4.3 COORDINATES IN A LINEAR SPACE

 By introducing coordinates, we can transform any n-dimensional linear space into R^{n}
4.3.1 Coordinates in a linear space

Consider a linear space V with a basis B consisting of $f_{1}, f_{2}, \ldots f_{n}$. Then any element f of V can be written uniquely as

$$
\mathrm{f}=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{n}$. There scalars are called the B coordinates of f, and the vector

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]
$$

is called the B-coordinate vector of f, denoted by $[f]_{B}$.

The B coordinate transformation $T(f)=[f]_{B}$ from V to R^{n} is an isomorphism (i.e., an invertible linear transformation). Thus, V is isomorphic to R^{n}; the linear spaces V and R^{n} have the same structure.

Example. Choose a basis of P_{2} and thus transform P_{2} into R^{n}, for an appropriate n.

Example. Let V be the linear space of uppertriangular 2×2 matrices (that is, matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] .
$$

Choose a basis of V and thus transform V into R^{n}, for an appropriate n.

Example. Do the polynomials, $f_{1}(x)=1+$ $2 x+3 x^{2}, f_{2}(x)=4+5 x+6 x^{2}, f_{3}(x)=7+$ $8 x+10 x^{2}$ from a basis of P_{2} ?

Solution

Since P_{2} is isomorphic to R^{3}, we can use a coordinate transformation to make this into a problem concerning R^{3}. The three given polynomials form a basis of P_{2} if the coordinate vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

form a basis of R^{3}.

Fact Two bases of a linear space consists of the same number of elements.

Proof Suppose two bases of a linear space V are given: basis \amalg, consisting of $f_{1}, f_{2}, \ldots, f_{n}$ and basis \Im with m elements. We need to show that $m=n$.
Consider the vectors $\left[f_{1}\right]_{\Im},\left[f_{2}\right]_{\Im}, \ldots,\left[f_{n}\right]_{\Im}$, these n vectors form a basis of R^{m}, since the $\Im-$ coordinate transformation is an isomorphism from V to R^{m}.
Since all bases of R^{m} consist of m elements, we have $m=n$, as claimed.

Example. Consider the linear transformation

$$
T(f)=f^{\prime}+f^{\prime \prime} \text { form } P_{2} \text { to } P_{2}
$$

Since P_{2} is isomorphic to R^{3}, this is essentially a linear transformation from R^{3} to R^{3}, given by a 3×3 matrix B. Let's see how we can find this matrix.

Solution

We can write transformation T more explicitly as

$$
\begin{gathered}
\top\left(a+b x+c x^{2}\right)=(\mathrm{b}+2 \mathrm{cx})+2 \mathrm{c} \\
=(\mathrm{b}+2 \mathrm{c})+2 \mathrm{cx} .
\end{gathered}
$$

Next let's write the input and the output of T in coordinates with respect to the standard basis B of P_{2} consisting of $1, x, x^{2}$:

$$
a+b x+c x^{2} \longrightarrow(b+2 c)+2 c x
$$

See Figure 1

Written in B coordinates, transformation T takes $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ into $\left[\begin{array}{c}b+2 c \\ 2 c \\ 0\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

The matrix $B=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$ is called the matrix of \mathbf{T}. It describes the transformation T if input and output are written in B coordinates. Let us summarize our work in a diagram:

See Figure 2

Definition 4.3.2 B-Matrix of a linear transformation

Consider a linear transformation T from V to V, where V is an n-dimensional linear space. Let B be a basis of V. Then, there is an $n \times n$ matrix B that transform $[f]_{B}$ into $[T(f)]_{B}$, called the B-matrix of T.

$$
[T(f)]_{B}=B[f]_{B}
$$

Fact 4.3.3 The columns of the B-matrix of a linear transformation

Consider a linear transformation T from V to V , and let B be the matrix of T with respect to a basis B of V consisting of f_{1}, \ldots, f_{n}. Then

$$
B=\left[\left[T\left(f_{1}\right)\right] \cdots\left[T\left(f_{n}\right)\right]\right] .
$$

That is, the columns of B are the B-coordinate vectors of the transformation of the basis elements.

Proof

If

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

then

$$
\begin{aligned}
& \quad T(f)=c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right), \\
& \text { and }
\end{aligned}
$$

$$
[T(f)]_{B}=c_{1}\left[T\left(f_{1}\right)\right]_{B}+c_{2}\left[T\left(f_{2}\right)\right]_{B}+\cdots+c_{n}\left[T\left(f_{n}\right)\right]_{B}
$$

$$
=\left[\begin{array}{lll}
{\left[T\left(f_{1}\right)\right]_{B}} & \cdots & {\left[T\left(f_{n}\right)\right]_{B}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
. \cdot \\
c_{n}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
{\left[T\left(f_{1}\right)\right]_{B}} & \cdots & {\left[T\left(f_{n}\right)\right]_{B}}
\end{array}\right][f]_{B}
$$

Example. Use Fact 4.3.3 to find the matrix B of the linear transformation

$$
T(f)=f^{\prime}+f^{\prime \prime} \text { from } P_{2} \text { to } P_{2}
$$

with respect to the standard basis B (See Example 4.)

