
5.2 GRAM-SCHMIDT PROCESS AND QR
FACTORIZATION
How can we construct an orthonormal basis?
Say, from any basis ~v1, ~v2, . . . , ~vm of a subspace
V ?

If V is a line with basis ~v1:

~w1 =
1

‖~v1‖
~v1

When V is a plane with basis ~v1, ~v2, we first
get ~w1 as above.

Next find a vector in V orthogonal to ~w1.

~v2 − projL~v2 = ~v2 − (~v2 · ~w1)~w1

Then Divide the vector by its length to get the
second vector ~w2.

~w2 =
1

‖~v2 − projL~v2‖
(~v2 − projL~v2)

See Figure 1, 2, 3.
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EXAMPLE 1 Find an orthonormal basis of

the subspace

V = span







1
1
1
1


 ,




1
9
9
1







of R4, with basis

~v1 =




1
1
1
1


 , ~v2 =




1
9
9
1


 .

Solution

Using the terminology just introduced, we find

the following results:
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‖ ~v1 ‖=
√

12 + 12 + 12 + 12 = 2,

~w1 = 1
‖ ~v1‖ ~v1 = 1

2




1
1
1
1


 =




1/2
1/2
1/2
1/2


 .

~w1 · ~v2 =




1/2
1/2
1/2
1/2


 ·




1
9
9
1


 = 10,

projL ~v2 = ( ~w1 · ~v2)~w1 = 10




1/2
1/2
1/2
1/2


 =




5
5
5
5




~v2 − projL ~v2 =




1
9
9
1


−




5
5
5
5


 =




−4
4
4

−4


 .

‖ ~v2 − projL ~v2 ‖=
√

4 · 16 = 8,
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~w2 = 1
‖ ~v2−projL ~v2‖( ~v2 − projL ~v2)

=
1

8




−4
4
4

−4


 =




−1/2
1/2
1/2

−1/2


 .

We have found an orthonormal basis of V :

~w1 =




1/2
1/2
1/2
1/2


 , ~w2 =




−1/2
1/2
1/2

−1/2




We can represent the preceding computations

more succinctly in matrix form. Let’s solve the

equations defining ~w1 and ~w2.

~w1 = 1
‖ ~v1‖ ~v1 and ~w2 = 1

‖ ~v2−projL ~v2‖( ~v2−projL ~v2),
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for vectors ~v1 and ~v2:

~v1 =‖ ~v1 ‖ ~w1,

and

~v2 = projL ~v2+ ‖ ~v2 − projL ~v2 ‖ ~w2

= ( ~w1 · ~v2) ~w1+ ‖ ~v2 − projL ~v2 ‖ ~w2.

We can write the last two equations in matrix
form:

[
~v1 ~v2

]
=

[
~w1 ~w2

]
︸ ︷︷ ︸

[
‖ ~v1 ‖ ~w1 · ~v2

0 ‖ ~v2 − projL ~v2 ‖
]

︸ ︷︷ ︸
Q R

Note that we have written 4×2 matrix Q with
orthonormal columns and the upper triangu-
lar 2× 2 matrix R with positive entries on the
diagonal.

Matrix Q stores the orthonormal basis ~w1, ~w2
we constructed, and matrix R gives the rela-
tionship between the ”old” basis ~v1, ~v2, and
the ”new” basis ~w1, ~w2 of V .
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Let’s plug in numbers (note that we computed

all the entries of matrix of matrix R in the

process of finding ~w1 and ~w2):




1 1
1 9
1 9
1 1


 =




1/2 −1/2
1/2 1/2
1/2 1/2
1/2 −1/2




[
2 10
0 8

]



Algorithm 5.2.1

The Gram-Schmidt process

Consider a subspace V of Rn with basis ~v1, ~v2,. . ., ~vm.

We wish to construct an orthonormal basis

~w1, ~w2,. . ., ~wm of V .

Let ~w1 = ( 1
‖ ~v1‖) ~v1. As we define ~wj for j =

2,3, ..., m, we may assume that an orthonormal

basis ~w1, ~w2,. . ., ~wj−1 of Vj−1 = span( ~v1, ~v2, . . . , ~vj−1)

has already been constructed. Let

~wj = 1
‖~vj−projVj−1

~vj‖(~vj − projVj−1
~vj).

