8.2 Quadratic Forms

Example 1 Consider the function

q(z1,72) = 8x% — dx125 + 525

Determine whether ¢(0,0) is the global mini-
mum.

Solution based on matrix technique
Rewrite

q([ z; ]) — 8:15% —Adxqxo + 5:13%

| > 8xr1 — 2xo
| 2o —2x1 + 5xo

Note that we split the contribution —4xqx-o
equally among the two components.

More succinctly, we can write

-2 5

q(¥) = ¥ - A¥, where A=[ 8 _2]
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or

() = 7L Az

The matrix A is symmetric by construction. By
the spectral theorem, there is an orthonormal
eigenbasis v1,v> for A. We find

B 21 . 11
-] 3] - [

with associated eigenvalues A1 = 9 and \» = 4.
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Let ¥ = c1U1 + covp, We can express the value
of the function as follows:

q(Z) = & AZ = (171 + co92) - (c1A171 + coAp1n)

= )\10% + )\2(3% = 90% + 403

Therefore, ¢q(Z) > 0 for all nonzero Z. ¢(0,0) =
O is the global minimum of the function.



Def 8.2.1 Quadratic forms

A function g(x1,2zo,...,2n) from R™ to R is
called a quadratic form if it is a linear combina-
tion of functions of the form LT ;- A quadratic
form can be written as

() =7 Az = 7L AT

for a symmetric n x n matrix A.

Example 2 Consider the quadratic form

qg(x1,z0,23) = 9:13%—|—7x%—|—3x%—2x1x2—|—4x1m3—6x2m3

Find a symmetric matrix A such that ¢(¥) =
7. AZ for all & in R3.

Solution As in Example 1, we let
a;; = (coefficient of z?),

a;; = 5 (coefficient of z;z;), if i # j.
Therefore,

9 -1 2
A=| -1 7 -3
2 -3 3




Change of Variables in a Quadratic Form

Fact 8.2.2 Consider a quadratic form ¢(¥) =
x-Ax from R™ to R. Let B be an orthonormal
eigenbasis for A, with associated eigenvalues
Al,...,An. Then

q(T) = At + Aocd + ... 4 Anc2,

where the ¢; are the coordinates of ¥ with re-
spect to B.

Let = = Py, or equivalently, y = P iz =
C1
: |, if change of variable is made in a quadratic

L Cn -
form z1' Az, then

el Ax = (Py)TA(Py) = yTPTAPy = yT(PTAP)y

Since P orghogonally diagonalizes A, the PTAP =
pP~lApP =D.



FIGURE 1 Change of yaiabhetn AN

Classifying Quadratic Form

Positive definite quadratic form

If g(Z) > 0 for all nonzero ¥ in R™, we say A is
positive definite.

If q(Z) > 0 for all nonzero ¥ in R", we say A is
positive semidefinite.

If q(¥) takes positive as well as negative values,
we say A is indefinite.






Example 3 Consider m x n matrix A. Show
that the function ¢(Z) = ||AZ]||2 is a quadratic
form, find its matrix and determine its definite-
ness.

Solution ¢(%) = (AZ) - (AZ) = (AD)1(AZ) =
AT Az =z (AT AD).

This shows that ¢ is a quadratic form, with
symmetric matrix AT A.

Since ¢(&) = ||AZ||2 > 0 for all vectors & in R",
this quadratic form is positive semidefinite.
Note that ¢(£) = O iff Z is in the kernel of
A. Therefore, the quadratic form is positive
definite iff ker(A) = {0}.

Fact 8.2.4 Eigenvalues and definiteness
A symmetric matrix A is positive definite iff all
its eigenvalues are positive.

The matrix is positive semidefinite iff all of its
eigenvalues are positive or zero.



Fact: The Principal Axes Theorem

Let A be an n X n symmetric matrix. Then
there is an orthogonal change of variable, x =
Py, that transforms the quadratic form z{ Ax
into a quadratic form y{ Dy with no cross-product
term.

