5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES

Definition 5.3.1 Orthogonal transformations and orthogonal matrices
A linear transformation T from R^{n} to R^{n} is called orthogonal if it preserves the length of vectors:

$$
\|T(\vec{x})\|=\|\vec{x}\|, \text { for all } \vec{x} \text { in } R^{n} .
$$

If $T(\vec{x})=A \vec{x}$ is an orthogonal transformation, we say that A is an orthogonal matrix.

EXAMPLE 1 The rotation

$$
T(\vec{x})=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \vec{x}
$$

is an orthogonal transformation from R^{2} to R^{2}, and

$$
A=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \vec{x}
$$

is an orthogonal matrix, for all angles ϕ.

EXAMPLE 2 Reflection

Consider a subspace V of R^{n}. For a vector \vec{x} in R^{n}, the vector $R(\vec{x})=2 \operatorname{proj}_{V} \vec{x}-\vec{x}$ is called the reflection of \vec{x} in V. (see Figure 1).
Show that reflections are orthogonal transformations.

Solution

We can write

$$
R(\vec{x})=\operatorname{proj}_{V} \vec{x}+\left(\text { proj}_{V} \vec{x}-\vec{x}\right)
$$

and

$$
\vec{x}=\operatorname{proj}_{V} \vec{x}+\left(\vec{x}-\operatorname{proj}_{V} \vec{x}\right) .
$$

By the pythagorean theorem, we have

$$
\begin{aligned}
& \|R(\vec{x})\|^{2}=\left\|\operatorname{proj}_{V} \vec{x}\right\|^{2}+\left\|\operatorname{proj}_{V} \vec{x}-\vec{x}\right\|^{2} \\
& =\left\|\operatorname{proj}_{V} \vec{x}\right\|^{2}+\| \vec{x}-\text { proj}_{V} \vec{x}\left\|^{2}=\right\| \vec{x} \|^{2} .
\end{aligned}
$$

Fact 5.3.2 Orthogonal transformations preserve orthogonality
Consider an orthogonal transformation T from R^{n} to R^{n}. If the vectors \vec{v} and \vec{w} in R^{n} are orthogonal, then so are $T(\vec{v})$ and $T(\vec{w})$.

Proof

By the theorem of Pythagoras, we have to show that

$$
\|T(\vec{v})+T(\vec{w})\|^{2}=\|T(\vec{v})\|^{2}+\|T(\vec{w})\|^{2} .
$$

Let's see:
$\|T(\vec{v})+T(\vec{w})\|^{2}=\|T(\vec{v}+\vec{w})\|^{2}(T$ is linear $)$
$=\|\vec{v}+\vec{w}\|^{2}(T$ is orthogonal)
$=\|\vec{v}\|^{2}+\|\vec{w}\|^{2}(\vec{v}$ and \vec{w} are orthogonal)
$=\|T(\vec{v})\|^{2}+\|T(\vec{w})\|^{2}$.
($T(\vec{v})$ and $T(\vec{w})$ are orthogonal)

Fact 5.3.3 Orthogonal transformations and orthonormal bases

a. A linear transformation T from R^{n} to R^{n} is orthogonal iff the vectors $T\left(\overrightarrow{e_{1}}\right), T\left(\overrightarrow{e_{2}}\right), \ldots, T\left(\overrightarrow{e_{n}}\right)$ form an orthonormal basis of R^{n}.
b. An $n \times n$ matrix A is orthogonal iff its columns form an orthonormal basis of R^{n}.

Proof Part(a):
\Rightarrow If T is orthogonal, then, by definition, the $T\left(\overrightarrow{e_{i}}\right)$ are unit vectors, and by Fact 5.3.2, since $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{n}}$ are orthogonal, $T\left(\overrightarrow{e_{1}}\right), T\left(\overrightarrow{e_{2}}\right), \ldots, T\left(\overrightarrow{e_{n}}\right)$ are orthogonal.
\Leftarrow Conversely, suppose the $T\left(\overrightarrow{e_{i}}\right)$ form an orthonormal basis.
Consider a vector

$$
\vec{x}=x_{1} \overrightarrow{e_{1}}+x_{2} \overrightarrow{e_{2}}+\cdots+x_{n} \overrightarrow{e_{n}}
$$

in R^{n}. Then,

$$
\begin{aligned}
& \|T(\vec{x})\|^{2}=\left\|x_{1} T\left(\overrightarrow{e_{1}}\right)+x_{2} T\left(\overrightarrow{e_{2}}\right)+\cdots+x_{n} T\left(\overrightarrow{e_{n}}\right)\right\|^{2} \\
& =\left\|x_{1} T\left(\overrightarrow{e_{1}}\right)\right\|^{2}+\left\|x_{2} T\left(\overrightarrow{e_{2}}\right)\right\|^{2}+\cdots+\left\|x_{n} T\left(\overrightarrow{e_{n}}\right)\right\|^{2} \\
& \text { (by Pythagoras) } \\
& =x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \\
& =\|\vec{x}\|^{2}
\end{aligned}
$$

Part(b) then follows from Fact 2.1.2.

