5.3 ORTHOGONAL TRANSFORMATIONS
AND ORTHOGONAL MATRICES

Definition 5.3.1 Orthogonal transformations
and orthogonal matrices

A linear transformation 7" from R™ to R" is
called orthogonal if it preserves the length of
vectors:

|T(2)|| = ||Z||, for all Zin R™.

If T(¥) = AZ is an orthogonal transformation,
we say that A is an orthogonal matrix.



EXAMPLE 1 The rotation

T() = [ cos¢p —sing ] =

sing  coso

is an orthogonal transformation from R? to R2,
and

A — [ cosp —sing ] =

sing  cos®

is an orthogonal matrix, for all angles ¢.




EXAMPLE 2 Reflection

Consider a subspace V of R™. For a vector &
in R™, the vector R(¥) = 2projyZ — & is called
the reflection of ¥ in V. (see Figure 1).

Show that reflections are orthogonal transfor-
mations.

Solution
We can write

R(Z) = projy ¥ + (projy & — T)
and
X = projyx + (£ — projyx).

By the pythagorean theorem, we have

IR@)|I? = llprojv||® + [lprojv@ — |2

= |lprojy@||? + ||1Z — projyZ||? = ||Z])°.



Fact 5.3.2 Orthogonal transformations pre-
serve orthogonality

Consider an orthogonal transformation 7' from
R™ to R™. 1If the vectors v and w in R™ are
orthogonal, then so are T'(¥) and T'().

Proof

By the theorem of Pythagoras, we have to
show that

IT(%) + T(@)[|? = | T (@)% + | T(@)]|°.
Let's see:

1T (@) + T (@)||? = | T(F + @)||? (T is linear)

|7+ @||2 (T is orthogonal)

= ||&]|2 + ||w||? (¥ and @ are orthogonal)

= |T(@)I* + |7 (@)]|*.
(T'(¥) and T'(wW) are orthogonal)



Fact 5.3.3 Orthogonal transformations and
orthonormal bases

a. A linear transformation T' from R™ to R"™ is
orthogonal iff the vectors T'(e¢1), T'(€3),...,T(én)
form an orthonormal basis of R".

b. An n X n matrix A is orthogonal iff its
columns form an orthonormal basis of R™.

Proof Part(a):

= If T" is orthogonal, then, by definition, the
T'(e;) are unit vectors, and by Fact 5.3.2, since
€1, €5,...,6n are orthogonal, T'(e1), T(é5),....T(en)
are orthogonal.

< Conversely, suppose the T'(e;) form an or-
thonormal basis.
Consider a vector

T =x1€1 +x06>+ -+ xnEN
in R™. Then,



||T(f)||2 = |[x1T (1) +x2T(ed)+-- .+an(€jr’L)||2

= lz1 T (D2 + llz2T ()% + - - - + [[znT (e0)]]?
(by Pythagoras)

Zx%—I-m%—l----—l—w%
= || 2|
Part(b) then follows from Fact 2.1.2.

Warning: A matrix with orthogonal columns
need not be orthogonal matrix.

4 -3
3 4|

As an example, consider the matrix A = !



EXAMPLE 3 Show that the matrix A is or-

thogonal:
1 -1 —1 -1
A=31T11
1 1 1 —1 |

Solution

Check that the columns of A form an orthono-
raml basis of R*.



Fact 56.3.4
Products and inverses of orthogonal matrices

a. The product AB of two orthogonal n X n
matrices A and B is orthogonal.

b.The inverse A—1 of an orthogonal nxn matrix
A is orthogonal.

Proof
In part (a), the linear transformation T'(Z) =
ABZ preserves length, because ||T(Z)|| = ||A(BZ)|| =

|BZ|| = ||Z£]|. Figure 4 illustrates property (a).

In part (b), the linear transformation T'(&) =
A~1Z preserves length, because ||[A71Z|| = ||[A(A~1D)]|.



The Transpose of a Matrix

EXAMPLE 4 Consider the orthogonal matrix

(2 6 3|
A=2|3 2 -6
6 -3 2

Form another 3 x 3 matrix B whose 5th entry
is the j:th entry of A:

2 3 6
B=1|l6 2 -3
'3 6 2

Note that the rows of B correspond to the
columns of A. Compute BA, and explain the
result.



Solution

BA

1
49

4

1
49

o O

0
49
0

3 2 6 3
-3 3 2 —6 | =
2|6 -3 2

This result is no coincidence: The jth entry of
BA is the dot product of the +th row of B and
the jth column of A. By definition of B, this is
just the dot product of the ¢th column of A and
the jth column of A. Since A is orthogonal,
this product is 1 if : = 3 and O otherwise.



Definition 5.3.5 The transpose of a matrix;
symmetric and skew-symmetric matrices
Consider an m X n matrix A.

The transpose Al of A is the n x m matrix
whose i5th entry is the ji:th entry of A: The
roles of rows and columns are reversed.

