5.2 GRAM-SCHMIDT PROCESS AND QR FACTORIZATION
How can we construct an orthonormal basis? Say, from any basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ of a subspace V ?

If V is a line with basis \vec{v}_{1} :

$$
\vec{w}_{1}=\frac{1}{\left\|\vec{v}_{1}\right\|} \vec{v}_{1}
$$

When V is a plane with basis \vec{v}_{1}, \vec{v}_{2}, we first get \vec{w}_{1} as above.

Next find a vector in V orthogonal to \vec{w}_{1}.

$$
\vec{v}_{2}-\operatorname{proj}_{L} \vec{v}_{2}=\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{w}_{1}\right) \vec{w}_{1}
$$

Then Divide the vector by its length to get the second vector \vec{w}_{2}.

$$
\vec{w}_{2}=\frac{1}{\left\|\vec{v}_{2}-\operatorname{proj}_{L} \vec{v}_{2}\right\|}\left(\vec{v}_{2}-\operatorname{proj}_{L} \vec{v}_{2}\right)
$$

See Figure 1, 2, 3.

EXAMPLE 1 Find an orthonormal basis of the subspace

$$
V=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
9 \\
9 \\
1
\end{array}\right]\right)
$$

of R^{4}, with basis

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
9 \\
9 \\
1
\end{array}\right] .
$$

Solution

Using the terminology just introduced, we find the following results:

$$
\begin{gathered}
\left\|\overrightarrow{v_{1}}\right\|=\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}=2, \\
\overrightarrow{w_{1}}=\frac{1}{\left\|\overrightarrow{v_{1}}\right\|} \overrightarrow{v_{1}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right] . \\
\overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
9 \\
9 \\
1
\end{array}\right]=10, \\
\operatorname{proj}_{L} \overrightarrow{v_{2}}=\left(\overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{w_{1}}=10\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]=\left[\begin{array}{l}
5 \\
5 \\
5 \\
5
\end{array}\right] \\
\overrightarrow{v_{2}}-\operatorname{proj}_{L} \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
9 \\
9 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
5 \\
5 \\
5
\end{array}\right]=\left[\begin{array}{r}
-4 \\
4 \\
4 \\
-4
\end{array}\right] . \\
\left\|\overrightarrow{v_{2}}-\operatorname{proj}_{L} \overrightarrow{v_{2}}\right\|=\sqrt{4 \cdot 16}=8,
\end{gathered}
$$

$$
\begin{aligned}
& \overrightarrow{w_{2}}=\frac{1}{\| \overrightarrow{v_{2}}-\text { proj}_{L} \overrightarrow{v_{2} \|}}\left(\overrightarrow{v_{2}}-\text { proj}_{L} \overrightarrow{v_{2}}\right) \\
& =\frac{1}{8}\left[\begin{array}{r}
-4 \\
4 \\
4 \\
-4
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] .
\end{aligned}
$$

We have found an orthonormal basis of V :

$$
\overrightarrow{w_{1}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \overrightarrow{w_{2}}=\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]
$$

We can represent the preceding computations more succinctly in matrix form. Let's solve the equations defining $\overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$.

$$
\overrightarrow{w_{1}}=\frac{1}{\left\|\overrightarrow{v_{1}}\right\|} \overrightarrow{v_{1}} \text { and } \overrightarrow{w_{2}}=\frac{1}{\| \overrightarrow{v_{2}}-\text { projoj}_{L} \overrightarrow{v_{2}} \|}\left(\overrightarrow{v_{2}}-\text { proj}_{L} \overrightarrow{v_{2}}\right),
$$

for vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$:

$$
\overrightarrow{v_{1}}=\left\|\overrightarrow{v_{1}}\right\| \overrightarrow{w_{1}}
$$

and

$$
\begin{aligned}
& \overrightarrow{v_{2}}=\operatorname{proj}_{L} \overrightarrow{v_{2}}+\left\|\overrightarrow{v_{2}}-\operatorname{proj}_{L} \overrightarrow{v_{2}}\right\| \overrightarrow{w_{2}} \\
& =\left(\overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{w_{1}}+\left\|\overrightarrow{v_{2}}-\operatorname{proj}_{L} \overrightarrow{v_{2}}\right\| \overrightarrow{w_{2}}
\end{aligned}
$$