Note that

projVj−1
~vj

= ( ~w1 · ~vj) ~w1+( ~w2 · ~vj) ~w2+ . . .+( ~wj−1 · ~vj) ~wj−1,

by Fact 5.1.6.
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THE QR Factorization

The Gram-Schmidt process can be presented

succinctly in matrix form, as illustrated in Ex-

ample 1. Using the terminology introduced in

Algorithm 5.2.1, we can write

~v1 = ‖ ~v1‖ ~w1

and

~vj = projVj−1
~vj + ‖~vj − projVj−1

~vj‖ ~wj

= ( ~w1~vj) ~w1+· · ·+(~wj−1~vj)~wj−1+‖~vj−projVj−1
~vj‖ ~wj

(for j=2,3,...,m).

Let

r11 = ‖ ~v1‖
rjj = ‖~vj − projVj−1

~vj‖ (j = 2,3, ..., m),

rij = ~wi · ~vj (i < j).
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Then,

~v1 = r11 ~w1
~v2 = r12 ~w1 + r22 ~w2
...
~vm = r1m ~w1 + r2m ~w2 + · · ·+ rmm ~wm.

We can write these equations in matrix form:




| | |
~v1 ~v2 · · · ~vm

| | |


 =




| | |
~w1 ~w2 · · · ~wm

| | |







r11 r12 · · · r1m

0 r22 · · · r2m
... ... . . . ...
0 0 · · · rmm


 .

M = QR

Note that M is an n × m matrix with linearly

independent columns, Q is an n × m matrix

with orthonormal columns, and R is an upper

triangular m × m matrix with positive entires

on the diagonal.

8



Fact 5.2.2 QR factorization

Consider an n × m matrix M with linearly in-

dependent columns ~v1, ..., ~vm. Then there is

an n × m matrix Q whose columns ~w1, ..., ~wm

are orthonormal and an upper triangular m×m

matrix R with positive diagonal entries such

that

M = QR.

This representation is unique. Furthermore,

r11 = ‖ ~v1‖, rij = ‖~vj − projVj−1
~vj‖(for j > 1),

and rij = ~wi · ~vj (for i < j),

where Vj−1 = span( ~v1, ~v2, ..., ~vj−1).
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EXAMPLE 2 Find the QR factorization of

the shear matrix M=

[
1 0
1 1

]
.

Solution

Here

~v1 =

[
1
1

]
, ~v2 =

[
0
1

]
.

As in Example 1, the QR factorization of M
will have the form

M =
[

~v1 ~v2
]
=

[
~w1 ~w2

] [
‖ ~v1 ‖ ~w1 · ~v2

0 ‖ ~v2 − projV1
~v2 ‖

]

We will compute the columns of W and the

entries of R step by step:

r11 = ‖ ~v1‖ =
√

2

~w1 = 1
‖ ~v1‖ ~v1 = 1√

2

[
1
1

]
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r12 = ~w1 · ~v2 = 1√
2

[
1
1

]
·
[

0
1

]
= 1√

2

~v2 − projv1 ~v2 = ~v2 − ( ~w1 · ~v2) ~w1

=

[
0
1

]
− 1√

2

1√
2

[
1
1

]
=

[
−1/2
1/2

]

r22 = ‖ ~v2 − projv1 ~v2‖ =
√

1
4 + 1

4 = 1√
2

~w2 = 1
‖ ~v2−projv1 ~v2‖( ~v2 − projv1 ~v2)

=
√

2

[
−1/2
1/2

]
=

1√
2

[
−1
1

]

Now,
[

1 0
1 1

]
= M = QR =

[
~w1 ~w2

] [
r11 r12
0 r22

]

=

(
1√
2

[
1 −1
1 1

]) (
1√
2

[
2 1
0 1

])
.



Draw pictures analogous to Figures 1 through

3 to illustrate these computations!

Exercise 5.2 5, 11, 13, 19, 27, 31, 33, 37


