### 8.2 Quadratic Forms

Example 1 Consider the function

$$
q\left(x_{1}, x_{2}\right)=8 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}
$$

Determine whether $q(0,0)$ is the global minimum.

## Solution based on matrix technique

Rewrite

$$
\begin{gathered}
q\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=8 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2} \\
=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\left[\begin{array}{c}
8 x_{1}-2 x_{2} \\
-2 x_{1}+5 x_{2}
\end{array}\right]
\end{gathered}
$$

Note that we split the contribution $-4 x_{1} x_{2}$ equally among the two components.

More succinctly, we can write

$$
q(\vec{x})=\vec{x} \cdot A \vec{x}, \text { where } A=\left[\begin{array}{rr}
8 & -2 \\
-2 & 5
\end{array}\right]
$$

or

$$
q(\vec{x})=\vec{x}^{T} A \vec{x}
$$

The matrix $A$ is symmetric by construction. By the spectral theorem, there is an orthonormal eigenbasis $\vec{v}_{1}, \vec{v}_{2}$ for $A$. We find

$$
\vec{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
2 \\
-1
\end{array}\right], \vec{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

with associated eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=4$.

Let $\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$, we can express the value of the function as follows:

$$
\begin{gathered}
q(\vec{x})=\vec{x} \cdot A \vec{x}=\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right) \cdot\left(c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}\right) \\
=\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}=9 c_{1}^{2}+4 c_{2}^{2}
\end{gathered}
$$

Therefore, $q(\vec{x})>0$ for all nonzero $\vec{x} . q(0,0)=$ 0 is the global minimum of the function.

## Def 8.2.1 Quadratic forms

A function $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from $R^{n}$ to $R$ is called a quadratic form if it is a linear combination of functions of the form $x_{i} x_{j}$. A quadratic form can be written as

$$
q(\vec{x})=\vec{x} \cdot A \vec{x}=\vec{x}^{T} A \vec{x}
$$

for a symmetric $n \times n$ matrix $A$.

Example 2 Consider the quadratic form
$q\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}-6 x_{2} x_{3}$
Find a symmetric matrix $A$ such that $q(\vec{x})=$ $\vec{x} \cdot A \vec{x}$ for all $\vec{x}$ in $R^{3}$.

Solution As in Example 1, we let $a_{i i}=$ (coefficient of $x_{i}^{2}$ ),
$a_{i j}=\frac{1}{2}$ (coefficient of $x_{i} x_{j}$ ), if $i \neq j$.
Therefore,

$$
A=\left[\begin{array}{rrr}
9 & -1 & 2 \\
-1 & 7 & -3 \\
2 & -3 & 3
\end{array}\right]
$$

## Change of Variables in a Quadratic Form

Fact 8.2.2 Consider a quadratic form $q(\vec{x})=$ $\vec{x} \cdot A \vec{x}$ from $R^{n}$ to $R$. Let $B$ be an orthonormal eigenbasis for $A$, with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then

$$
q(\vec{x})=\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}+\ldots+\lambda_{n} c_{n}^{2},
$$

where the $c_{i}$ are the coordinates of $\vec{x}$ with respect to $B$.

Let $x=P y$, or equivalently, $y=P^{-1} x=$ $\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$,
form $x^{T} A x$, then
$x^{T} A x=(P y)^{T} A(P y)=y^{T} P^{T} A P y=y^{T}\left(P^{T} A P\right) y$
Since $P$ orghogonally diagonalizes $A$, the $P^{T} A P=$ $P^{-1} A P=D$.


FIGURE 1 Chinge of verable in $x A x$

## Classifying Quadratic Form

## Positive definite quadratic form

If $q(\vec{x})>0$ for all nonzero $\vec{x}$ in $R^{n}$, we say $A$ is positive definite.
If $q(\vec{x}) \geq 0$ for all nonzero $\vec{x}$ in $R^{n}$, we say $A$ is positive semidefinite.
If $q(\vec{x})$ takes positive as well as negative values, we say $A$ is indefinite.


Example 3 Consider $m \times n$ matrix $A$. Show that the function $q(\vec{x})=\|A \vec{x}\|^{2}$ is a quadratic form, find its matrix and determine its definiteness.

