Applied Linear Algebra OTTO BRETSCHER

 http://www.prenhall.com/bretscherChapter 7 Eigenvalues and Eigenvectors

Chia-Hui Chang
Email: chia@csie.ncu.edu.tw
National Central University, Taiwan
7.1 DYNAMICAL SYSTEMS AND EIGENVECTORS: AN INTRODUCTORY EXAMPLE

Consider a dynamical system:

$$
\begin{gathered}
x(t+1)=0.86 x(t)+0.08 y(t) \\
y(t+1)=-0.12 x(t)+1.14 y(t)
\end{gathered}
$$

Let

$$
\vec{v}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

be the state vector of the system at time t.
We can write the matrix equation as

$$
\vec{v}(t+1)=A \vec{v}(t)
$$

where

$$
A=\left[\begin{array}{cc}
0.86 & 0.08 \\
-0.012 & 1.14
\end{array}\right]
$$

Suppose we know the initial state, we wish to find $\vec{v}(t)$, for any time t.

Case 1: Suppose $\vec{v}(0)=\left[\begin{array}{l}100 \\ 300\end{array}\right]$
Case 2: Suppose $\vec{v}(0)=\left[\begin{array}{l}200 \\ 100\end{array}\right]$
Case 3: Suppose $\vec{v}(0)=\left[\begin{array}{l}1000 \\ 1000\end{array}\right]$

Case 1:

$$
\begin{aligned}
& \vec{v}(1)=A \vec{v}(0)=\left[\begin{array}{cc}
0.86 & 0.08 \\
-0.012 & 1.14
\end{array}\right]\left[\begin{array}{l}
100 \\
300
\end{array}\right]=\left[\begin{array}{l}
110 \\
330
\end{array}\right] \\
& \vec{v}(1)=A \vec{v}(0)=1.1 \vec{v}(0) \\
& \vec{v}(2)=A \vec{v}(1)=A(1.1 \vec{v}(0))=1.1^{2} \vec{v}(0) \\
& \vec{v}(3)=A \vec{v}(2)=A\left(1.1^{2} \vec{v}(0)\right)=1.1^{3} \vec{v}(0) \\
& \vdots \\
& \vec{v}(t)=1.1^{t} \vec{v}(0)
\end{aligned}
$$

Case 2:
$\vec{v}(1)=A \vec{v}(0)=\left[\begin{array}{cc}0.86 & 0.08 \\ -0.012 & 1.14\end{array}\right]\left[\begin{array}{l}200 \\ 100\end{array}\right]=\left[\begin{array}{c}180 \\ 90\end{array}\right]$
$\vec{v}(1)=A \vec{v}(0)=0.9 \vec{v}(0)$
$\vec{v}(t)=0.9^{t} \vec{v}(0)$
Case 3:
$\vec{v}(1)=A \vec{v}(0)=\left[\begin{array}{cc}0.86 & 0.08 \\ -0.012 & 1.14\end{array}\right]\left[\begin{array}{l}1000 \\ 1000\end{array}\right]=\left[\begin{array}{c}940 \\ 1020\end{array}\right]$
The state vector $\vec{v}(1)$ is not a scalar multiple of the initial state $\vec{v}(0)$. We have to look for another approach.

Consider the two vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
100 \\
300
\end{array}\right] \text { and } \vec{v}_{2}=\left[\begin{array}{l}
200 \\
100
\end{array}\right]
$$

Since the system is linear and

$$
\vec{v}(0)=\left[\begin{array}{l}
1000 \\
1000
\end{array}\right]=2 \vec{v}_{1}+4 \vec{v}_{2}
$$

