5.4 LEAST SQUARES AND DATA FIT-
TING

ANOTHER CHARACTERIZATION OF ORTHOG-
ONAL COMPLEMENTS

Consider a subspace V = im(A) of R", where
A = [qfl ... v}b} . Then,

Vi={ZinR":¥.£=0, forall §inV }
={ZinR":v;-2=0,fori=1,... m}

={ZinR":glZ =0, for i
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Fact 5.4.1 For any matrix A,
(im A)L = ker (471).

Example: consider the line

1
V=tm]|?2
3

Then
V= ker[123]

is the plan with equation 1 4+ 2x5 + 3x3 = 0.
(See Figure 1)

Fact 5.4.2 Consider a subspace V of R™. then,
a. dim(V) +dim(VH) =n
b. (VH)+t =V

c. VN V+={0}



Proof

a. Let T(¥) = projy be the orthogonal projec-
tion onto V. Note that im(A) = V and ker(T)
= V1. Fact 3.3.9 tells us that n = dim(ker T)
+ dim(im T) = dim(V) + dim(v1).

b. First observe that V C (VL)i, since a vec-
tor in V is orthogonal to every vector in VL
(by definition of V). Furthermore, the dimen-
sions of the two spaces are equal, by part(a):

dim(V)E =n — dim(V1)
=n— (n—dim(V™))
= dim(V 7).
It follows that the two spaces are equal. (See

Exercise 3.3.41.)

c. If Zisin V and in V1, then ¥ is orthogonal
to itself; that is, & - & = ||#||° = 0, and thus &
0.



Fact 5.4.3
a. If Ais an m xn matrix, then

ker(A) = ker(AT A).

b. If A is an m xn matrix with ker(A) = {0},
then AT A is invertible.

Proof

a. Clearly, the kernel of A is contained in the
kernel kernel of AT A, Conversely, consider a
vector Z in the kernel of AT A, so that AT Az =
0 Then, AZ is in the image of A and in the
kernel of AL, Since ker(A?) is the orthogonal
complement of im(A) by Fact 5.4.1, the vector
AZ is 0 by Fact 5.4.2(c), that is, & is in the
kernel of A.

b. Note that ATA is an n * n matrix. By part
(a), ker(ATA) = {0}, and AT A is therefore in-
vertible.(See Summary 3.3.11)



An Alternative Characterization of Orthog-
onal Projections

Fact 5.4.4

Consider a vector £ in R™ and a subspace V of
R™. Then, the orthogonal projection projy is
the vector in V closest to Z, in that

|Z — projy || < ||& — ],
for all v in V different from projyx
Least-Squares Approximations

Definition 5.4.5 Least-squares solution
Consider a linear system

AZ = b,
where A is an m*xn matrix. A vector a* in R" is

called a least — squares solution Of this system
if ||b — Ax*|| < ||b — AZ|| for all £ in R™.



The vector £* is a least-square solution
of the system AZX = b

{ Def 5.4.5
b — AZ*|| < ||b — AZ|| for all Z in R™.
 Def5.4.4
AZ* = projyb, where V= im(A)
{ Fact 5.1.6 and 5.4.1
b— AT* is in VL = im(A)L = ker(AT)
T
AT(b — A7*) =0

)

AT Az = AT



Fact 5.4.6 The normal equation
The least-squares solutions of the system

—

AZ =,

are the exact solutions of the (consistent) sys-
tem

Al Az = A™Y,
The system AT Az = ATb is called the normal
equation Of Axr = b

Fact 5.4.7
If ker(A) = {0}, then the linear system

AZ = b,
has the unique least-squares solution

7 = (AT A)~1ATh



Example 1 Use Fact 5.4.7 to find the least-
squares solution £* of the system

Axr = 5, where A =

— =
WN =
Q)
>
o
o

O
O
6

what is the geometric relationship between Ax™*
and b7

Solution We compute

_1
7 = (AT A)-1AT} = [ _gl and Az = | 2
5

Recall that AzZ™ is the orthogonal projection of
b onto the image of A.



Fact 5.4.8 The matrix of an orthogonal
projection

Consider a subspace V of R"™ with basis 71,
272,..., Um. Let

— —

A= | vy, Up, ..., fum]

Then the matrix of the orthogonal projection
onto V is

AAT A1 AT,

This means we are not required to find an or-
thonormal basis of V here. If the vectors v;
happen to be orthonormal, then ATA = I,,
and the formula simplifies to AT A. (See Fact
5.3.10.)