Solution $q(\vec{x})=(A \vec{x}) \cdot(A \vec{x})=(A \vec{x})^{T}(A \vec{x})=$ $\vec{x}^{T} A^{T} A \vec{x}=\vec{x} \cdot\left(A^{T} A \vec{x}\right)$.
This shows that $q$ is a quadratic form, with symmetric matrix $A^{T} A$.
Since $q(\vec{x})=\|A \vec{x}\|^{2} \geq 0$ for all vectors $\vec{x}$ in $R^{n}$, this quadratic form is positive semidefinite.
Note that $q(\vec{x})=0$ iff $\vec{x}$ is in the kernel of $A$. Therefore, the quadratic form is positive definite iff $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.

## Fact 8.2.4 Eigenvalues and definiteness

A symmetric matrix $A$ is positive definite iff all its eigenvalues are positive.

The matrix is positive semidefinite iff all of its eigenvalues are positive or zero.

## Fact: The Principal Axes Theorem

Let $A$ be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $x=$ $P y$, that transforms the quadratic form $x^{T} A x$ into a quadratic form $y^{T} D y$ with no cross-product term.

## Principle Axes

When we study a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from $R^{n}$ to $R$, we are often interested in the solution of the equation

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=k,
$$

for a fixed $k$ in $R$, called the level sets of $f$.
Example 4 Sketch the curve

$$
8 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}=1
$$

Solution In Example 1, we found that we can write this equation as

$$
9 c_{1}^{2}+4 c_{2}^{2}=1
$$

where $c_{1}$ and $c_{2}$ are the coordinates of $\vec{x}$ with respect to the orthonormal eigenbasis

$$
\vec{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
2 \\
-1
\end{array}\right], \vec{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

for $A=\left[\begin{array}{rr}8 & -2 \\ -2 & 5\end{array}\right]$. We sketch this ellipse in Figure 4.

The $c_{1}$-axe and $c_{2}$-axe are called the principle axes of the quadratic form $q\left(x_{1}, x_{2}\right)=8 x_{1}^{2}-$ $4 x_{1} x_{2}+5 x_{2}^{2}$. Note that these are the eigenspaces of the matrix

$$
A=\left[\begin{array}{rr}
8 & -2 \\
-2 & 5
\end{array}\right]
$$

of the quadratic form.

## Constrained Optimization

When a quadratic form $Q$ has no cross-product terms, it is easy to find the maximum and minimum of $Q(\vec{x})$ for $\vec{x}^{T} \vec{x} x=1$.

Example 1 Find the maximum and minimum values of $Q(\vec{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}$ subject to the constraint $\vec{x}^{T} \vec{x} x=1$.

## Solution

$$
\begin{gathered}
Q(\vec{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \leq 9 x_{1}^{2}+9 x_{2}^{2}+9 x_{3}^{2} \\
=9\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=9
\end{gathered}
$$

whenever $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 . \quad Q(\vec{x})=9$ when $\vec{x}=(1,0,0)$. Similarly,

$$
\begin{gathered}
Q(\vec{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \geq 3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2} \\
=3\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=3
\end{gathered}
$$

whenever $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 . \quad Q(\vec{x})=3$ when $\vec{x}=(0,0,1)$.

THEOREM Let $A$ be a symmetric matrix, and define

$$
\left.\left.m=\min \left\{x^{T} A x: \| \vec{x}\right\}=1\right\}, M=\max \left\{x^{T} A x: \| \vec{x}\right\}=1\right\} .
$$

Then $M$ is the greatest eigenvalues $\lambda_{1}$ of $A$ and $m$ is the least eigenvalue of $A$. The value of $x^{T} A x$ is $M$ when $x$ is a unit eigenvector $u_{1}$ corresponding to eigenvalue $M$. The value of $x^{T} A x$ is $m$ when $x$ is a unit eigenvector corresponding to $m$.

