
8.2 Quadratic Forms

Example 1 Consider the function

q(x1, x2) = 8x2
1 − 4x1x2 + 5x2

2

Determine whether q(0,0) is the global mini-

mum.

Solution based on matrix technique

Rewrite

q(

[

x1
x2

]

) = 8x2
1 − 4x1x2 + 5x2

2

=

[

x1
x2

] [

8x1 − 2x2
−2x1 + 5x2

]

Note that we split the contribution −4x1x2

equally among the two components.

More succinctly, we can write

q(~x) = ~x · A~x, where A =

[

8 −2
−2 5

]
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or

q(~x) = ~xTA~x

The matrix A is symmetric by construction. By

the spectral theorem, there is an orthonormal

eigenbasis ~v1, ~v2 for A. We find

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

with associated eigenvalues λ1 = 9 and λ2 = 4.

Let ~x = c1~v1 + c2~v2, we can express the value

of the function as follows:

q(~x) = ~x ·A~x = (c1~v1+ c2~v2) · (c1λ1~v1+ c2λ2~v2)

= λ1c21 + λ2c22 = 9c21 + 4c22

Therefore, q(~x) > 0 for all nonzero ~x. q(0,0) =

0 is the global minimum of the function.



Def 8.2.1 Quadratic forms

A function q(x1, x2, . . . , xn) from Rn to R is

called a quadratic form if it is a linear combina-

tion of functions of the form xixj. A quadratic

form can be written as

q(~x) = ~x · A~x = ~xTA~x

for a symmetric n × n matrix A.

Example 2 Consider the quadratic form

q(x1, x2, x3) = 9x2
1+7x2

2+3x2
3−2x1x2+4x1x3−6x2x3

Find a symmetric matrix A such that q(~x) =

~x · A~x for all ~x in R3.

Solution As in Example 1, we let

aii = (coefficient of x2
i ),

aij = 1
2 (coefficient of xixj), if i 6= j.

Therefore,

A =







9 −1 2
−1 7 −3
2 −3 3






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Change of Variables in a Quadratic Form

Fact 8.2.2 Consider a quadratic form q(~x) =

~x ·A~x from Rn to R. Let B be an orthonormal

eigenbasis for A, with associated eigenvalues

λ1, . . . , λn. Then

q(~x) = λ1c21 + λ2c22 + . . . + λnc2n,

where the ci are the coordinates of ~x with re-

spect to B.

Let x = Py, or equivalently, y = P−1x =






c1
...

cn






, if change of variable is made in a quadratic

form xTAx, then

xTAx = (Py)TA(Py) = yTPTAPy = yT (PTAP )y

Since P orghogonally diagonalizes A, the P TAP =

P−1AP = D.
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Classifying Quadratic Form

Positive definite quadratic form

If q(~x) > 0 for all nonzero ~x in Rn, we say A is

positive definite.

If q(~x) ≥ 0 for all nonzero ~x in Rn, we say A is

positive semidefinite.

If q(~x) takes positive as well as negative values,

we say A is indefinite.
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Example 3 Consider m × n matrix A. Show

that the function q(~x) = ||A~x||2 is a quadratic

form, find its matrix and determine its definite-

ness.

Solution q(~x) = (A~x) · (A~x) = (A~x)T (A~x) =

~xTATA~x = ~x · (ATA~x).

This shows that q is a quadratic form, with

symmetric matrix ATA.

Since q(~x) = ||A~x||2 ≥ 0 for all vectors ~x in Rn,

this quadratic form is positive semidefinite.

Note that q(~x) = 0 iff ~x is in the kernel of

A. Therefore, the quadratic form is positive

definite iff ker(A) = {~0}.

Fact 8.2.4 Eigenvalues and definiteness

A symmetric matrix A is positive definite iff all

its eigenvalues are positive.

The matrix is positive semidefinite iff all of its

eigenvalues are positive or zero.
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Fact: The Principal Axes Theorem

Let A be an n × n symmetric matrix. Then

there is an orthogonal change of variable, x =

Py, that transforms the quadratic form xTAx

into a quadratic form yTDy with no cross-product

term.