Principle Axes

When we study a function f(x1,zo,...,zn) from
R™ to R, we are often interested in the solution
of the equation

f(xq1,20,...,2n) =k,
for a fixed k in R, called the level sets of f.
Example 4 Sketch the curve
8:13% — 4x1x0 + 53:% =1
Solution In Example 1, we found that we can

write this equation as

9¢5 4+ 4c5 =1



where c¢q and co are the coordinates of x with
respect to the orthonormal eigenbasis

L1 2] . 11
- 3]l

for A = [ _2 _g ] We sketch this ellipse in

The cj-axe and cpo-axe are called the principle
axes Of the quadratic form ¢(xzq1,25) = 8:{:% —
4x1x2—|—5a:§. Note that these are the eigenspaces
of the matrix

NEN

of the quadratic form.



Constrained Optimization

When a quadratic form ) has no cross-product

terms, it is easy to find the maximum and min-

imum of Q(&) for &l 7z = 1.

Example 1 Find the maximum and minimum
values of Q(%) = 9z% + 423 + 3x3 subject to
the constraint ! 7z = 1.

Solution

Q(&) = 927 + 43 + 323 < 9x7 + 923 + 923

=9(zf 4+ 25 +23) =09

whenever z%2 + 23 + 73 = 1. Q(Z) = 9 when
£ = (1,0,0). Similarly,

Q(Z) = 927 + 43 + 323 > 327 + 325 + 323

= 3(xf + 25 +23) = 3

whenever z$ 4+ 25 + 23 = 1. Q(&) = 3 when
7= (0,0,1).



THEOREM Let A be a symmetric matrix, and
define

m = min{z’ Az : |} = 1}, M = maz{z’ Az : |} = 1}.

Then M is the greatest eigenvalues A1 of A
and m is the least eigenvalue of A. The value
of z1 Az is M when z is a unit eigenvector uq
corresponding to eigenvalue M. The value of
rl Az is m when z is a unit eigenvector corre-
sponding to m.

Proof

Orthogonally diagonalize A, i.e. PTAP = D
(by change of variable x = Py), we can trans-
form the quadratic form zf' Az = (Py)L A(Py)
into y!' Dy. The constraint ||z|| = 1 implies
lyll = 1 since [|z[|? = ||[Pyl|* = (Py)!'Py =
y! PPy =yl (PTP)y =yly=1.

Arrange the columns of P so that P = [ uq
and Ay > --- > A\p.

]



Given that any unit vector y with coordinates

C1
. Observe that

y' Dy = Xici 4+ + Aacqy

> A1ef+ -+ Arem = Myl = Mg

Thus xT_Ax has the largest value M = A1 when

1

y=1|1: |, l.e. x = Py =uj.

O

A similar argument show that m is the least

eigenvalue A\, when y =

Un,.

0

, .e. x = Py =



THEOREM Let A, A1 and u1 be as in the last
theorem. Then the maximum value of z1 Ax
subject to the constraints

T

x a:=1,a:T

up =0

is the second greatest eigenvalue, Ao, and this
maximum is attained when x is an eigenvector
uo corresponding to A».

THEOREM Let A be a symmetric n X n ma-
trix with an orthogonal diagonalization A =
PDP~1 where the entries on the diagonal of D
are arranged so that A\q{ > --- > Ap, and where
the columns of P are corresponding unit eigen-
vectors wuq,...,un. Then for kK = 2,...,n, the
maximum value of zl Az subject to the con-
straints

iy = l,acTul = 0, ...,xTuk_l =0

IS the eigenvalue \;, and this maximum is at-
tained when xz = uy.



