
5.4 LEAST SQUARES AND DATA FIT-

TING

ANOTHER CHARACTERIZATION OF ORTHOG-

ONAL COMPLEMENTS

Consider a subspace V = im(A) of Rn, where

A =
[

~v1 ~v2 ... ~vm

]
. Then,

V ⊥ = { ~x in Rn : ~v · ~x = 0, for all ~v in V }

= { ~x in Rn : ~vi · ~x = 0, for i = 1,. . . ,m}

= { ~x in Rn : ~vi
T~x = 0, for i = 1,. . . ,m}

In other words, V ⊥ is the kernel of the matrix

AT =




− ~v1
T −

− ~v2
T −
...

− ~vm
T −
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Fact 5.4.1 For any matrix A,

(im A)⊥ = ker (AT ).

Example: consider the line

V = im




1
2
3




Then

V ⊥ = ker[123]

is the plan with equation x1 + 2x2 + 3x3 = 0.

(See Figure 1)

Fact 5.4.2 Consider a subspace V of Rn. then,

a. dim(V ) + dim(V ⊥) = n

b. (V ⊥)⊥ = V

c. V
⋂

V ⊥ = {~0}
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Proof

a. Let T(~x) = projV be the orthogonal projec-

tion onto V. Note that im(A) = V and ker(T)

= V ⊥. Fact 3.3.9 tells us that n = dim(ker T)

+ dim(im T) = dim(V) + dim(V ⊥).

b. First observe that V ⊆ (V ⊥)⊥, since a vec-

tor in V is orthogonal to every vector in V ⊥
(by definition of V ⊥). Furthermore, the dimen-

sions of the two spaces are equal, by part(a):

dim(V ⊥)⊥ = n− dim(V ⊥)

= n− (n− dim(V ⊥))

= dim(V ⊥).

It follows that the two spaces are equal. (See

Exercise 3.3.41.)

c. If ~x is in V and in V ⊥, then ~x is orthogonal

to itself; that is, ~x · ~x = ‖~x‖2 = 0, and thus ~x

= ~0.



Fact 5.4.3

a. If A is an m ∗ n matrix, then

ker(A) = ker(ATA).

b. If A is an m ∗ n matrix with ker(A) = {~0},
then ATA is invertible.

Proof

a. Clearly, the kernel of A is contained in the

kernel kernel of ATA. Conversely, consider a

vector ~x in the kernel of ATA, so that ATA~x =
~0 Then, A~x is in the image of A and in the

kernel of AT . Since ker(AT ) is the orthogonal

complement of im(A) by Fact 5.4.1, the vector

A~x is ~0 by Fact 5.4.2(c), that is, ~x is in the

kernel of A.

b. Note that ATA is an n ∗ n matrix. By part

(a), ker(ATA) = {~0}, and ATA is therefore in-

vertible.(See Summary 3.3.11)
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An Alternative Characterization of Orthog-

onal Projections

Fact 5.4.4

Consider a vector ~x in Rn and a subspace V of
Rn. Then, the orthogonal projection projV ~x is
the vector in V closest to ~x, in that

‖~x− projV ~x‖ < ‖~x− ~v‖,

for all ~v in V different from projV ~x

Least-Squares Approximations

Definition 5.4.5 Least-squares solution
Consider a linear system

A~x = ~b,

where A is an m∗n matrix. A vector ~a∗ in Rn is
called a least − squares solution of this system
if ‖~b−A~x∗‖ ≤ ‖~b−A~x‖ for all ~x in Rn.
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The vector ~x∗ is a least-square solution

of the system A~x = ~b

m Def 5.4.5

‖~b−A~x∗‖ ≤ ‖~b−A~x‖ for all ~x in Rn.

m Def 5.4.4

A~x∗ = projV b, where V = im(A)

m Fact 5.1.6 and 5.4.1

~b−A~x∗ is in V ⊥ = im(A)⊥ = ker(AT )

m

AT (~b−A~x∗) = ~0

m

ATA~x∗ = AT~b
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Fact 5.4.6 The normal equation

The least-squares solutions of the system

A~x = ~b,

are the exact solutions of the (consistent) sys-

tem

ATA~x = AT~b,

The system ATA~x = AT~b is called the normal

equation of A~x = ~b

Fact 5.4.7

If ker(A) = {~0}, then the linear system

A~x = ~b,

has the unique least-squares solution

~x∗ = (ATA)−1AT~b
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Example 1 Use Fact 5.4.7 to find the least-

squares solution ~x∗ of the system

A~x = ~b, where A =




1 1
1 2
1 3


 and ~b




0
0
6




what is the geometric relationship between A~x∗
and ~b?

Solution We compute

~x∗ = (ATA)−1AT~b =

[
−4
3

]
and A~x∗ =



−1
2
5




Recall that A~x∗ is the orthogonal projection of
~b onto the image of A.
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Fact 5.4.8 The matrix of an orthogonal

projection

Consider a subspace V of Rn with basis ~v1,

~v2,..., ~vm. Let

A =
[

~v1, ~v2, ..., ~vm

]

Then the matrix of the orthogonal projection

onto V is

A(ATA)−1AT .

This means we are not required to find an or-

thonormal basis of V here. If the vectors ~vi

happen to be orthonormal, then ATA = Im

and the formula simplifies to ATA. (See Fact

5.3.10.)
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Example 2 Find the matrix of the orthogonal

projection onto the subspace of R4 spanned by

the vector




1
1
1
1


 and




1
2
3
4




Solution Let

A =




1 1
1 2
1 3
1 4


’

and compute

A(ATA)−1AT =




7 4 1 −2
4 3 2 1
1 2 3 4

−2 1 4 7
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Data Fitting Scientists are often interested

in fitting a function of a certain type to data

they have gathered. The functions considered

could be linear, polynomial, relational’ trigono-

metric, or exponential. The equations we have

to solve as we fit data are frequently linear.