Principle Axes

When we study a function f(x1, x2, . . . , xn) from

Rn to R, we are often interested in the solution

of the equation

f(x1, x2, . . . , xn) = k,

for a fixed k in R, called the level sets of f .

Example 4 Sketch the curve

8x2
1 − 4x1x2 + 5x2

2 = 1

Solution In Example 1, we found that we can

write this equation as

9c21 + 4c22 = 1
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where c1 and c2 are the coordinates of ~x with

respect to the orthonormal eigenbasis

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

for A =

[

8 −2
−2 5

]

. We sketch this ellipse in

Figure 4.

The c1-axe and c2-axe are called the principle

axes of the quadratic form q(x1, x2) = 8x2
1 −

4x1x2+5x2
2. Note that these are the eigenspaces

of the matrix

A =

[

8 −2
−2 5

]

of the quadratic form.



Constrained Optimization

When a quadratic form Q has no cross-product

terms, it is easy to find the maximum and min-

imum of Q(~x) for ~xT~xx = 1.

Example 1 Find the maximum and minimum

values of Q(~x) = 9x2
1 + 4x2

2 + 3x2
3 subject to

the constraint ~xT~xx = 1.

Solution

Q(~x) = 9x2
1 + 4x2

2 + 3x2
3 ≤ 9x2

1 + 9x2
2 + 9x2

3

= 9(x2
1 + x2

2 + x2
3) = 9

whenever x2
1 + x2

2 + x2
3 = 1. Q(~x) = 9 when

~x = (1,0,0). Similarly,

Q(~x) = 9x2
1 + 4x2

2 + 3x2
3 ≥ 3x2

1 + 3x2
2 + 3x2

3

= 3(x2
1 + x2

2 + x2
3) = 3

whenever x2
1 + x2

2 + x2
3 = 1. Q(~x) = 3 when

~x = (0,0,1).
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THEOREM Let A be a symmetric matrix, and
define

m = min{xTAx : ‖~x} = 1}, M = max{xTAx : ‖~x} = 1}.

Then M is the greatest eigenvalues λ1 of A

and m is the least eigenvalue of A. The value

of xTAx is M when x is a unit eigenvector u1

corresponding to eigenvalue M . The value of

xTAx is m when x is a unit eigenvector corre-

sponding to m.

Proof

Orthogonally diagonalize A, i.e. P TAP = D

(by change of variable x = Py), we can trans-

form the quadratic form xTAx = (Py)TA(Py)

into yTDy. The constraint ‖x‖ = 1 implies

‖y‖ = 1 since ‖x‖2 = ‖Py‖2 = (Py)TPy =

yTPTPy = yT (PTP )y = yTy = 1.

Arrange the columns of P so that P =
[

u1 · · · un

]

and λ1 ≥ · · · ≥ λn.
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Given that any unit vector y with coordinates






c1
...

cn






, observe that

yTDy = λ1c21 + · · · + λnc2n

≥ λ1c21 + · · · + λ1c2n = λ1‖y‖ = λ1

Thus xTAx has the largest value M = λ1 when

y =







1
...
0






, i.e. x = Py = u1.

A similar argument show that m is the least

eigenvalue λn when y =







0
...
1






, i.e. x = Py =

un.



THEOREM Let A, λ1 and u1 be as in the last

theorem. Then the maximum value of xTAx

subject to the constraints

xTx = 1, xTu1 = 0

is the second greatest eigenvalue, λ2, and this

maximum is attained when x is an eigenvector

u2 corresponding to λ2.

THEOREM Let A be a symmetric n × n ma-

trix with an orthogonal diagonalization A =

PDP−1, where the entries on the diagonal of D

are arranged so that λ1 ≥ · · · ≥ λn, and where

the columns of P are corresponding unit eigen-

vectors u1, ..., un. Then for k = 2, ..., n, the

maximum value of xTAx subject to the con-

straints

xTx = 1, xTu1 = 0, ..., xTuk−1 = 0

is the eigenvalue λk, and this maximum is at-

tained when x = uk.
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The Singular Value Decomposition

The absolute values of the eigenvalues of a

symmetric matrix A measure the amounts that

A stretches or shrinks certain the eigenvectors.

