4.2 LINEAR TRANSFORMATIONS AND ISOMORPHISMS

Definition 4.2.1
Linear transformation Consider two linear spaces V and W. A function T from V to W is called a linear transformation if:

$$
T(f+g)=T(f)+T(g) \text { and } T(k f)=k T(f)
$$

for all elements f and g of V and for all scalar k.

Image, Kernel For a linear transformation T from V to W, we let

$$
\operatorname{im}(T)=\{T(f): f \in V\}
$$

and

$$
\operatorname{ker}(T)=\{f \in V: T(f)=0\}
$$

Note that $\operatorname{im}(T)$ is a subspace of co-domain W and $\operatorname{ker}(T)$ is a subspace of domain V.

Rank, Nullity
If the image of T is finite-dimensional, then $\operatorname{dim}(i m T)$ is called the rank of T, and if the kernel of T is finite-dimensional, then $\operatorname{dim}(\operatorname{ker} T)$ is the nullity of T.

If V is finite-dimensional, then the rank-nullity theorem holds (see fact 3.3.9):

$$
\begin{gathered}
\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T) \\
=\operatorname{dim}(\operatorname{im} T)+\operatorname{dim}(\operatorname{ker} T)
\end{gathered}
$$

Definition 4.2.2 Isomorphisms and isomorphic spaces
An invertible linear transformation is called an isomorphism. We say the linear space V and W are isomorphic if there is an isomorphism from V to W.

EXAMPLE 4 Consider the transformation

$$
T\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

from R^{4} to $R^{2 \times 2}$.
We are told that T is a linear transformation. Show that transformation T is invertible.

Solution

The most direct way to show that a function is invertible is to find its inverse. We can see that

$$
T^{-1}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

The linear spaces R^{4} and $R^{2 \times 2}$ have essentially the same structure. We say that the linear spaces R^{4} and $R^{2 \times 2}$ are isomorphic.

EXAMPLE 5 Show that the transformation

$$
T(A)=S^{-1} A S \text { from } R^{2 \times 2} \text { to } R^{2 \times 2}
$$

is an isomorphism, where $S=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Solution

We need to show that T is a linear transformation, and that T is invertible.

Let's think about the linearity of T first:

$$
\begin{aligned}
T(M+N)= & S^{-1}(M+N) S=S^{-1}(M S+N S) \\
& =S^{-1} M S+S^{-1} N S
\end{aligned}
$$

equals $T(M)+T(N)=S^{-1} M S+S^{-1} N S$ and

$$
T(k A)=S^{-1}(k A) S=k\left(S^{-1} A S\right)
$$

equals $k T(A)=k\left(S^{-1} A S\right)$.
The inverse transformation is

$$
T^{-1}(B)=S B S^{-1}
$$

Fact 4.2.3 Properties of isomorphisms

1. If T is an isomorphism, then so is T^{-1}
2. A linear transformation T from V to W is an isomorphism if (and only if)

$$
\operatorname{ker}(T)=\{0\}, \operatorname{im}(T)=W
$$

3. Consider an isomorphism T from V to W.If
$f_{1}, f_{2}, \ldots f_{n}$
is a basis of V , then $T\left(f_{1}\right), T\left(f_{2}\right), \ldots T\left(f_{n}\right)$ is a basis of W.
4. If V and W are isomorphic and $\operatorname{dim}(\mathrm{V})=\mathrm{n}$, then $\operatorname{dim}(W)=n$.

Proof

1. We must show that T^{-1} is linear. Consider two elements f and g of the codomain of T :

$$
\begin{gathered}
T^{-1}(f+g)=T^{-1}\left(T T^{-1}(f)+T T^{-1}(g)\right) \\
=T^{-1}\left(T\left(T^{-1}(f)+T^{-1}(g)\right)\right) \\
=T^{-1}(f)+T^{-1}(g)
\end{gathered}
$$

In a similar way, you can show that $T^{-1}(k f)=$ $k T^{-1}(f)$, for all f in the codomain of T and all scalars k.
2. \Rightarrow To find the kernel of T, we have to solve the equation
$T(f)=0$, Apply T^{-1} on both sides
$T^{-1} T(f)=T^{-1}(0), \rightarrow f=T^{-1}(0)=0$
so that $\operatorname{ker}(T)=0$, as claimed.

Any g in W can be written as $g=T\left(T^{-1}(g)\right)$,
so that $\operatorname{im}(T)=W$.
\Leftarrow Suppose $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=W$. We have to show that T is invertible, i.e. the equation $T(f)=g$ has a unique solution f for any g in W.
There is at last one such solution, since $\operatorname{im}(T)=W$. Prove by contradiction, consider two solutions f_{1} and f_{2} :

$$
\begin{gathered}
T\left(f_{1}\right)=T\left(f_{2}\right)=g \\
0=T\left(f_{1}\right)-T\left(f_{2}\right)=T\left(f_{1}-f_{2}\right) \\
\Rightarrow f_{1}-f_{2} \in \operatorname{ker}(T)
\end{gathered}
$$

Since $\operatorname{ker}(T)=\{0\}, f_{1}-f_{2}=0, f_{1}=f_{2}$
3. Span: For any g in W, there exists $T^{-1}(g)$ in V, we can write

$$
T^{-1}(g)=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

because f_{i} span V. Applying T on both sides

$$
g=c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right)
$$

Independence: Consider a relation

$$
c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right)=0
$$

or

$$
T\left(c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right)=0
$$

Since the $\operatorname{ker}(T)$ is $\{0\}$, we have

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0
$$

Since f_{i} are linear independent, the c_{i} are all zero.
4. Follows from part (c).

EXAMPLE 6 We are told that the transformation

$$
B=T(A)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

from $R^{2 \times 2}$ to $R^{2 \times 2}$ is linear. Is T an isomorphism?

Solution We need to examine whether transformation T is invertible. First we try to solve the equation

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=B
$$

for input A. However, the fact that matrix multiplication is non-commutative gets in the way, and we are unable to solve for A.

Instead, Consider the kernel of T :

$$
T(A)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A=A\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

We don't really need to find this kernal; we just want to know whether there are nonzero matrices in the kernel. Since I_{2} and $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is in the kernel, so that T is not isomophic.

Exercise 4.2: 5, 7, 9, 39

