Applied Linear Algebra OTTO BRETSCHER

http://www.prenhall.com/bretscher

Chapter 8 Symmetric Matrices and Quadratic Forms

Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan

8.1 SYMMETRIC MATRICES

In chapter 7, we are concerned with when is a given square matrix A diagonalizable? That is, when is there an eigenbasis for A?

In geometry, we prefer to work with orthnomal bases, which raises the question:

For which matrices is there an *orthonormal eigenbasis*?

Example 1 If A is orthogonally diagonalizable, what is the relationship between A^T and A?

Solution We have

$$S^{-1}AS = D$$

or

$$A = SDS^{-1} = SDS^T$$

for an orthogonal matrix \boldsymbol{S} and a diagonal $\boldsymbol{D}.$ Then

$$A^T = (SDS^T)^T = SD^TS^T = SDS^T = A.$$

We find that A is symmetric.

Fact 8.1.1 Spectral theorem

A matrix A is orthogonally diagonalizable if and only if A is symmetric (i.e., $A^T = A$).

The set of eigenvalues of a matrix is called the spectrum of A, and the following description of the eigenvalues is called a spectral theorem.

THEOREM

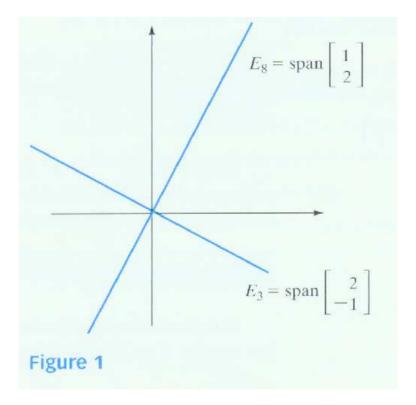
The Spectral Theorem For A Symmetric Matrix

- A has n real eigenvalues, counting mutiplicities. (Fact 8.1.3)
- The dimension of the eigenspace for each eigenvalue λ equals the algebraic multiplicity of λ .
- The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal. (Fact 8.1.2)
- A is orthogonally diagonalizable. (Fact 8.1.1)

Example 2 For the symmetric matrix $A = \begin{bmatrix} 4 & 2 \\ 2 & 7 \end{bmatrix}$, find an orthogonal *S* such that $S^{-1}AS$ is diagonal.

Solution See Figure 1.

$$E_3 = \begin{bmatrix} 2\\ -1 \end{bmatrix}, E_8 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$



Note that the eigenspaces E_3 and E_8 are perpendicular. (This is no coincidence.) Therefore, we can find an orthonormal eigenbasis simply by dividing the given eigenvectors by their lengths:

$$\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\-1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$

Define

$$S = \begin{bmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

then $S^{-1}AS = \begin{bmatrix} 3 & 0 \\ 0 & 8 \end{bmatrix}$

Fact 8.1.2 Consider a symmetric matrix A. If \vec{v}_1 and \vec{v}_2 are eigenvectors of A with distinct eigenvalues λ_1 and λ_2 , then $\vec{v}_1 \cdot \vec{v}_2 = 0$; that is, \vec{v}_2 is orthogonal to \vec{v}_1 .

Proof We compute the product $\vec{v}_1^T A \vec{v}_2$ in two ways:

- $\vec{v}_1^T A \vec{v}_2 = \vec{v}_1^T (\lambda_2 \vec{v}_2) = \lambda_2 (\vec{v}_1 \cdot \vec{v}_2)$
- $\vec{v}_1^T A \vec{v}_2 = \vec{v}_1^T A^T \vec{v}_2 = (A \vec{v}_1)^T \vec{v}_2 = (\lambda_1 \vec{v}_1)^T \vec{v}_2 = \lambda_1 (\vec{v}_1 \cdot \vec{v}_2)$

Comparing the results, we find

$$\lambda_1(\vec{v}_1 \cdot \vec{v}_2) = \lambda_2(\vec{v}_1 \cdot \vec{v}_2)$$

or

$$(\lambda_1 - \lambda_2)(\vec{v}_1 \cdot \vec{v}_2) = 0$$

Since $\lambda_1 \neq \lambda_2$, $\vec{v}_1 \cdot \vec{v}_2$ must be zero.

Fact 8.1.3 A symmetric $n \times n$ matrix A has n real eigenvalues if they are counted with their algebraic multiplicites.

Proof of 8.1.3 For those who have studied Section 7.5. Consider two complex conjugate eigenvalues $p\pm iq$ of A with corresponding eigenvectors $\vec{v} \pm i\vec{w}$. Compute the product

$$(\vec{v} + i\vec{w})^T A(\vec{v} - i\vec{w})$$

in two different ways:

$$(\vec{v} + i\vec{w})^T A(\vec{v} - i\vec{w}) = (\vec{v} + i\vec{w})^T (p - iq)(\vec{v} - i\vec{w})$$
$$= (p - iq)(\|\vec{v}\|^2 + \|\vec{w}\|^2)$$
$$(\vec{v} + i\vec{w})^T A(\vec{v} - i\vec{w}) = (A(\vec{v} + i\vec{w}))^T (\vec{v} - i\vec{w})$$
$$= (p + iq)(\vec{v} + i\vec{w})^T (\vec{v} - i\vec{w}) = (p + iq)(\|\vec{v}\|^2 + \|\vec{w}\|^2)$$
Comparing the results, we find that $p + iq = p - iq$, so $q = 0$, as claimed.