Warning: A matrix with orthogonal columns need not be orthogonal matrix.

As an example, consider the matrix $A=\left[\begin{array}{rr}4 & -3 \\ 3 & 4\end{array}\right]$.

EXAMPLE 3 Show that the matrix A is orthogonal:

$$
A=\frac{1}{2}\left[\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right] .
$$

Solution

Check that the columns of A form an orthonoraml basis of R^{4}.

Fact 5.3.4
Products and inverses of orthogonal matrices
a. The product $A B$ of two orthogonal $n \times n$ matrices A and B is orthogonal.
b. The inverse A^{-1} of an orthogonal $n \times n$ matrix A is orthogonal.

Proof

In part (a), the linear transformation $T(\vec{x})=$ $A B \vec{x}$ preserves length, because $\|T(\vec{x})\|=\|A(B \vec{x})\|=$ $\|B \vec{x}\|=\|\vec{x}\|$. Figure 4 illustrates property (a).

In part (b), the linear transformation $T(\vec{x})=$ $A^{-1} \vec{x}$ preserves length, because $\left\|A^{-1} \vec{x}\right\|=\left\|A\left(A^{-1} \vec{x}\right)\right\|$.

The Transpose of a Matrix

EXAMPLE 4 Consider the orthogonal matrix

$$
A=\frac{1}{7}\left[\begin{array}{rrr}
2 & 6 & 3 \\
3 & 2 & -6 \\
6 & -3 & 2
\end{array}\right] .
$$

Form another 3×3 matrix B whose $i j$ th entry is the $j i$ th entry of A :

$$
B=\frac{1}{7}\left[\begin{array}{rrr}
2 & 3 & 6 \\
6 & 2 & -3 \\
3 & -6 & 2
\end{array}\right]
$$

Note that the rows of B correspond to the columns of A. Compute $B A$, and explain the result.

Solution

$$
\begin{aligned}
& B A=\frac{1}{49}\left[\begin{array}{rrr}
2 & 6 & 3 \\
6 & 2 & -3 \\
3 & -6 & 2
\end{array}\right]\left[\begin{array}{rrr}
2 & 6 & 3 \\
3 & 2 & -6 \\
6 & -3 & 2
\end{array}\right]= \\
& \frac{1}{49}\left[\begin{array}{rrr}
49 & 0 & 0 \\
0 & 49 & 0 \\
0 & 0 & 49
\end{array}\right]=I_{3}
\end{aligned}
$$

This result is no coincidence: The $i j$ th entry of $B A$ is the dot product of the i th row of B and the j th column of A. By definition of B, this is just the dot product of the i th column of A and the j th column of A. Since A is orthogonal, this product is 1 if $i=j$ and 0 otherwise.

Definition 5.3.5 The transpose of a matrix; symmetric and skew-symmetric matrices
Consider an $m \times n$ matrix A.
The transpose A^{T} of A is the $n \times m$ matrix whose $i j$ th entry is the $j i$ th entry of A : The roles of rows and columns are reversed.
We say that a square matrix A is symmetric if $A^{T}=A$, and A is called skew-symmetric if $A^{T}=-A$.

EXAMPLE 5 If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 9 & 7 & 5\end{array}\right]$, then $A^{T}=$ $\left[\begin{array}{ll}1 & 9 \\ 2 & 7 \\ 3 & 5\end{array}\right]$.

EXAMPLE 6 The symmetric 2×2 matrices are those of the form $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$, for example, $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$.

The symmetric 2×2 matrices form a threedimensional subspace of $R^{2 \times 2}$, with basis $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.

The skew-symmetric 2×2 matrices are those of the form $A=\left[\begin{array}{rr}0 & b \\ -b & 0\end{array}\right]$, for example, $A=$ $\left[\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right]$. These form a one-dimmensional space with basis $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$.

Note that the transpose of a (column) vector \vec{v} is a row vector: If

$$
\vec{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \text { then } \vec{v}^{T}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] .
$$

The transpose give us a convenient way to express the dot product of two (cloumn) vectors as a matrix product.

Fact 5.3.6
If \vec{v} and \vec{w} are two (column) vectors in R^{n}, then

$$
\vec{v} \cdot \vec{w}=\vec{v}^{T} \vec{w} .
$$

For example,

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]=2 .
$$

Fact 5.3.7
Consider an $n \times n$ matrix A. The matrix A is orthogonal if (and only if) $A^{T} A=I_{n}$ or, equivalently, if $A^{-1}=A^{T}$.

Proof

To justify this fact, write A in terms of its columns:

$$
A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \ldots & \overrightarrow{v_{n}} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Then,

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{ccc}
- & {\overrightarrow{v_{1}}}^{T} & - \\
-{\overrightarrow{v_{2}}}^{T} & - \\
\vdots & \vdots \\
-\overrightarrow{v_{n}} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \ldots & \overrightarrow{v_{n}} \\
\mid & \mid & & \mid
\end{array}\right]=
\end{aligned}
$$

By Fact 5.3.3(b) this product is I_{n} if (and only if) A is orthogonal.