We can write the last two equations in matrix form:
$\left[\begin{array}{ll}\overrightarrow{v_{1}} & \overrightarrow{v_{2}}\end{array}\right]=\underbrace{\left[\begin{array}{ll}\overrightarrow{w_{1}} & \overrightarrow{w_{2}}\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cc}\left\|\overrightarrow{v_{1}}\right\| & \overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}} \\ 0 & \left\|\overrightarrow{v_{2}}-\operatorname{proj}_{L} \overrightarrow{v_{2}}\right\|\end{array}\right]}_{R}$
Note that we have written 4×2 matrix Q with orthonormal columns and the upper triangular 2×2 matrix R with positive entries on the diagonal.

Matrix Q stores the orthonormal basis $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$ we constructed, and matrix R gives the relationship between the "old" basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and the "new" basis $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$ of V.

Let's plug in numbers (note that we computed all the entries of matrix of matrix R in the process of finding $\overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$):

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 9 \\
1 & 9 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{rr}
2 & 10 \\
0 & 8
\end{array}\right]
$$

Algorithm 5.2.1
The Gram-Schmidt process
Consider a subspace V of R^{n} with basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}$. We wish to construct an orthonormal basis $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{w_{m}}$ of V.

Let $\overrightarrow{w_{1}}=\left(\frac{1}{\left\|\overrightarrow{v_{1}}\right\|}\right) \overrightarrow{v_{1}}$. As we define $\overrightarrow{w_{j}}$ for $j=$ $2,3, \ldots, m$, we may assume that an orthonormal basis $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \ldots, w_{j-1}$ of $V_{j-1}=\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, v_{j-1}\right)$ has already been constructed. Let

Note that
$\operatorname{proj}_{V_{j-1}} \overrightarrow{v_{j}}$
$=\left(\overrightarrow{w_{1}} \cdot \overrightarrow{v_{j}}\right) \overrightarrow{w_{1}}+\left(\overrightarrow{w_{2}} \cdot \overrightarrow{v_{j}}\right) \overrightarrow{w_{2}}+\ldots+\left(\overrightarrow{w_{j-1}} \cdot \overrightarrow{v_{j}}\right) w_{j-1}$,
by Fact 5.1.6.

THE QR Factorization

The Gram-Schmidt process can be presented succinctly in matrix form, as illustrated in Example 1. Using the terminology introduced in Algorithm 5.2.1, we can write

$$
\overrightarrow{v_{1}}=\left\|\overrightarrow{v_{1}}\right\| \overrightarrow{w_{1}}
$$

and

$$
\begin{aligned}
& \quad \overrightarrow{v_{j}}=\operatorname{proj}_{V_{j-1}} \overrightarrow{v_{j}}+\left\|\overrightarrow{v_{j}}-\operatorname{proj}_{V_{j-1}} \overrightarrow{v_{j}}\right\| \vec{w}_{j} \\
& =\left(\overrightarrow{w_{1}} \overrightarrow{v_{j}}\right) \overrightarrow{w_{1}}+\cdots+\left(\overrightarrow{w_{j-1}} \overrightarrow{v_{j}}\right) \vec{w}_{j-1}+\left\|\overrightarrow{v_{j}}-\operatorname{proj}_{V_{j-1}} \overrightarrow{v_{j}}\right\| \vec{w}_{j} \\
& (\text { for } \mathrm{j}=2,3, \ldots, \mathrm{~m}) .
\end{aligned}
$$

Let

$$
\begin{array}{rlr}
r_{11} & =\left\|\overrightarrow{v_{1}}\right\| & \\
r_{j j} & =\| \vec{v}_{j}-\text { proj }_{V_{j-1}} \overrightarrow{v_{j}} \| & (j=2,3, \ldots, m) \\
r_{i j} & =\overrightarrow{w_{i}} \cdot \overrightarrow{v_{j}} & (i<j) .
\end{array}
$$

