7.4 Diagonalization

Fact 7.4.1 The matrix of a linear transformation with respect to an eigenbasis is diagonal
Consider a transformation $T \vec{x}=A \vec{x}$, where A is an $n \times n$ matrix. Suppose B is an eigenbasis for T consisting of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, with $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then the B-matrix D of T is

$$
D=S^{-1} A S=\left[\begin{array}{cccc}
\lambda_{1} & 0 & . & 0 \\
0 & \lambda_{2} & . & 0 \\
. & . & . & . \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right]
$$

Here

$$
\begin{aligned}
& S=\left[\begin{array}{cccc}
\mid & \mid & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \vec{x} A \\
& S \uparrow A \vec{x} \\
&\vec{x}]_{S} \xrightarrow[D]{\longrightarrow}[A \vec{x}]_{S} \\
& {[\vec{x}]_{S}=S[\vec{x}]_{S} } \\
& S^{-1} \vec{x}
\end{aligned}
$$

Def 7.4.2 Diagonalizable matrices

An $n \times n$ matrix A is called diagonalizable if A is similar to a diagonal matrix D, that is, if there is an invertible $n \times n$ matrix S such that $D=S^{-1} A S$ is diagonal.

Fact 7.4.3
Matrix A is diagonalizable iff there is an eigenbasis for A. In particular, if an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Alg 7.4.4 Diagonalization

Suppose we are asked to decide whether a given $n \times n$ matrix A is diagonalizable, if so, to find an invertible matrix S such that $S^{-1} A S$ is diagonal. We proceed as follows:

1. Find the eigenvalues of A, i.e., solve $f(\lambda)=$ $\operatorname{det}\left(\lambda I_{n}-A\right)=0$.
2. For each eigenvalue λ, find a basis of the eigenspace $E_{\lambda}=\operatorname{ker}\left(\lambda I_{n}-A\right)$.
3. A is diagonalizable iff the dimensions of the eigenspaces add up to n. In this case, we find an eigenbasis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ for A by combining the bases of the eigenspaces. Let $S=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$, then the matrix $S^{-1} A S$ is a diagonal matrix.

Example Diagonalize the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solution

a. The eigenvalues are 0 and 1 .
b. $E_{0}=\operatorname{ker}(A)=\operatorname{span}\left(\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right)$
and $E_{1}=\operatorname{ker}\left(I_{3}-A\right)=\operatorname{span}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
c. If we let

$$
S=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

then

$$
D=S^{-1} A S=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Alg 7.4.5 Powers of a diagonalizable matrix
To compute the powers A^{t} of a diagonalizable matrix A (where t is a positive integer), proceed as follows:

1. Use Alg 7.4.4 to diagonalize A, i.e. find S such that $S^{-1} A S=D$.
2. Since $A=S D S^{-1}, A^{t}=S D^{t} S^{-1}$.
3. To compute D^{t}, raise the diagonal entries of D to the t th power.
