any unit vector y with coordinates $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$, observe that

$$y^T D y = \lambda_1 c_1^2 + \dots + \lambda_n c_n^2$$

$$\geq \lambda_1 c_1^2 + \dots + \lambda_1 c_n^2 = \lambda_1 \|y\| = \lambda_1$$

Thus $x^T A x$ has the largest value $M = \lambda_1$ when $y = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$, i.e. $x = Py = u_1$.

A similar argument show that m is the least eigenvalue λ_n when $y = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$, i.e. $x = Py = u_n$. THEOREM Let A, λ_1 and u_1 be as in the last theorem. Then the maximum value of $x^T A x$ subject to the constraints

$$x^T x = \mathbf{1}, x^T u_1 = \mathbf{0}$$

is the second greatest eigenvalue, λ_2 , and this maximum is attained when x is an eigenvector u_2 corresponding to λ_2 .

THEOREM Let A be a symmetric $n \times n$ matrix with an orthogonal diagonalization $A = PDP^{-1}$, where the entries on the diagonal of D are arranged so that $\lambda_1 \geq \cdots \geq \lambda_n$, and where the columns of P are corresponding unit eigenvectors $u_1, ..., u_n$. Then for k = 2, ..., n, the maximum value of x^TAx subject to the constraints

$$x^T x = 1, x^T u_1 = 0, \dots, x^T u_{k-1} = 0$$

is the eigenvalue λ_k , and this maximum is attained when $x = u_k$.

9

The Singular Value Decomposition

The absolute values of the eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks certain the eigenvectors. If $Ax = \lambda x$ and $x^T x = 1$, then

$$||Ax|| = ||\lambda x|| = |\lambda|||x|| = |\lambda|$$

based on the diagonalization of $A = PDP^{-1}$.

The description has an analogue for rectangular matrices that will lead to the singular value decomposition $A = QDP^{-1}$. **Example** If $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$, then the linear transformation T(x) = Ax maps the unit sphere $\{x : ||x|| = 1\}$ in R^3 into an ellipse in R^2 (see Fig. 1). Find a unit vector at which ||Ax|| is maximized.

Observe that

$$||Ax|| = (Ax)^T Ax = x^T A^T Ax = x^T (A^T A)x$$

Also $A^T A$ is a symmetric matrix since $(A^T A)^T = A^T A^{TT} = A^T A$. So the problem now is to maximize the quadratic form $x^T (A^T A)x$ subject to the constraint ||x|| = 1.

Compute

$$\mathcal{A}^{T}A = \begin{bmatrix} 4 & 8\\ 11 & 7\\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14\\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40\\ 100 & 170 & 140\\ 40 & 140 & 200 \end{bmatrix}$$

Find the eigenvalues of $A^T A$: $\lambda_1 = 360, \lambda_2 = 90, \lambda_3 = 0$, and the corresponding unit eigenvectors,

$$v_{1} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}, v_{2} = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}, v_{3} = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$$

The maximum value of $||Ax||^2$ is 360, attained when x is the unit vector v_1 .

The Singular Values of an $m \times n$ Matrix

Let A be an $m \times n$ matrix. Then $A^T A$ is symmetric and can be orthogonally diagonalized. Let $\{v_1, ..., v_n\}$ be an orthonormal basis for R^n consisting of eigenvectors of $A^T A$, and let $\lambda_1, ..., \lambda_n$ be the associated eigenvalues of $A^T A$. Then for $1 \leq i \leq n$,

$$||Av_i||^2 = (Av_i)^T Av_i = v_i^T A^T Av_i = v_i^T (\lambda_i v_i) = \lambda_i$$

So the eigenvalues of $A^T A$ are all nonnegative. Let

$$\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n \geq 0$$

The singular values of A are the square roots of the eigenvalues of $A^T A$, denoted by $\sigma_1, ..., \sigma_n$. That is $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le n$. The singular values of A are the lengths of the vectors $Av_1, ..., Av_n$.

Example

Let A be the matrix in the last example. Since the eigenvalues of $A^T A$ are 360, 90, and 0, the singular values of A are

$$\sigma_1 = \sqrt{360} = 6\sqrt{10}, \sigma_2 = \sqrt{90} = 3\sqrt{10}, \sigma_3 = 0$$

Note that, the first singular value of A is the maximum of ||Ax|| over all unit vectors, and the maximum is attained at the unit eigenvector v_1 . The second singular value of A is the maximum of ||Ax|| over all unit vectors that are orthogonal to v_1 , and this maximum is attained at the second unit eigenvector, v_2 . Compute

$$Av_{1} = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 18 \\ 6 \end{bmatrix}$$
$$Av_{2} = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 3 \\ -9 \end{bmatrix}$$

The fact that Av_1 and Av_2 are orthogonal is no accident, as the next theorem shows.

THEOREM Suppose that $\{v_1, ..., v_n\}$ is an orthonormal basis of R^n consisting of eigenvectors of $A^T A$, arranged so that the corresponding eigenvalues of $A^T A$ satisfy $\lambda_1 \ge \lambda_2 \ge \cdots \lambda_n$, and suppose that A has r nonzero singular values. Then $\{Av_1, ..., Av_r\}$ is an orthogonal basis for im(A), and rank(A)=r.

Proof Because v_i and v_j are orthogonal for $i \neq j$,

$$(Av_i)^T (Av_j) = v_i^T A^T A v_j = v_i^T \lambda_j v_j = 0$$

Thus $\{Av_1, ..., Av_n\}$ is an orthogonal set. Furthermore, $Av_i = 0$ for i > r. For any y in im(A), i.e. y = Ax

$$y = Ax = A(c_1v_1 + \dots + c_nv_n)$$
$$= c_1Av_1 + \dots + c_rAv_r + 0 + \dots + 0$$

Thus y is in Span $\{Av_1, ..., Av_r\}$, which shows that $\{Av_1, ..., Av_r\}$ is an (orthogonal) basis for im(A). Hence rank(A)=dim im(A)=r.