Then,

$$
\begin{aligned}
& \overrightarrow{v_{1}}=r_{11} \overrightarrow{w_{1}} \\
& \overrightarrow{v_{2}}=r_{12} \overrightarrow{w_{1}}+r_{22} \overrightarrow{w_{2}} \\
& \vdots \\
& \overrightarrow{v_{m}}=r_{1 m} \overrightarrow{w_{1}}+r_{2 m} \overrightarrow{w_{2}}+\cdots+r_{m m} \overrightarrow{w_{m}}
\end{aligned}
$$

We can write these equations in matrix form:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \cdots & \overrightarrow{v_{m}} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\overrightarrow{w_{1}} & \overrightarrow{w_{2}} & \cdots & \overrightarrow{w_{m}} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 m} \\
0 & r_{22} & \cdots & r_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & r_{m m} \\
& M=Q R
\end{array}\right.} \\
\end{aligned}
$$

Note that M is an $n \times m$ matrix with linearly independent columns, Q is an $n \times m$ matrix with orthonormal columns, and R is an upper triangular $m \times m$ matrix with positive entires on the diagonal.

Fact 5.2.2 QR factorization

Consider an $n \times m$ matrix M with linearly independent columns $\overrightarrow{v_{1}}, \ldots, \overrightarrow{m_{m}}$. Then there is an $n \times m$ matrix Q whose columns $\overrightarrow{w_{1}}, \ldots, \overrightarrow{w_{m}}$ are orthonormal and an upper triangular $m \times m$ matrix R with positive diagonal entries such that

$$
M=Q R .
$$

This representation is unique. Furthermore, $r_{11}=\left\|\overrightarrow{v_{1}}\right\|, r_{i j}=\left\|\overrightarrow{v_{j}}-\operatorname{proj}_{V_{j-1}} \overrightarrow{v_{j}}\right\|($ for $j>1)$, and $r_{i j}=\overrightarrow{w_{i}} \cdot \overrightarrow{v_{j}}($ for $i<j)$,
where $V_{j-1}=\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \vec{v}_{j-1}\right)$.

EXAMPLE 2 Find the $Q R$ factorization of the shear matrix $M=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.

Solution

Here

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

As in Example 1, the $Q R$ factorization of M will have the form

$$
M=\left[\begin{array}{cc}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\overrightarrow{w_{1}} & \overrightarrow{w_{2}}
\end{array}\right]\left[\begin{array}{cc}
\left\|\overrightarrow{v_{1}}\right\| & \overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}} \\
0 & \left\|\overrightarrow{v_{2}}-\operatorname{proj}_{V_{1}} \overrightarrow{v_{2}}\right\|
\end{array}\right]
$$

We will compute the columns of W and the entries of R step by step:
$r_{11}=\left\|\overrightarrow{v_{1}}\right\|=\sqrt{2}$
$\overrightarrow{w_{1}}=\frac{1}{\left\|\overrightarrow{v_{1}}\right\|} \overrightarrow{v_{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& r_{12}=\overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}} \\
& \overrightarrow{v_{2}}-\text { proj }_{v_{1}} \overrightarrow{v_{2}}=\overrightarrow{v_{2}}-\left(\overrightarrow{w_{1}} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{w_{1}} \\
& \quad=\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 \\
1 / 2
\end{array}\right] \\
& \begin{array}{r}
r_{22}=\| \overrightarrow{v_{2}}-\text { proj }_{v_{1}} \overrightarrow{v_{2}} \|=\sqrt{\frac{1}{4}+\frac{1}{4}}=\frac{1}{\sqrt{2}} \\
\overrightarrow{w_{2}}=\frac{1}{\| \overrightarrow{v_{2}}-\text { projoj}_{v_{1}} \overrightarrow{v_{2}} \|}\left(\overrightarrow{v_{2}}-\text { proj }_{v_{1}} \overrightarrow{v_{2}}\right) \\
\quad=\sqrt{2}\left[\begin{array}{r}
-1 / 2 \\
1 / 2
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{array}
\end{aligned}
$$

Now,

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=M=Q R=\left[\begin{array}{ll}
\overrightarrow{w_{1}} & \overrightarrow{w_{2}}
\end{array}\right]\left[\begin{array}{ll}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right]} \\
\quad=\left(\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]\right) .
\end{gathered}
$$

Draw pictures analogous to Figures 1 through 3 to illustrate these computations!

Exercise 5.2 5, 11, 13, 19, 27, 31, 33, 37