Summary 5.3.8 Orthogonal matrices

Consider an $n \times n$ matrix A. Then, the following statements are equivalent:

1. A is an orthogonal matrix.
2. The transformation $L(\vec{x})=A \vec{x}$ preserves length, that is, $\|A \vec{x}\|=\|\vec{x}\|$ for all \vec{x} in R^{n}.
3. The columns of A form an orthonormal basis of R^{n}.
4. $A^{T} A=I_{n}$.
5. $A^{-1}=A^{T}$.

Fact 5.3.9 Properties of the transpose a. If A is an $m \times n$ matrix and B an $n \times p$ matrix, then

$$
(A B)^{T}=B^{T} A^{T}
$$

Note the order of the factors.
b. If an $n \times n$ matrix A is invertible, then so is A^{T}, and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

c. For any matrix A,

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right) .
$$

Proof

a. Compare entries:
$i j$ th entry of $(A B)^{T}=j i$ th entry of $A B$
$=(j$ th row of $A) \cdot(i$ th column of $B)$
$i j$ th entry of $B^{T} A^{T}=\left(i\right.$ th row of $\left.B^{T}\right) \cdot(j$ th column of A^{T})
$=(i$ th column of $B) \cdot(j$ th row of $A)$
b. We know that

$$
A A^{-1}=I_{n}
$$

Transposing both sides and using part(a), we find that

$$
\left(A A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}=I_{n} .
$$

By Fact 2.4.9, it follows that

$$
\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}
$$

c. Consider the row space of A (i.e., the span of the rows of A). It is not hard to show that the dimmension of this space is $\operatorname{rank}(A)$ (see Exercise 49-52 in section 3.3):
$\operatorname{rank}\left(A^{T}\right)=$ dimension of the span of the columns of A^{T}
$=$ dimension of the span of the rows of A $=\operatorname{rank}(A)$

The Matrix of an Orthogonal projection

The transpose allows us to write a formula for the matrix of an orthogonal projection. Consider first the orthogonal projection

$$
\operatorname{proj}_{L} \vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}
$$

onto a line L in R^{n}, where $\overrightarrow{v_{1}}$ is a unit vector in L. If we view the vector $\overrightarrow{v_{1}}$ as an $n \times 1$ matrix and the scalar $\overrightarrow{v_{1}} \cdot \vec{x}$ as a 1×1, we can write
$\operatorname{proj}_{L} \vec{x}=\overrightarrow{v_{1}}\left(\overrightarrow{v_{1}} \cdot \vec{x}\right)$
$=\overrightarrow{v_{1}} \vec{v}^{T} \vec{x}$
$=M \vec{x}$,
where $M=\overrightarrow{v_{1}}{\overrightarrow{v_{1}}}^{T}$. Note that $\overrightarrow{v_{1}}$ is an $n \times 1$ matrix and ${\overrightarrow{v_{1}}}^{T}$ is $1 \times n$, so that M is $n \times n$, as expected.

More generally, consider the projection

$$
\operatorname{proj}_{v} \vec{x}=\left(\overrightarrow{v_{1}} \cdot \vec{x}\right) \overrightarrow{v_{1}}+\cdots+\left(\overrightarrow{v_{m}} \cdot \vec{x}\right) \overrightarrow{v_{m}}
$$

onto a subspace V of R^{n} with orthonormal basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$. We can write

$$
\begin{aligned}
& \operatorname{proj}_{v} \vec{x}=\overrightarrow{v_{1}}{\overrightarrow{v_{1}}}^{T} \vec{x}+\cdots+{\overrightarrow{v_{m}}}_{v_{m}} \vec{x}^{T} \vec{x} \\
& =\left(\overrightarrow{v_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\overrightarrow{v_{m}}{\overrightarrow{v_{m}}}^{T}\right) \vec{x} \\
& \quad=\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{v_{1}} & \ldots & \overrightarrow{v_{m}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
-{\overrightarrow{v_{1}}}^{T} & - \\
& \vdots & \\
- & {\overrightarrow{v_{m}}}^{T} & -
\end{array}\right] \vec{x}
\end{aligned}
$$

Fact 5.3.10 The matrix of an orthogonal projection
Consider a subspace V of R^{n} with orthonormal basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}$. The matrix of the orthogonal projection onto V is

$$
A A^{T}, \text { where } A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \overrightarrow{v_{1}} \\
\overrightarrow{v_{2}} & \ldots & \overrightarrow{v_{m}} \\
\mid & \mid & & \mid
\end{array}\right] \text {. }
$$

Pay attention to the order of the factors $\left(A A^{T}\right.$ as opposed to $A^{T} A$).

EXAMPLE 7 Find the matrix of the orthogonal projection onto the subspace of R^{4} spanned by

$$
\overrightarrow{v_{1}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

Solution

Note that the vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are orthonormal. Therefore, the matrix is
$A A^{T}=\frac{1}{4}\left[\begin{array}{rr}1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$.
Exercises 5.3: 1, 3, 5, 11, 13, 15, 20