## Proof

Orthogonally diagonalize $A$, i.e. $\quad P^{T} A P=D$ (by change of variable $x=P y$ ), we can transform the quadratic form $x^{T} A x=(P y)^{T} A(P y)$ into $y^{T} D y$. The constraint $\|x\|=1$ implies $\|y\|=1$ since $\|x\|^{2}=\|P y\|^{2}=(P y)^{T} P y=$ $y^{T} P^{T} P y=y^{T}\left(P^{T} P\right) y=y^{T} y=1$.

Arrange the columns of $P$ so that $P=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ and $\lambda_{1} \geq \cdots \geq \lambda_{n}$.

Given that any unit vector $y$ with coordinates $\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$, observe that

$$
\begin{gathered}
y^{T} D y=\lambda_{1} c_{1}^{2}+\cdots+\lambda_{n} c_{n}^{2} \\
\geq \lambda_{1} c_{1}^{2}+\cdots+\lambda_{1} c_{n}^{2}=\lambda_{1}\|y\|=\lambda_{1}
\end{gathered}
$$

Thus $x^{T} A x$ has the largest value $M=\lambda_{1}$ when
$y=\left[\begin{array}{c}1 \\ \vdots \\ 0\end{array}\right]$, i.e. $x=P y=u_{1}$.
A similar argument show that $m$ is the least eigenvalue $\lambda_{n}$ when $y=\left[\begin{array}{c}0 \\ \vdots \\ 1\end{array}\right]$, i.e. $x=P y=$ $u_{n}$.

THEOREM Let $A, \lambda_{1}$ and $u_{1}$ be as in the last theorem. Then the maximum value of $x^{T} A x$ subject to the constraints

$$
x^{T} x=1, x^{T} u_{1}=0
$$

is the second greatest eigenvalue, $\lambda_{2}$, and this maximum is attained when $x$ is an eigenvector $u_{2}$ corresponding to $\lambda_{2}$.

THEOREM Let $A$ be a symmetric $n \times n$ matrix with an orthogonal diagonalization $A=$ $P D P^{-1}$, where the entries on the diagonal of $D$ are arranged so that $\lambda_{1} \geq \cdots \geq \lambda_{n}$, and where the columns of $P$ are corresponding unit eigenvectors $u_{1}, \ldots, u_{n}$. Then for $k=2, \ldots, n$, the maximum value of $x^{T} A x$ subject to the constraints

$$
x^{T} x=1, x^{T} u_{1}=0, \ldots, x^{T} u_{k-1}=0
$$

is the eigenvalue $\lambda_{k}$, and this maximum is attained when $x=u_{k}$.

## The Singular Value Decomposition

The absolute values of the eigenvalues of a symmetric matrix $A$ measure the amounts that $A$ stretches or shrinks certain the eigenvectors. If $A x=\lambda x$ and $x^{T} x=1$, then

$$
\|A x\|=\|\lambda x\|=|\lambda|\|x\|=|\lambda|
$$

based on the diagonalization of $A=P D P^{-1}$.

The description has an analogue for rectangular matrices that will lead to the singular value decomposition $A=Q D P^{-1}$.

Example If $A=\left[\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$, then the linear transformation $T(x)=A x$ maps the unit sphere $\{x:\|x\|=1\}$ in $R^{3}$ into an ellipse in $R^{2}$ (see Fig. 1). Find a unit vector at which $\|A x\|$ is maximized.


FIGURE 1 A transformation frum ${ }^{\prime}$ ' is 期.

## Observe that

$$
\|A x\|=(A x)^{T} A x=x^{T} A^{T} A x=x^{T}\left(A^{T} A\right) x
$$

Also $A^{T} A$ is a symmetric matrix since $\left(A^{T} A\right)^{T}=$ $A^{T} A^{T T}=A^{T} A$. So the problem now is to maximize the quadratic form $x^{T}\left(A^{T} A\right) x$ subject to the constraint $\|x\|=1$.