(See Exercises 29 and 30 of section 1.1, and

Exercises 30 through 33 of Section 1.2.)

Example 3 Find a cubic polyonmial whose

graph passes through the points (1, 3), (-1,

13), (2, 1), (-2, 33).

Solution We are looking for a function

f(t) = c0 + c1t + c2t2 + c3t3

such that f(1) = 3, f(-1) = 13, f(2) = 1,

f(-2) = 33; that is, we have to solve the linear

system
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∣∣∣∣∣∣∣∣∣

c0 + c1 + c2 + c3 = 3
c0 − c1 + c2 − c3 = 13
c0 + 2c1 + 4c2 + 8c3 = 1
c0 − 2c1 + 4c2 − 8c3 = 33

∣∣∣∣∣∣∣∣∣

This linear system has the unique solution




c0
c1
c2
c3


 =




5
−4
3

−1


.

Thus, the cubic polynomial whose graph passes

through the four given data points if f(t) =

5− 4t + 3t2 − t3, as shown in Figure 6.
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Example 4 Fit a quadratic function to the four

data points (a1, b1) = (-1, 8), (a2, b2) = (0,

8), (a3, b3) = (1, 4), and (a4, b4) = (2, 16).

Solution We are looking for a function f(t) =
c0 + c1t + C2t2 such that
∣∣∣∣∣∣∣

f(a1) = b1
f(a2) = b2
f(a3) = b3
f(a4) = b4

∣∣∣∣∣∣∣
or

∣∣∣∣∣∣∣

c0 −c1 + c2 = 8
c0 = 8
c0 +c1 + c2 = 4
c0 +2c1 + 4c2 = 16

∣∣∣∣∣∣∣
or A




c0

c1

c2




where

A =




1 −1 1
1 0 0
1 1 1
1 2 4


 and ~b =




8
8
4

16


.
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We have four equations, corresponding to the

four data points, but only three unknowns, the

three coefficients of a quadratic polynomial.

Check that this system is indeed inconsistent.

The least-squares solution is

~x∗ =




c∗0
c∗1
c∗2


 = (ATA)−1AT~b =




5
−1
3




The least-squares approximation is

f∗(t) = 5− t+3t2, as shown in Figure 7. This

quadratic function f∗(t) fits the data points

best, in that the vector

A~x∗ =




f∗(a1)
f∗(a2)
f∗(a3)
f∗(a4)




is close as possible to
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A =




b1
b2
b3
b4


.

This means that

‖~b - A~c∗‖2 = (b1 - f∗(a1))
2 + (b2 - f∗(a2))

2 +

(b3 - f∗(a3))
2 + (b4 - f∗(a4))

2

is minimal: The sum of the squares of the ver-

tical distances between graph and data points

is minimal. (See Figure 8.)



Example 5 Find the linear function c0 + c1t

that best fits the data points (a1, b1), (a2,

b2),...,(an, bn), use least squares. Assume that

a1 6=a2.

Solution We attempt to solve the system

∣∣∣∣∣∣∣∣∣

c0 + c1a1 = b1
c0 + c1a2 = b2
... ... ...

c0 + c1an = bn

∣∣∣∣∣∣∣∣∣

or




1 a1
1 a2
... ...
1 an




[
c0
c1

]
=




b1
b2
...

bn


 ,

or

A

[
c0
c1

]
= ~b
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Note that rank(A) = 2, since a1 6=a2. The

least-squares solution is

∣∣∣∣∣
c∗0
c∗1

∣∣∣∣∣ = (ATA)−1AT~b =




[
1 . . . 1

a1 . . . an

] 


1 a1
... ...
1 an






−1 [

1 . . . 1
a1 . . . an

] 


b1
...

bn




=

[
n Σiai

Σiai Σia
2
i

]−1 [
Σibi

Σiaibi

]

(where
∑

i refers to the sum for i = 1,...,n)

We have found that

C∗0 =
(
∑

i a2
i )(

∑
i bi)−(

∑
i ai)(

∑
i aibi)

n(
∑

i a2
i )−(

∑
i ai)2

,

C∗1 =
n(

∑
i aibi)−(

∑
i ai)(

∑
i bi)

n(
∑

i a2
i )−(

∑
i ai)2

.

There formulas are well known to statisticians.

There is no need to memorize them.



Example 6 In the accompanying table, we list

the scores of five students in the three exams

given in a class.

Find the function of the form f = c0 + c1h

+ c2m that best fits these data, using least

squares. what score f does your formula pre-

dict for Marlisa, another student, whose scores

in the first two exams were h = 92 and m =

72?

Solution

We attempt to solve the system

∣∣∣∣∣∣∣∣∣∣∣∣

c0 + 76c1 + 48c2 = 43
c0 + 92c1 + 92c2 = 90
c0 + 68c1 + 82c2 = 64
c0 + 86c1 + 68c2 = 69
c0 + 54c1 + 70c2 = 50

∣∣∣∣∣∣∣∣∣∣∣∣

.
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The least-squares solution is

∣∣∣∣∣∣∣

c∗0
c∗1
c∗2

∣∣∣∣∣∣∣
. = (ATA)−1AT~b ≈

∣∣∣∣∣∣∣

−42.4
0.639
0.799

∣∣∣∣∣∣∣
.

The function which gives the best fit is approx-

imately

f = -42.4 + 0.639h + 0.799m.

The formula predicts the score

f = -42.4 + 0.639 · 92 + 0.799 · 72 ≈ 74.

for Marlisa.
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