
4.2 LINEAR TRANSFORMATIONS AND

ISOMORPHISMS

Definition 4.2.1

Linear transformation Consider two linear spaces

V and W . A function T from V to W is called

a linear transformation if:

T (f + g) = T (f) + T (g) and T (kf) = kT (f)

for all elements f and g of V and for all scalar

k.

Image, Kernel For a linear transformation T

from V to W, we let

im(T ) = {T (f) : f ∈ V }
and

ker(T ) = {f ∈ V : T (f) = 0}
Note that im(T ) is a subspace of co-domain

W and ker(T ) is a subspace of domain V .
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Rank, Nullity

If the image of T is finite-dimensional, then

dim(imT ) is called the rank of T , and if the ker-

nel of T is finite-dimensional, then dim(kerT )

is the nullity of T .

If V is finite-dimensional, then the rank-nullity

theorem holds (see fact 3.3.9):

dim(V) = rank(T)+nullity(T)

= dim(imT)+dim(kerT)

Definition 4.2.2 Isomorphisms and isomor-

phic spaces

An invertible linear transformation is called an

isomorphism. We say the linear space V and W

are isomorphic if there is an isomorphism from

V to W .



EXAMPLE 4 Consider the transformation

T




a
b
c
d


 =

[
a b
c d

]

from R4 to R2×2.

We are told that T is a linear transformation.

Show that transformation T is invertible.

Solution

The most direct way to show that a function

is invertible is to find its inverse. We can see

that

T−1
[

a b
c d

]
=




a
b
c
d




The linear spaces R4 and R2×2 have essentially

the same structure. We say that the linear

spaces R4 and R2×2 are isomorphic.
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EXAMPLE 5 Show that the transformation

T (A) = S−1AS from R2×2 to R2×2

is an isomorphism, where S =

[
1 2
3 4

]

Solution
We need to show that T is a linear transfor-
mation, and that T is invertible.

Let’s think about the linearity of T first:

T (M + N) = S−1(M + N)S = S−1(MS + NS)

= S−1MS + S−1NS

equals T (M) + T (N) = S−1MS + S−1NS and

T (kA) = S−1(kA)S = k(S−1AS)

equals kT (A) = k(S−1AS).

The inverse transformation is

T−1(B) = SBS−1
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Fact 4.2.3 Properties of isomorphisms

1. If T is an isomorphism, then so is T−1

2. A linear transformation T from V to W is

an isomorphism if (and only if)

ker(T ) = {0}, im(T ) = W

3. Consider an isomorphism T from V to W .If

f1, f2, ...fn

is a basis of V, then T (f1), T (f2), ...T (fn) is

a basis of W .

4. If V and W are isomorphic and dim(V)=n,

then dim(W)=n.
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Proof

1. We must show that T−1 is linear. Consider

two elements f and g of the codomain of

T :

T−1(f + g) = T−1(TT−1(f) + TT−1(g))

= T−1(T (T−1(f) + T−1(g)))

= T−1(f) + T−1(g)

In a similar way, you can show that T−1(kf) =

kT−1(f), for all f in the codomain of T and

all scalars k.

2. ⇒ To find the kernel of T , we have to solve

the equation

T (f) = 0, Apply T−1 on both sides

T−1T (f) = T−1(0),→ f = T−1(0) = 0

so that ker(T ) = 0, as claimed.
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Any g in W can be written as g = T (T−1(g)),

so that im(T ) = W .

⇐ Suppose ker(T ) = {0} and im(T ) = W .

We have to show that T is invertible, i.e.

the equation T (f) = g has a unique solu-

tion f for any g in W .

There is at last one such solution, since

im(T ) = W . Prove by contradiction, con-

sider two solutions f1 and f2:

T (f1) = T (f2) = g

0 = T (f1)− T (f2) = T (f1 − f2)

⇒ f1 − f2 ∈ ker(T )

Since ker(T ) = {0}, f1 − f2 = 0, f1 = f2

3. Span: For any g in W , there exists T−1(g)

in V , we can write

T−1(g) = c1f1 + c2f2 + · · ·+ cnfn



because fi span V . Applying T on both

sides

g = c1T (f1) + c2T (f2) + · · ·+ cnT (fn)

Independence: Consider a relation

c1T (f1) + c2T (f2) + · · ·+ cnT (fn) = 0

or

T (c1f1 + c2f2 + · · ·+ cnfn) = 0.

Since the ker(T) is {0}, we have

c1f1 + c2f2 + · · ·+ cnfn = 0.

Since fi are linear independent, the ci are

all zero.

4. Follows from part (c).



EXAMPLE 6 We are told that the transfor-

mation

B = T (A) =

[
1 2
3 4

]
A−A

[
1 2
3 4

]

from R2×2 to R2×2 is linear. Is T an isomor-

phism?

Solution We need to examine whether trans-

formation T is invertible. First we try to solve

the equation
[

1 2
3 4

]
A−A

[
1 2
3 4

]
= B

for input A. However, the fact that matrix

multiplication is non-commutative gets in the

way, and we are unable to solve for A.

Instead, Consider the kernel of T :

T (A) =

[
1 2
3 4

]
A−A

[
1 2
3 4

]
=

[
0 0
0 0

]
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or [
1 2
3 4

]
A = A

[
1 2
3 4

]

We don’t really need to find this kernal; we

just want to know whether there are nonzero

matrices in the kernel. Since I2 and

[
1 2
3 4

]
is

in the kernel, so that T is not isomophic.

Exercise 4.2: 5, 7, 9, 39


