### 7.3 FINDING THE EIGENVECTORS OF A MATRIX

After we have found an eigenvalue $\lambda$ of an $n \times n$ matrix $A$, we have to find the vectors $\vec{v}$ in $R^{n}$ such that

$$
A \vec{v}=\lambda \vec{v} \text { or }\left(\lambda I_{n}-A\right) \vec{v}=\overrightarrow{0}
$$

In other words, we have to find the kernel of the matrix $\lambda I_{n}-A$.

Definition 7.3.1 Eigenspace
Consider an eigenvalue $\lambda$ of an $n \times n$ matrix $A$. Then the kernel of the matrix $\lambda I_{n}-A$ is called the eigenspace associated with $\lambda$, denoted by $E_{\lambda}$ :

$$
E_{\lambda}=\operatorname{ker}\left(\lambda I_{n}-A\right)
$$

Note that $E_{\lambda}$ consists of all solutions $\vec{v}$ of the linear system

$$
A \vec{v}=\lambda \vec{v}
$$

EXAMPLE 1 Let $T(\vec{x})=A \vec{v}$ be the orthogonal projection onto a plane $E$ in $R^{3}$. Describe the eigenspaces geometrically.

Solution See Figure 1.
The nonzero vectors $\vec{v}$ in $E$ are eigenvectors with eigenvalue 1. Therefore, the eigenspace $E_{1}$ is just the plane $E$.

Likewise, $E_{0}$ is simply the kernel of $A(A \vec{v}=\overrightarrow{0})$; that is, the line $E^{\perp}$ perpendicular to $E$.

EXAMPLE 2 Find the eigenvectors of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.

## Solution

See Section 7.2, Example 1, we saw the eigenvalues are 5 and -1 . Then

$$
\begin{aligned}
& E_{5}=\operatorname{ker}\left(5 I_{2}-A\right)=\operatorname{ker}\left[\begin{array}{rr}
4 & -2 \\
-4 & 2
\end{array}\right] \\
& =\operatorname{ker}\left[\begin{array}{rr}
4 & -2 \\
0 & 0
\end{array}\right]=\operatorname{span}\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\operatorname{span}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& E_{-1}=\operatorname{ker}\left(-I_{2}-A\right)=\operatorname{ker}\left[\begin{array}{rr}
-2 & -2 \\
-4 & -4
\end{array}\right] \\
& =\operatorname{span}\left[\begin{array}{r}
2 \\
-2
\end{array}\right]=\operatorname{span}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Both eigenspaces are lines, See Figure 2.

EXAMPLE 3 Find the eigenvectors of

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Solution
Since

$$
f_{A}(\lambda)=\lambda(\lambda-1)^{2}
$$

the eigenvalues are 1 and 0 with algebraic multiplicities 2 and 1.

$$
E_{1}=k e r\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

To find this kernel, apply Gauss-Jordan Elimination:

$$
\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The general solution of the system

$$
\left\lvert\, \begin{array}{ll}
x_{2} & =0 \\
& \\
& x_{3}
\end{array}=0\right.
$$

is

$$
\left[\begin{array}{r}
x_{1} \\
0 \\
0
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Therefore,

$$
E_{1}=\operatorname{span}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Likewise, compute the $E_{0}$ :

$$
E_{0}=\operatorname{span}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

Both eigenspaces are lines in the $x_{1}-x_{2}$-plane, as shown in Figure 3.

Compare with Example 1. There, too, we have two eigenvalues 1 and 0 , but one of the eigenspace, $E_{1}$, is a plane.

# Definition 7.3.2 Geometric multiplicity 

Consider an eigenvalue $\lambda$ if a matrix $A$. Then the dimension of eigenvalue $E_{\lambda}=\operatorname{ker}\left(\lambda I_{n}-A\right)$ is called the geometric multiplicity of eigenvalue $\lambda$. Thus, the geometric multiplicity of $\lambda$ is the nullity of matrix $\lambda I_{n}-A$.

Example 3 shows that the geometric multiplicity of an eigenvalue may be different from the algebraic multiplicity. We have
(algebraic multiplicity of eigenvalue 1 ) $=2$,
but
$($ geometric multiplicity of eigenvalue 1$)=1$.
Fact 7.3.3
Consider an eigenvalue $\lambda$ of a matrix $A$. Then
(geometric multiplicity of $\lambda$ ) $\leq$
(algebraic multiplicity of $\lambda$ ).

EXAMPLE 4 Consider an upper triangular matrix of the form

$$
A=\left[\begin{array}{lllll}
1 & \bullet & \bullet & \bullet & \bullet \\
0 & 2 & \bullet & \bullet & \bullet \\
0 & 0 & 4 & \bullet & \bullet \\
0 & 0 & 0 & 4 & \bullet \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

What can you say about the geometric multiplicity of the eigenvalue 4?