We say that a square matrix A is symmetric
if AT = A, and A is called skew-symmetric if
Al = —A.

EXAMPLE 5 If A = [

1 2 3 T
9 7 5],thenA =

WN =
6 N(e}
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EXAMPLE 6 The symmetric 2 x 2 matrices

are those of the form A = [ @ , for example,

b c
1 2
2 3|

The symmetric 2 x 2 matrices form a three-
dimensional subspace of R2X2 with basis

so)[2a/l0t]

T he skew-symmetric 2 x 2 matrices are those
of the form A = | 9

—b O
0 2
-2 0

with basis !

A=

] , for example, A =

. These form a one-dimmensional space

1
—1 O

11



Note that the transpose of a (column) vector
U is a row vector: If

1
7= 2 ,thenfUTz[l 2 3].
3

The transpose give us a convenient way to ex-
press the dot product of two (cloumn) vectors
as a matrix product.

Fact 5.3.6
If ¥ and w are two (column) vectors in R™, then

70 = 3.
For example,
1] [ 1] 1
2 .| =1 =[1 2 3] _1 | =2.
3] | 1 1
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Fact 5.3.7
Consider an n x n matrix A. The matrix A

is orthogonal if (and only if) ATA = I, or,
equivalently, if A—1 = AT

Proof
To justify this fact, write A in terms of its

columns:

A= | v vo Un,
Then, )
S
— ol - | | |
ATA e ] ’U_i 'U_é ’U_;l —
I R .
V1 - U1 V1 U V1 - Uy
V201 U2 U2 V2 - Up,
Uy U1 Up * U Uy, + Upy

By Fact 5.3.3(b) this product is I, if (and only
if) A is orthogonal.
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Summary 5.3.8 Orthogonal matrices
Consider an nxn matrix A. Then, the following
statements are equivalent:

1. A is an orthogonal matrix.

2. The transformation L(Z¥) = AZX preserves
length, that is, ||AZ|| = ||Z|| for all £ in R™.

3. The columns of A form an orthonormal
basis of R™.

4. ATA=1,.

5. A1 = AT,
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Fact 5.3.9 Properties of the transpose
a. If Aisan mxn matrix and B an n xp matrix,
then

(AB)L = BT AT,

Note the order of the factors.

b. If an n x n matrix A is invertible, then so is
Al and

(AT)—l — (A—l)T_
c. For any matrix A,

rank(A) = rank(A1).
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Proof
a. Compare entries:

ijth entry of (AB)!l'=jith entry of AB
=(yth row of A)-(ith column of B)

ijth entry of BLAT=(ith row of B1)-(jth col-
umn of A1)

=(ith column of B)-(jth row of A)

b. We know that

AA~L =1,

Transposing both sides and using part(a), we
find that

(AADT = (A DT AT = |,,.

By Fact 2.4.9, it follows that
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(A_l T (AT)—l_

c. Consider the row space of A (i.e., the span
of the rows of A). It is not hard to show that
the dimmension of this space is rank(A) (see
Exercise 49-52 in section 3.3):

rank(A1)=dimension of the span of the columns
of AT

=dimension of the span of the rows of A
=rank(A)



T he Matrix of an Orthogonal projection

The transpose allows us to write a formula for
the matrix of an orthogonal projection. Con-
sider first the orthogonal projection

projrT = (vi - £)vi

onto a line L in R™, where v7 is a unit vector in
L. If we view the vector v as an n x 1 matrix
and the scalar v3 - as a 1 x 1, we can write

proj = vi(vy - ¥)
= il T

= M=,

where M = vivil. Note that v is an n x 1
matrix and vi% is 1 x n, so that M is n x n, as
expected.

More generally, consider the projection
17



proju = (v1 - Z)v1 + - + (v - ©)vm

onto a subspace V of R™ with orthonormal ba-
Sis v1,...,um. We can write

Projyt = ’U_i’U_in e U}L’U}}LT:E'

= (ﬁv‘iT + ...+ vﬁw}’nT):E'




Fact 5.3.10 The matrix of an orthogonal
projection

Consider a subspace V of R™ with orthonormal
basis v1,v>,...,vm. T he matrix of the orthog-
onal projection onto V is

AAT where A= | v U5 ... un

Pay attention to the order of the factors (AAT
as opposed to AT A).

EXAMPLE 7 Find the matrix of the orthogo-
nal projection onto the subspace of R4 spanned
by

1 1

S 1 . —1

Vi =3 1 =3 1
_1_ L 1_
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Solution

Note that the vectors v3 and v5 are orthonor-
mal. Therefore, the matrix is

1 1
T 1]1 -1 1 1 11
A4t =7 1 —1 [1—1—11]
_1 1_
1 0 0 17
1101 10
~2|0110
1 0 0 1

Exercises 5.3: 1, 3, 5, 11, 13, 15, 20