Therefore,

$$
\begin{aligned}
& \vec{v}(t)=A^{t} \vec{v}(0)=A^{t}\left(2 \vec{v}_{1}+4 \vec{v}_{2}\right)=2 A^{t} \vec{v}_{1}+4 A^{t} \vec{v}_{2} \\
& =2(1.1)^{t} \vec{v}_{1}+4(0.9)^{t} \vec{v}_{2} \\
& =2(1.1)^{t}\left[\begin{array}{l}
100 \\
300
\end{array}\right]+4(0.9)^{t}\left[\begin{array}{l}
200 \\
100
\end{array}\right] \\
& x(t)=200(1.1)^{t}+800(0.9)^{t} \\
& y(t)=600(1.1)^{t}+400(0.9)^{t}
\end{aligned}
$$

Since the terms involving 0.9^{t} approach zero as t increases, $x(t)$ and $y(t)$ eventually grow by about 10% each time, and their ratio $y(t) / x(t)$ approaches 600/200=3.

See Figure 3, The state vector $\vec{x}(t)$ approaches the line L_{1}, with the slope 3 .

Connect the tips of the state vector $\vec{v}(i), i=$ $1,2, \ldots, t$, the trajectory is shown in Figure 4.

Sometimes, we are interested in the state of the system in the past at times $-1,-2, \ldots$.

For different $\vec{v}(0)$, the trajectory is different. Figure 5 shows the trajectory that starts above L_{1} and one that starts below L_{2}.

From a mathematical point of view, it is informative to sketch a phase portrait of this system in the whole c-r-plane (see Figure 6), even though the trajectories outside the first quadrant are meaningless in terms of population study.

Eigenvectors and Eigenvalues

How do we find the initial state vector \vec{v} such that $A \vec{v}$ is a scalar multiple of \vec{v}, or

$$
A \vec{v}=\lambda \vec{v}
$$

for some scalar λ ?

Definition 7.1.1
Eigenvectors and eigenvalues Consider an $n \times n$ matrix A. A nonzero vector \vec{v} in R^{n} is called an eigenvector of A if $A \vec{v}$ is a scalar multiple of \vec{v}, that is, if

$$
A \vec{v}=\lambda \vec{v}
$$

for some scalar λ. Note that this scalar λ may be zero. The scalar λ is called the eigenvalue associated with the eigenvector \vec{v}.

EXAMPLE 1

Find all eigenvectors and eigenvalues of the identity matrix I_{n}.

Solution All nonzero vectors in R^{n} are eigenvectors, with eigenvalue 1.

EXAMPLE 2

Let T be the orthogonal projection onto a line L in R^{2}. Describe the eigenvectors of T geometrically and find all eigenvalues of T.

Solution (See Figure 8.) (a). Any vector \vec{v} on L is a eigenvector with eigenvalue 1. (b). Any vector \vec{w} perpendicular to L is a eigenvector with eigenvalue 0 .

EXAMPLE 3

Let T from R^{2} to R^{2} be the rotation in the plane through an angle of 90° in the counterclockwise direction. Find all eigenvalues and eigenvectors of T. (See Figure 9)

Solution There are no eigenvectors and eigenvalues here.

EXAMPLE 4
What are the possible real eigenvalues of an orthogonal matrix A ?

Solution The possible real eigenvalue is 1 or -1 since orthogonal transformation preserves length.

Dynamical Systems and Eigenvectors

Fact 7.1.3 Discrete dynamical systems

Consider the dynamical system

$$
\vec{x}(t+1)=A \vec{x}(t) \text { with } \vec{x}(0)=\vec{x}_{0}
$$

Then

$$
\vec{x}(t)=A^{t} \vec{x}_{0}
$$

Suppose we can find a basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of R^{n} consisting of eigenvectors of A with

$$
A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}, A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}, \ldots, A \vec{v}_{n}=\lambda_{n} \vec{v}_{n} .
$$

Find the coordinates $c_{1}, c_{2}, \ldots, c_{n}$ of vector \vec{x}_{0} with respect to $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of R^{n} :

$$
\begin{aligned}
& \vec{x}(0)=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n} . \\
& \quad=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
c_{n}
\end{array}\right]
\end{aligned}
$$

Let $S=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\ \mid & \mid & & \mid\end{array}\right]$.