Proof of 8.1.1 Even more technical.

Example 3 For the symmetric matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

find an orthogonal S such that $S^{-1}AS$ is diagonal.

Solution

The eigenvalues are 0 and 3, with

 $E_{0} = span\left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right) \text{ and } E_{3} = span \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Note that the two eigenspaces are indeed per-

pendicular to one another (See Figure 2, 3).

We can construct an orthonormal eigenbasis for A by picking an orthonormal basis of each eigenspace.

Perform Gram-Schmidt process to the vectors

$$\begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

we find

$$\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\-1\\2 \end{bmatrix}$$

For E_3 , we get

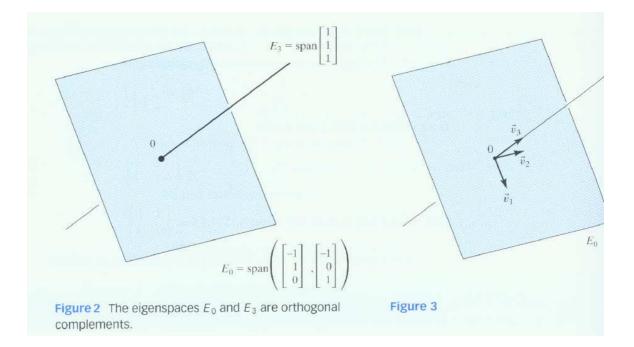
$$\vec{v}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Therefore, the orthogonal matrix

$$S = \begin{bmatrix} | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

diagonalizes the matrix A:

$$S^{-1}AS = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$



Algorithm 8.1.4 Orthogonal diagonalization of a symmetric matrix *A*

- 1. Find the eigenvalues of A, and find a basis of each eigenspace.
- 2. Using the Gram-Schmidt process, find an orthonormal basis of each eigenspace.
- 3. Form an orthonormal eigenbasis $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ for A by combining the vectors you find in the last step, and let

$$P = \begin{bmatrix} | & | & | \\ \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_n \\ | & | & | & \end{bmatrix}$$

P is orthogonal, and $P^{-1}AP$ will be diagonal.

Spectral Decomposition

Suppose that $A = PDP^{-1}$, where the columns of P are orthonormal eigenvectors $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ of A and the corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ are in the diagonal matrix D. Then, since $P^{-1} = P^T$,

$$A = PDP^{T} = \begin{bmatrix} \vec{u}_{1} & \cdots & \vec{u}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{bmatrix} \begin{bmatrix} \vec{u}_{1}^{T} \\ \vdots \\ \vec{u}_{n}^{T} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \vec{u}_1 & \cdots & \lambda_n \vec{u}_n \end{bmatrix} \begin{bmatrix} \vec{u}_1^T \\ \vdots \\ \vec{u}_n^T \end{bmatrix} = \lambda_1 \vec{u}_1 \vec{u}_1^T + \cdots + \lambda_n \vec{u}_n \vec{u}_n^T$$

This representation of A is called a spectral decomposition of A because it breaks up A into pieces determined by the spectrum (eigenvalues) of A. Each term is an $n \times n$ matrix of rank 1. Furthermore, each matrix $\vec{u}_j \vec{u}_j^T$ is a projection matrix onto the subspace spanned by \vec{u}_j .

Example 4 Consider an invertible symmetric 2×2 matrix A. Show that the linear transformation $T(\vec{x} = A\vec{x} \text{ maps the unit circle into an ellipse, and find the lengths of the semimajor and the semiminor axes of the ellipse in terms of the eigenvalues of <math>A$.

Solution

The spectral theorem tells us there is an orthonormal eigenbasis u_1, u_2 for T, with associated real eigenvalues λ_1, λ_2 . Suppose that $|\lambda_1| > |\lambda_2|$. These eigenvalues will be nonzero, since A is invertible. The unit circle consists of all vectors of the form

$$\vec{v} = \cos(t)u_1 + \sin(t)u_2$$

. The image of the unit circle will be

$$T(\vec{v}) = \cos(t)T(u_1) + \sin(t)T(u_2)$$

$$= \cos(t)\lambda_1 u_1 + \sin(t)\lambda_2 u_2$$

an ellipse whose semimajor axis has the length $\|\lambda_1 u_1\| = |\lambda_1|$, while the length of the semiminor axis is $\|\lambda_2 u_2\| = |\lambda_2|$. (See Figure 4).

