
5.3 ORTHOGONAL TRANSFORMATIONS

AND ORTHOGONAL MATRICES

Definition 5.3.1 Orthogonal transformations

and orthogonal matrices

A linear transformation T from Rn to Rn is

called orthogonal if it preserves the length of

vectors:

‖T (~x)‖ = ‖~x‖, for all ~x in Rn.

If T (~x) = A~x is an orthogonal transformation,

we say that A is an orthogonal matrix.
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EXAMPLE 1 The rotation

T (~x) =

[
cosφ −sinφ
sinφ cosφ

]
~x

is an orthogonal transformation from R2 to R2,

and

A =

[
cosφ −sinφ
sinφ cosφ

]
~x

is an orthogonal matrix, for all angles φ.
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EXAMPLE 2 Reflection

Consider a subspace V of Rn. For a vector ~x

in Rn, the vector R(~x) = 2projV ~x − ~x is called

the reflection of ~x in V . (see Figure 1).

Show that reflections are orthogonal transfor-

mations.

Solution

We can write

R(~x) = projV ~x + (projV ~x− ~x)

and

~x = projV ~x + (~x− projV ~x).

By the pythagorean theorem, we have

‖R(~x)‖2 = ‖projV ~x‖2 + ‖projV ~x− ~x‖2

= ‖projV ~x‖2 + ‖~x− projV ~x‖2 = ‖~x‖2.
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Fact 5.3.2 Orthogonal transformations pre-

serve orthogonality

Consider an orthogonal transformation T from
Rn to Rn. If the vectors ~v and ~w in Rn are
orthogonal, then so are T (~v) and T (~w).

Proof

By the theorem of Pythagoras, we have to
show that

‖T (~v) + T (~w)‖2 = ‖T (~v)‖2 + ‖T (~w)‖2.

Let’s see:

‖T (~v) + T (~w)‖2 = ‖T (~v + ~w)‖2 (T is linear)

= ‖~v + ~w‖2 (T is orthogonal)

= ‖~v‖2 + ‖~w‖2 (~v and ~w are orthogonal)

= ‖T (~v)‖2 + ‖T (~w)‖2.
(T (~v) and T (~w) are orthogonal)
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Fact 5.3.3 Orthogonal transformations and

orthonormal bases

a. A linear transformation T from Rn to Rn is

orthogonal iff the vectors T ( ~e1), T ( ~e2),. . .,T ( ~en)

form an orthonormal basis of Rn.

b. An n × n matrix A is orthogonal iff its

columns form an orthonormal basis of Rn.

Proof Part(a):

⇒ If T is orthogonal, then, by definition, the

T (~ei) are unit vectors, and by Fact 5.3.2, since

~e1, ~e2,. . ., ~en are orthogonal, T ( ~e1), T ( ~e2),. . .,T ( ~en)

are orthogonal.

⇐ Conversely, suppose the T (~ei) form an or-

thonormal basis.

Consider a vector

~x = x1 ~e1 + x2 ~e2 + · · ·+ xn ~en

in Rn. Then,
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‖T (~x)‖2 = ‖x1T ( ~e1)+x2T ( ~e2)+· · ·+xnT ( ~en)‖2

= ‖x1T ( ~e1)‖2 + ‖x2T ( ~e2)‖2 + · · ·+ ‖xnT ( ~en)‖2
(by Pythagoras)

= x2
1 + x2

2 + · · ·+ x2
n

= ‖~x‖2

Part(b) then follows from Fact 2.1.2.

Warning: A matrix with orthogonal columns

need not be orthogonal matrix.

As an example, consider the matrix A =

[
4 −3
3 4

]
.



EXAMPLE 3 Show that the matrix A is or-

thogonal:

A = 1
2




1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 .

Solution

Check that the columns of A form an orthono-

raml basis of R4.
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Fact 5.3.4

Products and inverses of orthogonal matrices

a. The product AB of two orthogonal n × n

matrices A and B is orthogonal.

b.The inverse A−1 of an orthogonal n×n matrix

A is orthogonal.

Proof

In part (a), the linear transformation T (~x) =

AB~x preserves length, because ‖T (~x)‖ = ‖A(B~x)‖ =

‖B~x‖ = ‖~x‖. Figure 4 illustrates property (a).

In part (b), the linear transformation T (~x) =

A−1~x preserves length, because ‖A−1~x‖ = ‖A(A−1~x)‖.
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The Transpose of a Matrix

EXAMPLE 4 Consider the orthogonal matrix

A = 1
7




2 6 3
3 2 −6
6 −3 2


 .

Form another 3× 3 matrix B whose ijth entry

is the jith entry of A:

B = 1
7




2 3 6
6 2 −3
3 −6 2




Note that the rows of B correspond to the

columns of A. Compute BA, and explain the

result.
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Solution

BA = 1
49




2 6 3
6 2 −3
3 −6 2







2 6 3
3 2 −6
6 −3 2


 =

1
49




49 0 0
0 49 0
0 0 49


 = I3

This result is no coincidence: The ijth entry of

BA is the dot product of the ith row of B and

the jth column of A. By definition of B, this is

just the dot product of the ith column of A and

the jth column of A. Since A is orthogonal,

this product is 1 if i = j and 0 otherwise.
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Definition 5.3.5 The transpose of a matrix;

symmetric and skew-symmetric matrices

Consider an m× n matrix A.

The transpose AT of A is the n × m matrix

whose ijth entry is the jith entry of A: The

roles of rows and columns are reversed.

We say that a square matrix A is symmetric

if AT = A, and A is called skew-symmetric if

AT = −A.