Then $\vec{x}_{0}=S\left[\begin{array}{c}c_{1} \\ c_{2} \\ \cdot \\ c_{n}\end{array}\right]$ so that $\left[\begin{array}{c}c_{1} \\ c_{2} \\ \cdot \\ c_{n}\end{array}\right]=S^{-1} \vec{x}_{0}$.

Consider

$$
\vec{x}(t)=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\cdots+c_{n} \lambda_{n}^{t} \vec{v}_{n}
$$

We can write this equation in matrix form as

$$
\begin{gathered}
\vec{x}(t)=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1}^{t} & 0 & \dot{c} & 0 \\
0 & \lambda_{2}^{t} & 0 & 0 \\
\dot{0} & \dot{0} & \dot{0} & \lambda_{n}^{t}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
. \\
c_{n}
\end{array}\right] \\
=S\left[\begin{array}{cccc}
\lambda_{1} & 0 & . & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & \dot{0} & \dot{0} & \lambda_{n}
\end{array}\right]^{t} S^{-1} \vec{x}_{0}
\end{gathered}
$$

Definition 7.1.4

Discrete trajectories and phase portraits Consider a discrete dynamical system

$$
\vec{x}(t+1)=A \vec{x}(t)
$$

with initial value $\vec{x}(0)=\vec{x}_{0}$ where A is a 2×2 matrix. In this case, the state vector $\vec{x}(t)=$ $\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$ can be represented geometrically in the $x_{1}-x_{2}$-plane.

The endpoints of state vectors $\vec{x}(0)=\vec{x}_{0}, \vec{x}(1)=$ $A \vec{x}_{0}, \vec{x}(2)=A^{2} \vec{x}_{0}, \ldots$ form the (discrete) trajectory of this system, representing its evolution in the future. Sometimes we are interested in the past states $\vec{x}(-1)=A^{-1} \vec{x}_{0}$, $\vec{x}(-2)=\left(A^{2}\right)^{-1} \vec{x}_{0}, \ldots$ as well. It is suggestive to " connect the dots" to create the illusion of a continuous trajectories. Take another look at Figure 4.

A (discrete) phase portrait of the system $\vec{x}(t+$ $1)=A \vec{x}(t)$ shows discrete trajectories for various initial states, capturing all the qualitatively different scenarios (as in Figure 6).

See Figure 11, we sketch phase portraits for the case when A has two eigenvalues $\lambda_{1}>\lambda_{2}>$ 0 . (Leave out the special case when one of the eigenvalues is 1.) Let $L_{1}=\operatorname{span}\left(\vec{v}_{1}\right)$ and $L_{2}=\operatorname{span}\left(\vec{v}_{2}\right)$. Since

$$
\vec{x}(t)=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}
$$

we can sketching the trajectories for the following cases:
(a) $\lambda_{1}>\lambda_{2}>1$
(b) $\lambda_{1}>1>\lambda_{2}$
(c) $1>\lambda_{1}>\lambda_{2}$

Summary 7.1.4

Consider an $n \times n$ matrix

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Then the following statements are equivalent:
i. A is invertible.
ii. The linear system $A \vec{x}=\vec{b}$ has a unique solution \vec{x}, for all \vec{b} for all \vec{b} in R^{n}.
iii. $\operatorname{rref}(A)=I_{n}$.
iv. $\operatorname{rank}(A)=n$.
v. $\operatorname{im}(A)=R^{n}$.
vi. $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.
vii. The \vec{v}_{i} are a basis of R^{n}.
viii. The \vec{v}_{i} span R^{n}.
ix. The \vec{v}_{i} are linearly independent.
x. $\operatorname{det}(A) \neq 0$.
xi. 0 fails to be an eigenvalue of A.