Solution

$$
\begin{gathered}
B=\left[\begin{array}{lll}
{[T(1)]_{B}} & {[T(x)]_{B}} & {\left[T\left(x^{2}\right)\right]_{B}}
\end{array}\right] \\
B=\left[\begin{array}{lll}
{[0]_{B}} & {[1]_{B}} & {[2+2 x]_{B}}
\end{array}\right] \\
B=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Example. Consider the function

$$
T(M)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] M-M\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

from $R^{2 \times 2}$ to $R^{2 \times 2}$. We are told that T is a linear transformation.

1. Find the matrix B of T with respect to the standard basis B of $R^{2 \times 2}$
(Hint: use column by column or definition)
2. Find image and kernel of B.
3. Find image and kernel of T.
4. Find rank and nullity of transformation T.

Solution

a. Use definition

$$
\begin{gathered}
T(M)=T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
{\left[\begin{array}{ll}
c & d \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0 \\
a & c
\end{array}\right]=\left[\begin{array}{cc}
c & d-a \\
0 & -c
\end{array}\right]}
\end{gathered}
$$

Now we write input and output in B-coordinate:
See Figure 3
We can see that

$$
B=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

b. To find the kernel and image of matrix B, we compute rref(B) first:

$$
\operatorname{rref}(B)=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]$ is a basis of $\mathrm{im}(B)$
and $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ is a basis of $\operatorname{ker}(B)$.
c. To find image of kernel of T, we need to transform the vectors back into $R^{2 \times 2}$:
$\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is a basis of $\operatorname{im}(B)$
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a basis of $\operatorname{ker}(B)$.
d.

$$
\operatorname{rank}(T)=\operatorname{dim}(i m T)=2
$$

and

$$
\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker} T)=2
$$

Fact 4.3.4 The matrices of T with respect to different bases
Suppose that A and B are two bases of a linear space V and that T a linear transformation from V to V.

1. There is an invertible matrix S such that $[f]_{A}=S[f]_{B}$ for all f in V.
2. Let A and B be the B-matrix of T for these two bases, respectively. Then matrix A is similar to B. In fact, B $=S^{-1} A S$ for the matrix S from part(a).

Proof

a. Suppose basis B consists of $f_{1}, f_{2}, \ldots, f_{n}$. If

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

then

$$
[f]_{A}=\left[c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right]_{A}
$$

$$
\left.\begin{array}{l}
=c_{1}\left[f_{1}\right]_{A}+c_{2}\left[f_{2}\right]_{A}+\cdots+c_{n}\left[f_{n}\right]_{A} \\
\left.=\left[\begin{array}{lll}
{\left[f_{1}\right]_{A}} & {\left[f_{2}\right]_{A}} & \cdots
\end{array}\right]\left[f_{n}\right]_{A}\right]
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdots \\
c_{n}
\end{array}\right] .
$$

b. Consider the following diagram:

See Figure 4.

Performing a "diagram chase," we see that

$$
A S=S B, \text { or } B=S^{-1} A S
$$

See Figure 5.

Example. Let V be the linear space spanned by functions e^{x} and e^{-x}. Consider the linear transformation $D(f)=f^{\prime}$ from V to V :

1. Find the matrix A of D with respect to basis B consisting of e^{x} and e^{-x}.
2. Find the matrix B of D with respect to basis B consisting of $\left(\frac{1}{2}\left(e^{x}+e^{-x}\right)\right)$ and $\left(\frac{1}{2}\left(e^{x}-\right.\right.$ $\left.e^{-x}\right)$). (These two functions are called the hypeerboliccosine, $\cosh (x)$, and the hypeerbolicsine, $\sinh (x)$, respectively.)
3. Using the proof of Fact 4.3.4 as a guide, construct a matrix S such that $B=S^{-1} A S$, showing that matrix A is similar to B.

Exercise 4.3: 3, 7, 9, 13, 21, 34, 35, 37

Example Let V be the linear space of all functions of the form $f(x)=a \cos (x)+b \sin (x)$, a subspace of C^{∞}. Consider the transformation

$$
T(f)=f^{\prime \prime}-2 f^{\prime}-3 f
$$

from V to V.

1. Find the matrix B of T with respect to the basis B consisting of functions $\cos (x)$ and $\sin (x)$.
2. Is T an isomorphism?
3. How many solutions f in V does the differential equation

$$
f^{\prime \prime}(x)-2 f^{\prime}(x)-3 f(x)=\cos (x)
$$

have?