T he Singular Value Decomposition

The absolute values of the eigenvalues of a
symmetric matrix A measure the amounts that
A stretches or shrinks certain the eigenvectors.
If Ax = Az and {2z = 1, then

[Az|| = ||Az|| = [Alllz]| = [A|
based on the diagonalization of A = PDP 1,
The description has an analogue for rectangu-

lar matrices that will lead to the singular value
decomposition A = QDP~ 1.
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4 11 14
8 7 -2
ear transformation T'(x) = Az maps the unit
sphere {z : ||z|]| = 1} in R3 into an ellipse in R?2
(see Fig. 1). Find a unit vector at which ||Az||
IS maximized.

Example If A = [ ] then the lin-

FIGURE 1 _.'\.||':||:-\.'||||||:|Ii-:l'| ELin L4k 3
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Observe that
[Az|| = (Az)T Az = 2t AT Az = 21 (AT A)z

Also AT A is a symmetric matrix since (AT A)L =
AT ATT = AT A. So the problem now is to max-
imize the quadratic form 21 (AT A)z subject to
the constraint ||z|| = 1.

Compute
4 8 80 100 40
ATA= |11 7 [g b i‘;]: 100 170 140
14 —2 40 140 200

Find the eigenvalues of ATA: X1 = 360, > = 90,3 = 0O,
and the corresponding unit eigenvectors,

1/3 —2/3 2/3
vi=1|2/3 |,vo=| —-1/3 | ,u3=| —2/3
2/3 2/3 1/3

The maximum value of ||Az||? is 360, attained when =z
is the unit vector v;.
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The Singular VValues of an m x n Matrix

Let A be an m x n matrix. Then AT A is sym-
metric and can be orthogonally diagonalized.
Let {vq,...,vn} De an orthonormal basis for R"
consisting of eigenvectors of AT A, and let A1y ey Any
be the associated eigenvalues of AT A. Then
for 1 <1< mn,

||‘/4’UZ||2 — (A’Ui)TA’UZ' — ‘U;-TATAUZ' — ’U,;r()\z’vz) — )\Z

So the eigenvalues of AT A are all nonnegative.
et

A1 2A22 A 20

The singular values of A are the square roots of
the eigenvalues of AT A, denoted by o1,...,0n.
That is 0; = /\; for 1 < i < n. The singu-
lar values of A are the lengths of the vectors
Avq, ..., Avp,.
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Example

Let A be the matrix in the last example. Since the
eigenvalues of ATA are 360, 90, and 0, the singular
values of A are

01 =Vv360 =6Vv10,020 =+v90 =3v10,03 =0

Note that, the first singular value of A is the maximum
of ||Ax|| over all unit vectors, and the maximum is at-
tained at the unit eigenvector vi. The second singular
value of A is the maximum of ||Az|| over all unit vectors
that are orthogonal to v, and this maximum is attained
at the second unit eigenvector, vo. Compute

Am:[g 171 Eg] %g :[168]
=37 8] 28 =[ 3]

The fact that Avis and Awv, are orthogonal is no accident,
as the next theorem shows.
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THEOREM Suppose that {vq,...,vn} iS an or-
thonormal basis of R™ consisting of eigenvec-
tors of AL A, arranged so that the correspond-
ing eigenvalues of AT A satisfy A\{ > Ao > -+ \p,
and suppose that A has r nonzero singular val-
ues. Then {Avq,..., Av;} is an orthogonal basis
for im(A), and rank(A)=r.

Proof Because v; and wv; are orthogonal for
L FE ]

(Avi)T(Aij) = v;-rATAvj = fv;‘;r)\jvj =0
Thus {Avq,..., Av,} is an orthogonal set. Fur-
thermore, Av; = 0O for + > . For any y in
im(A), i.e. y= Ax

y= Az = A(civ1 + -+ cnon)

=c1Avi+ -+ cAv +04---+0

Thus y is in Span{Av1,..., Avr}, which shows
that {Avq,..., Avr}is an (orthogonal) basis for
im(A). Hence rank(A)=dim im(A)=r.
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