Solution

$$
E_{4}=\left[\begin{array}{lllll}
3 & \bullet & \bullet & \bullet & \bullet \\
0 & 2 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ccccc}
1 & \bullet & \bullet & \bullet & \bullet \\
0 & 1 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \# & \bullet \\
0 & 0 & 0 & 0 & \sharp \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The bullets on row 3 and 4 could be leading 1 's. Therefore, the rank of this matrix will be between 2 and 4, and its nullity will be between 3 and 1 . We can conclude that the geometric multiplicity of the eigenvalue 4 is less than the algebraic multiplicity.

Recall Fact 7.1.3, such a basis deserves a name.

Definition 7.3.4 Eigenbasis
Consider an $n \times \mathrm{n}$ matrix $A$. A basis of $R^{n}$ consisting of eigenvectors of $A$ is called an eigenbasis for $A$.

Example 1 Revisited: Projection on a plane $E$ in $R^{3}$. Pick a basis $\vec{v}_{1}, \vec{v}_{2}$ of $E$ and a nonzero $\vec{v}_{3}$ in $E^{\perp}$. The vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ form an eigenbasis. See Figure 4.

Example 2 Revisited: $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$. The vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ form an eigenbasis for $A$, see Figure 5.

Example 3 Revisited: $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
There are not enough eigenvectors to form an eigenbasis. See Figure 6.

EXAMPLE 5 Consider a $3 \times 3$ matrix $A$ with three eigenvalues, 1,2 , and 3 . Let $\vec{v}_{1}, \vec{v}_{2}$, and $\vec{v}_{3}$ be corresponding eigenvectors. Are vectors $\vec{v}_{1}, \vec{v}_{2}$, and $\vec{v}_{3}$ necessarily linearly independent?

Solution See Figure 7.
Consider the plane $E$ spanned by $\vec{v}_{1}$, and $\vec{v}_{2}$. We have to examine $\vec{v}_{3}$ can not be contained in this plane.

Consider a vector $\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}$ in $E$ (with $c_{1} \neq 0$ and $c_{2} \neq 0$ ). Then $A \vec{x}=c_{1} A \vec{v}_{1}+$ $c_{2} A \vec{v}_{2}=c_{1} \overrightarrow{v_{1}}+2 c_{2} \overrightarrow{v_{2}}$. This vector can not be a scalar multiple of $\vec{x}$; that is, $E$ does not contain any eigenvectors besides the multiples of $\vec{v}_{1}$ and $\vec{v}_{2}$; in particular, $\vec{v}_{3}$ is not contained in $E$.

Fact 7.3.5 Considers the eigenvectors $\vec{v}_{1}, \vec{v}_{2}$, $\ldots, \vec{v}_{m}$ of an $n \times n$ matrix $A$, with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. Then the $\vec{v}_{i}$ are linearly independent.

## Proof

We argue by induction on $m$. Assume the claim holds for $m-1$. Consider a relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m-1} \vec{v}_{m-1}+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

- apply the transformation $A$ to both sides:

$$
c_{1} \lambda_{1} \vec{v}_{1}+\cdots+c_{m-1} \lambda_{m-1} \vec{v}_{m-1}+c_{m} \lambda_{m} \vec{v}_{m}=\overrightarrow{0}
$$

- multiply both sides by $\lambda_{m}$ :

$$
c_{1} \lambda_{m} \vec{v}_{1}+\cdots+c_{m-1} \lambda_{m} \vec{v}_{m-1}+c_{m} \lambda_{m} \vec{v}_{m}=\overrightarrow{0}
$$

Subtract the above two equations:
$c_{1}\left(\lambda_{1}-\lambda_{m}\right) \vec{v}_{1}+\cdots+c_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right) \vec{v}_{m-1}=\overrightarrow{0}$ Since $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m-1}$ are linearly independent by induction, $c_{i}\left(\lambda_{i}-\lambda_{m}\right)=0$, for $i=1, \ldots, m-1$. The eigenvalues are assumed to be distinct; therefore $\lambda_{i}-\lambda_{m} \neq 0$, and $c_{i}=0$. The first equation tells us that $c_{m} \vec{v}_{m}=\overrightarrow{0}$, so that $c_{m}=0$ as well.

Fact 7.3.6 If an $n \times n$ matrix $A$ has $n$ distinct eigenvalues, then there is an eigenbasis for $A$. We can construct an eigenbasis by choosing an eigenvector for each eigenvalue.

EXAMPLE 6 Is there an eigenbasis for the following matrix?

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 6
\end{array}\right]
$$

Fact 7.3.7 Consider an $n \times n$ matrix $A$. If the geometric multiplicities of the eigenvalues of $A$ add up to $n$, then there is an eigenbasis for $A$ : We can construct an eigenbasis by choosing a basis of each eigenspace and combining these vectors.