Compute

$$
\mathcal{A}^{T} A=\left[\begin{array}{cc}
4 & 8 \\
11 & 7 \\
14 & -2
\end{array}\right]\left[\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]=\left[\begin{array}{ccc}
80 & 100 & 40 \\
100 & 170 & 140 \\
40 & 140 & 200
\end{array}\right]
$$

Find the eigenvalues of $A^{T} A: \lambda_{1}=360, \lambda_{2}=90, \lambda_{3}=0$, and the corresponding unit eigenvectors,

$$
v_{1}=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right], v_{2}=\left[\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right], v_{3}=\left[\begin{array}{c}
2 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right]
$$

The maximum value of $\|A x\|^{2}$ is 360 , attained when $x$ is the unit vector $v_{1}$.

## The Singular Values of an $m \times n$ Matrix

Let $A$ be an $m \times n$ matrix. Then $A^{T} A$ is symmetric and can be orthogonally diagonalized. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for $R^{n}$ consisting of eigenvectors of $A^{T} A$, and let $\lambda_{1}, \ldots, \lambda_{n}$ be the associated eigenvalues of $A^{T} A$. Then for $1 \leq i \leq n$,

$$
\left\|A v_{i}\right\|^{2}=\left(A v_{i}\right)^{T} A v_{i}=v_{i}^{T} A^{T} A v_{i}=v_{i}^{T}\left(\lambda_{i} v_{i}\right)=\lambda_{i}
$$

So the eigenvalues of $A^{T} A$ are all nonnegative. Let

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n} \geq 0
$$

The singular values of $A$ are the square roots of the eigenvalues of $A^{T} A$, denoted by $\sigma_{1}, \ldots, \sigma_{n}$. That is $\sigma_{i}=\sqrt{\lambda_{i}}$ for $1 \leq i \leq n$. The singular values of $A$ are the lengths of the vectors $A v_{1}, \ldots, A v_{n}$.

## Example

Let $A$ be the matrix in the last example. Since the eigenvalues of $A^{T} A$ are 360, 90, and 0 , the singular values of $A$ are

$$
\sigma_{1}=\sqrt{360}=6 \sqrt{10}, \sigma_{2}=\sqrt{90}=3 \sqrt{10}, \sigma_{3}=0
$$

Note that, the first singular value of $A$ is the maximum of $\|A x\|$ over all unit vectors, and the maximum is attained at the unit eigenvector $v_{1}$. The second singular value of $A$ is the maximum of $\|A x\|$ over all unit vectors that are orthogonal to $v_{1}$, and this maximum is attained at the second unit eigenvector, $v_{2}$. Compute

$$
\begin{gathered}
A v_{1}=\left[\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{c}
18 \\
6
\end{array}\right] \\
A v_{2}=\left[\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]\left[\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-9
\end{array}\right]
\end{gathered}
$$

The fact that $A v_{1}$ and $A v_{2}$ are orthogonal is no accident, as the next theorem shows.

THEOREM Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of $R^{n}$ consisting of eigenvectors of $A^{T} A$, arranged so that the corresponding eigenvalues of $A^{T} A$ satisfy $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n}$, and suppose that $A$ has $r$ nonzero singular values. Then $\left\{A v_{1}, \ldots, A v_{r}\right\}$ is an orthogonal basis for $\operatorname{im}(A)$, and $\operatorname{rank}(A)=r$.

Proof Because $v_{i}$ and $v_{j}$ are orthogonal for $i \neq j$,

$$
\left(A v_{i}\right)^{T}\left(A v_{j}\right)=v_{i}^{T} A^{T} A v_{j}=v_{i}^{T} \lambda_{j} v_{j}=0
$$

Thus $\left\{A v_{1}, \ldots, A v_{n}\right\}$ is an orthogonal set. Furthermore, $A v_{i}=0$ for $i>r$. For any $y$ in $\operatorname{im}(A)$, i.e. $y=A x$

$$
\begin{gathered}
y=A x=A\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right) \\
=c_{1} A v_{1}+\cdots+c_{r} A v_{r}+0+\cdots+0
\end{gathered}
$$

Thus $y$ is in $\operatorname{Span}\left\{A v_{1}, \ldots, A v_{r}\right\}$, which shows that $\left\{A v_{1}, \ldots, A v_{r}\right\}$ is an (orthogonal) basis for $\operatorname{im}(A)$. Hence $\operatorname{rank}(A)=\operatorname{dim} \operatorname{im}(A)=r$.