Example 2 Find the matrix of the orthogonal
projection onto the subspace of R4 spanned by
the vector

1 1
1 2
1 and 3
_1_ _4_
Solution Let
4 1
1 2|,
A= 1 3
_14_
and compute
7 4 1 -2
4 3 2 1
T AN—1 AT —
A(ATA)AT = 1 2 3 4
| —2 1 4 7




Data Fitting Scientists are often interested
in fitting a function of a certain type to data
they have gathered. The functions considered
could be linear, polynomial, relational’ trigono-
metric, or exponential. The equations we have
to solve as we fit data are frequently linear.
(See Exercises 29 and 30 of section 1.1, and
Exercises 30 through 33 of Section 1.2.)

Example 3 Find a cubic polyonmial whose
graph passes through the points (1, 3), (-1,
13), (2, 1), (-2, 33).

Solution We are looking for a function
f(t) = cog + 1t + 62t2 -+ C3t3
such that f(1) = 3, f(-1) = 13, f(2) = 1,

f(-2) = 33; that is, we have to solve the linear
system
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co + c1
c0 — C1
co + 21
co — 2c

_|_
_|_

2
2

+ 4co
+ 4c2

_|_
_I_

c3
C3
3c3
3c3

This linear system has the unique solution

=)
€1
c2
c3

- _1 -

5
—4
3

Thus, the cubic polynomial whose graph passes
through the four given data points if f(t) =
5 — 4t + 3t2 — t3, as shown in Figure 6.
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Example 4 Fit a quadratic function to the four
data points (a1, b1) = (-1, 8), (ao, by) = (0,
8), (a3, b3) = (1, 4), and (aa, bs) = (2, 16).

Solution We are looking for a function f(t) =
co + c1t + Cot? such that

f(a1) = b1 co —c1+ co =8 ‘o
fla2) = b2 co =38
flaz)=bs | %" | co 4e1+eo —4 |OFA4] @
f(as) = bs co +2c1+4cr =16 €2
where
1 —1 1] [ 8 ]
1 O O > 3
A= 1 11 and b = 4
1 2 4 | 16 |
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We have four equations, corresponding to the
four data points, but only three unknowns, the
three coefficients of a quadratic polynomial.
Check that this system is indeed inconsistent.
T he least-squares solution is

cH . 5
= |ct | =@ArA) ATy = | -1
| ] | 3

T he least-squares approximation is

f*(t) = 5 —t+ 3t2, as shown in Figure 7. This
quadratic function f*(t) fits the data points
best, in that the vector

e
e a
AT = f*(a3z)
| f*(ag)

IS close as possible to
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This means that

16 - A2 = (b1 - f*(a1))? + (b2 - f*(a2))? +
(b3 - f*(a3))? 4 (ba - f*(aq))?

iIs minimal: The sum of the squares of the ver-
tical distances between graph and data points
is minimal. (See Figure 8.)



Example 5 Find the linear function cg 4+ cqt
that best fits the data points (a1, b1), (ao,
b>),...,(an, bn), use least squares. Assume that

a17ao.

Solution We attempt to solve the system

co + cia; = b
co + ciar = bo
co + cian = bp
or
i 1 a/]_ | i b]_ |
1 a» co| _ | bo
S c1 | p|
i 1 an, ] i b'n, |
or

14



Note that rank(A) = 2, since aij7#a>. The
least-squares solution is

X —
V| = (ATA)1ATh =
C
1
_ _ -1 _
[1... 1]1:“1: [1 1] b1
ai ... an _1 an_ ai ... Qan _bn
—1
. n ZZ'CLZ' Zibi
Ziai Ziag Ziaibi

(where >, refers to the sum for ¢ = 1,...,n)

We have found that

ox = (Zia)(T5) (3 a) (X, aiby)
0 n(;a2)— (2 a:)? '
O — n(EL aibi)—(Zi ai)(Zi b;)
1 n(ZZ %2)—(27; az‘)Q .

There formulas are well known to statisticians.
There is no need to memorize them.




Example 6 In the accompanying table, we list
the scores of five students in the three exams
given in a class.

Find the function of the form f = cg + c1h
+ com that best fits these data, using least
squares. what score f does your formula pre-
dict for Marlisa, another student, whose scores
in the first two exams were h = 92 and m =
727

Solution

We attempt to solve the system

co + 76cy + 48cr = 43
co + 92¢1 + 92¢o» = 90
co + 68cy + 82cr = 64
co + 86cy + 68cr = 69
co + 54cy + 70cr = 50
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T he least-squares solution is

c . —42 .4
ct|. = (ATA)~1ATh ~ | 0.639
c5 0.799

The function which gives the best fit is approx-
imately

f=-42.4 4+ 0.639h 4+ 0.799m.
The formula predicts the score

f=-42.4 4+ 0.639 - 92 + 0.799 - 72 ~ 74.

for Marlisa.
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