If Ax = λx and xTx = 1, then

‖Ax‖ = ‖λx‖ = |λ|‖x‖ = |λ|

based on the diagonalization of A = PDP−1.

The description has an analogue for rectangu-

lar matrices that will lead to the singular value

decomposition A = QDP−1.

10



Example If A =

[

4 11 14
8 7 −2

]

, then the lin-

ear transformation T (x) = Ax maps the unit

sphere {x : ‖x‖ = 1} in R3 into an ellipse in R2

(see Fig. 1). Find a unit vector at which ‖Ax‖
is maximized.
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Observe that

‖Ax‖ = (Ax)TAx = xTATAx = xT (ATA)x

Also ATA is a symmetric matrix since (ATA)T =

ATATT = ATA. So the problem now is to max-

imize the quadratic form xT (ATA)x subject to

the constraint ‖x‖ = 1.

Compute

ATA =





4 8
11 7
14 −2





[

4 11 14
8 7 −2

]

=





80 100 40
100 170 140
40 140 200





Find the eigenvalues of ATA: λ1 = 360, λ2 = 90, λ3 = 0,
and the corresponding unit eigenvectors,

v1 =





1/3
2/3
2/3



 , v2 =





−2/3
−1/3
2/3



 , v3 =





2/3
−2/3
1/3





The maximum value of ‖Ax‖2 is 360, attained when x
is the unit vector v1.
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The Singular Values of an m × n Matrix

Let A be an m × n matrix. Then ATA is sym-

metric and can be orthogonally diagonalized.

Let {v1, ..., vn} be an orthonormal basis for Rn

consisting of eigenvectors of ATA, and let λ1, ..., λn

be the associated eigenvalues of ATA. Then

for 1 ≤ i ≤ n,

‖Avi‖2 = (Avi)
TAvi = vT

i ATAvi = vT
i (λivi) = λi

So the eigenvalues of ATA are all nonnegative.

Let

λ1 ≥ λ2 ≥ · · ·λn ≥ 0

The singular values of A are the square roots of

the eigenvalues of ATA, denoted by σ1, ..., σn.

That is σi =
√

λi for 1 ≤ i ≤ n. The singu-

lar values of A are the lengths of the vectors

Av1, ..., Avn.
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Example
Let A be the matrix in the last example. Since the
eigenvalues of ATA are 360, 90, and 0, the singular
values of A are

σ1 =
√

360 = 6
√

10, σ2 =
√

90 = 3
√

10, σ3 = 0

Note that, the first singular value of A is the maximum
of ‖Ax‖ over all unit vectors, and the maximum is at-
tained at the unit eigenvector v1. The second singular
value of A is the maximum of ‖Ax‖ over all unit vectors
that are orthogonal to v1, and this maximum is attained
at the second unit eigenvector, v2. Compute

Av1 =

[

4 11 14
8 7 −2

]





1/3
2/3
2/3



 =

[

18
6

]

Av2 =

[

4 11 14
8 7 −2

]





−2/3
−1/3
2/3



 =

[

3
−9

]

The fact that Av1 and Av2 are orthogonal is no accident,
as the next theorem shows.
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THEOREM Suppose that {v1, ..., vn} is an or-

thonormal basis of Rn consisting of eigenvec-

tors of ATA, arranged so that the correspond-

ing eigenvalues of ATA satisfy λ1 ≥ λ2 ≥ · · ·λn,

and suppose that A has r nonzero singular val-

ues. Then {Av1, ..., Avr} is an orthogonal basis

for im(A), and rank(A)=r.

Proof Because vi and vj are orthogonal for

i 6= j,

(Avi)
T (Avj) = vT

i ATAvj = vT
i λjvj = 0

Thus {Av1, ..., Avn} is an orthogonal set. Fur-

thermore, Avi = 0 for i > r. For any y in

im(A), i.e. y = Ax

y = Ax = A(c1v1 + · · · + cnvn)

= c1Av1 + · · · + crAvr + 0 + · · · + 0

Thus y is in Span{Av1, ..., Avr}, which shows

that {Av1, ..., Avr}is an (orthogonal) basis for

im(A). Hence rank(A)=dim im(A)=r.
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