## Proof

Suppose the eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, with $\operatorname{dim}\left(E_{\lambda_{i}}\right)=d_{i}$. We first choose a basis $\vec{v}_{1}$, $\vec{v}_{2}, \ldots, \vec{v}_{d_{1}}$ of $E_{\lambda_{1}}$, and then a basis $\vec{v}_{d_{1}+1}, \ldots$, $\vec{v}_{d_{1}+d_{2}}$ of $E_{\lambda_{2}}$, and so on.

Consider a relation

$$
\underbrace{c_{1} \vec{v}_{1}+\cdots+c_{d_{2}} \vec{v}_{d_{1}}}_{\vec{w}_{1} \text { in } E_{\lambda_{1}}}+\underbrace{\cdots+c_{d_{1}+d_{2}} \vec{v}_{d_{1}+d_{2}}}_{\vec{w}_{2} \text { in } E_{\lambda_{2}}}+\cdots+\underbrace{\cdots+c_{n} \vec{v}_{n}}_{\vec{w}_{m} \text { in } E_{\lambda_{m}}}=\overrightarrow{0}
$$

Each under-braced sum $\vec{w}_{i}$ must be a zero vector since if they are nonzero eigenvectors, they must be linearly independent and the relation can not hold.

Because $\vec{w}_{1}=0$, it follows that $c_{1}=c_{2}=\cdots=$ $c_{d_{1}}=0$, since $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{d_{1}}$ are linearly independent. Likewise, all the other $c_{j}$ are zero.

EXAMPLE 7 Consider an Albanian mountain farmer who raises goats. This particular breed of goats has a life span of three years. At the end of each year $t$, the farmer conducts a census of his goats. He counts the number of young goats $j(t)$ (those born in the year $t$ ), the middle-aged ones $m(t)$ (born the year before), and the old ones $a(t)$ (born in the year $t-2$ ). The state of the herd can be represented by the vector

$$
\vec{x}(t)=\left[\begin{array}{c}
j(t) \\
m(t) \\
a(t)
\end{array}\right]
$$

How do we expect the population to change from year to year? Suppose that for this breed and environment the evolution of the system can be modelled by

$$
\vec{x}(t+1)=A \vec{x}(t)
$$

where $A=\left[\begin{array}{ccc}0 & 0.95 & 0.6 \\ 0.8 & 0 & 0 \\ 0 & 0.5 & 0\end{array}\right]$

We leave it as an exercise to interpret the entries of $A$ in terms of reproduction rates and survival rates.

Suppose the initial populations are $j_{0}=750$ and $m_{0}=a_{0}=200$.What will the populations be after $t$ years, according to this model? What will happen in the long term?

## Solution

Step 1: Find eigenvalues.

Step 2: Find eigenvectors.
Step 3: Express the initial vector $\vec{v}_{0}=\left[\begin{array}{l}750 \\ 200 \\ 200\end{array}\right]$ as a linear combination of eigenvectors.

Step 4: Write the closed formula for $\vec{v}(t)$.

Fact 7.3.8

The eigenvalues of similar matrices Suppose matrix $A$ is similar to $B$. Then

1. Matrices $A$ and $B$ have the same characteristic polynomial; that is, $f_{A}(\lambda)=f_{B}(\lambda)$
2. $\operatorname{rank}(A)=\operatorname{rank}(B)$ and $\operatorname{nullity}(A)=\operatorname{nullity}(B)$
3. Matrices $A$ and $B$ have the same eigenvalues, with the same algebraic and geometric multiplicities. (However,the eigenvectors need not be the same.)
4. $\operatorname{det}(A)=\operatorname{det}(B)$ and $\operatorname{tr}(A)=\operatorname{tr}(B)$

## Proof

a. If $B=S^{-1} A S$, then

$$
\begin{aligned}
& f_{B}(\lambda)=\operatorname{det}\left(\lambda I_{n}-B\right)=\operatorname{det}\left(\lambda I_{n}-S^{-1} A S\right) \\
= & \operatorname{det}\left(S^{-1}\left(\lambda I_{n}-A\right) S\right)=\operatorname{det}\left(S^{-1}\right) \operatorname{det}\left(\lambda I_{n}-A\right) \operatorname{det}(S) \\
= & \operatorname{det}\left(\lambda I_{n}-A\right)=f_{A}(\lambda)
\end{aligned}
$$

b. See Section 3.4, exercise 45 and 46 .
c. If follows from part (a) that matrices $A$ and $B$ have the same eigenvalues, with the same algebraic multiplicities. As for for the geometric multiplicities, note that $\lambda I_{n}-A$ is similar to $\lambda I_{n}-B$ for all $\lambda$, so that nullity $\left(\lambda I_{n}-\right.$ $A)=\operatorname{nullity}\left(\lambda I_{n}-B\right)$ by part (b).
d. These equations follow from part (a) and Fact 7.2.5. Trance and determinant are coefficients of the characteristic polynomial.