EXAMPLE 5 If A =

[
1 2 3
9 7 5

]
, then AT =




1 9
2 7
3 5


 .
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EXAMPLE 6 The symmetric 2 × 2 matrices

are those of the form A =

[
a b
b c

]
, for example,

A =

[
1 2
2 3

]
.

The symmetric 2 × 2 matrices form a three-

dimensional subspace of R2×2, with basis[
1 0
0 0

]
,

[
0 1
1 0

] [
0 0
0 1

]
.

The skew-symmetric 2 × 2 matrices are those

of the form A =

[
0 b
−b 0

]
, for example, A =

[
0 2

−2 0

]
. These form a one-dimmensional space

with basis

[
0 1

−1 0

]
.
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Note that the transpose of a (column) vector

~v is a row vector: If

~v =




1
2
3


, then ~vT =

[
1 2 3

]
.

The transpose give us a convenient way to ex-

press the dot product of two (cloumn) vectors

as a matrix product.

Fact 5.3.6

If ~v and ~w are two (column) vectors in Rn, then

~v · ~w = ~vT ~w.

For example,




1
2
3


 ·




1
−1
1


 =

[
1 2 3

]



1
−1
1


 = 2.

12



Fact 5.3.7

Consider an n × n matrix A. The matrix A

is orthogonal if (and only if) ATA = In or,

equivalently, if A−1 = AT .

Proof

To justify this fact, write A in terms of its

columns:

A =



| | |
~v1 ~v2 . . . ~vn

| | |




Then,

ATA =




− ~v1
T −

− ~v2
T −
...

− ~vn
T −







| | |
~v1 ~v2 . . . ~vn

| | |


 =




~v1 · ~v1 ~v1 · ~v2 . . . ~v1 · ~vn

~v2 · ~v1 ~v2 · ~v2 . . . ~v2 · ~vn
... ... . . . ...

~vn · ~v1 ~vn · ~v2 . . . ~vn · ~vn


 .

By Fact 5.3.3(b) this product is In if (and only

if) A is orthogonal.
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Summary 5.3.8 Orthogonal matrices

Consider an n×n matrix A. Then, the following

statements are equivalent:

1. A is an orthogonal matrix.

2. The transformation L(~x) = A~x preserves

length, that is, ‖A~x‖ = ‖~x‖ for all ~x in Rn.

3. The columns of A form an orthonormal

basis of Rn.

4. ATA = In.

5. A−1 = AT .

14



Fact 5.3.9 Properties of the transpose

a. If A is an m×n matrix and B an n×p matrix,

then

(AB)T = BTAT .

Note the order of the factors.

b. If an n× n matrix A is invertible, then so is

AT , and

(AT )−1 = (A−1)T .

c. For any matrix A,

rank(A) = rank(AT ).
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Proof

a. Compare entries:

ijth entry of (AB)T=jith entry of AB

=(jth row of A)·(ith column of B)

ijth entry of BTAT=(ith row of BT )·(jth col-

umn of AT )

=(ith column of B)·(jth row of A)

b. We know that

AA−1 = In

Transposing both sides and using part(a), we

find that

(AA−1)T = (A−1)TAT = In.

By Fact 2.4.9, it follows that
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(A−1)T = (AT )−1.

c. Consider the row space of A (i.e., the span

of the rows of A). It is not hard to show that

the dimmension of this space is rank(A) (see

Exercise 49-52 in section 3.3):

rank(AT )=dimension of the span of the columns

of AT

=dimension of the span of the rows of A

=rank(A)



The Matrix of an Orthogonal projection

The transpose allows us to write a formula for

the matrix of an orthogonal projection. Con-

sider first the orthogonal projection

projL~x = ( ~v1 · ~x) ~v1

onto a line L in Rn, where ~v1 is a unit vector in

L. If we view the vector ~v1 as an n× 1 matrix

and the scalar ~v1 · ~x as a 1× 1, we can write

projL~x = ~v1( ~v1 · ~x)
= ~v1 ~v1

T~x

= M~x,

where M = ~v1 ~v1
T . Note that ~v1 is an n × 1

matrix and ~v1
T is 1× n, so that M is n× n, as

expected.

More generally, consider the projection
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projv~x = ( ~v1 · ~x) ~v1 + · · ·+ ( ~vm · ~x) ~vm

onto a subspace V of Rn with orthonormal ba-

sis ~v1,. . ., ~vm. We can write

projv~x = ~v1 ~v1
T~x + · · ·+ ~vm ~vm

T~x

= ( ~v1 ~v1
T + · · ·+ ~vm ~vm

T )~x

=



| |
~v1 . . . ~vm

| |






− ~v1

T −
...

− ~vm
T −


 ~x



Fact 5.3.10 The matrix of an orthogonal

projection

Consider a subspace V of Rn with orthonormal

basis ~v1, ~v2, . . . , ~vm. The matrix of the orthog-

onal projection onto V is

AAT , where A =



| | |
~v1 ~v2 . . . ~vm

| | |


 .

Pay attention to the order of the factors (AAT

as opposed to ATA).

EXAMPLE 7 Find the matrix of the orthogo-

nal projection onto the subspace of R4 spanned

by

~v1 = 1
2




1
1
1
1


 , ~v2 = 1

2




1
−1
−1
1


 .
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Solution

Note that the vectors ~v1 and ~v2 are orthonor-

mal. Therefore, the matrix is

AAT = 1
4




1 1
1 −1
1 −1
1 1




[
1 1 1 1
1 −1 −1 1

]

= 1
2




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 .

Exercises 5.3: 1, 3, 5, 11, 13, 15, 20


