Applied Linear Algebra OTTO BRETSCHER

http://www.prenhall.com/bretscher

Chapter 4
Linear Spaces

Chia-Hui Chang

Email: chia@csie.ncu.edu.tw
National Central University, Taiwan

October 28, 2002

4.1 Introduction to Linear Systems

EXAMPLE 1
Consider the differential equation(DE)

$$
f^{\prime \prime}(x)+f(x)=0, o r f^{\prime \prime}(x)=-f(x)
$$

We are asked to find all functions $f(x)$ whose second derivative is the negative of the function itself. Recalling rules from your introductory calculus class, you will (hopefully) note that

$$
\sin (x) \text { and } \cos (x)
$$

are solutions of this DE.

Can you find any other solutions?

Definition 4.1.1

Linear spaces A linear space V is a set endowed with
(1) a rule for addition (if f and g are in V , then so is $f+g$) and
(2) a rule for scalar multiplication (if f is in V and k in R , then $k f$ is in V)
such that these operations satisfy the following eight rules (for all f, g, h in V and all c, k in R):

1. $(f+g)+h=f+(g+h)$
2. $f+g=g+f$
3. There is a neutral element n in V such that $f+n=f$, for all f in V. This n is unique and denoted by 0 .
4. For each f in V there is a g in V such that $f+g=0$. this g is unique and denoted by (-f)
5. $k(f+g)=k f+k g$
6. $(c+k) f=c f+k f$
7. $c(k f)=(c k) f$
8. $1 f=f$

EXAMPLE 2

In R^{n}, the prototype linear space, the neutral element is the zero vector, $\overrightarrow{0}$.

EXAMPLE 3

Let $F(\mathrm{R}, \mathrm{R})$ be the set of all functions from R to R (see Example 1), with the operations

$$
(f+g)(x)=f(x)+g(x)
$$

and

$$
(k f)(x)=k f(x)
$$

Then, $F(R, R)$ is a linear space. The neutral element is the zero function, $f(x)=0$ for all x.

EXAMPLE 4

If addition and scalar multiplication are given as in Definition 1.3.9, then $R^{m \times n}$, the set of all $m \times n$ matrices, is a linear space. The neutral element is the zero matrix whose entries are all zero.

EXAMPLE 5

The set of all infinite sequence of real numbers is a linear space, where addition and scalar multiplication are defined term by term:
$\left(x_{0}, x_{1}, x_{2}, \ldots\right)+\left(y_{0}, y_{1}, y_{2}, \ldots\right)$
$=\left(x_{0}+y_{0}, x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right)$

$$
k\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(k x_{0}, k x_{1}, k x_{2}, \ldots\right) .
$$

The neutral element is the sequence

$$
(0,0,0, \ldots)
$$

EXAMPLE 6

The linear equation in three unknowns,

$$
a x+b y+c z=d,
$$

where a, b, c, and d are constants, from a linear space.

The neutral element is the equation $0=0$ (with $a=b=c=d=0$).

Linear Combination

We say that an element f of a linear space is a linear combination of the elements $f_{1}, f_{2}, \ldots, f_{n}$ if

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

for some scalars $c_{1}, c_{2}, \cdots, c_{n}$.

EXAMPLE 9
Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$. Show that $A^{2}=\left[\begin{array}{cc}2 & 3 \\ 6 & 11\end{array}\right]$ is a linear combination of A and I_{2}.

Solution

We have to find scalars c_{1} and c_{2} such that

$$
A^{2}=c_{1} A+c_{2} I_{2}
$$

or

$$
A^{2}=\left[\begin{array}{cc}
2 & 3 \\
6 & 11
\end{array}\right]=c_{1}\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]+c_{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Definition 4.1.2 Subspaces

A subspace W of a linear space V is called a subspace of V if

1. W contains the neutral element 0 of V
2. W is closed under addition (if f and g are in W, then so is $f+g$).
3. W is closed under scalar multiplication (if f is in W and k is a scalar, then $k f$ is in W).

We can summarize parts (2) and (3) by saying that W is closed under linear combinations.

EXAMPLE 10
Show that the polynomials of degree ≤ 2, of the form $f(x)=a+b x+c x^{2}$, are a subspace W of the space $F(R, R)$ of all functions from R to R.

EXAMPLE 11

Show that the differentiable functions form a subspace W of $F(R, R)$

EXAMPLE 12
Here are three more subspaces of $F(R, R)$:

1. C^{∞}, the smooth functions, that is, functions we can differentiate as many times as we want. This subspace contains all polynomials, exponential functions, $\sin (x)$, and $\cos (x)$, for example.
2. P, the set of all polynomials.
3. P_{n}, the set of all polynomials of degree $\leq n$

EXAMPLE 13
Show that the matrices B that commute with $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$ form a subspace of $R^{2 \times 2}$.

Solution

(a) The zero matrix 0 commutes with A.
(b) If matrices B_{1} and B_{2} commute with A, then so does matrix $B_{1}+B_{2}$.
(c) If B commutes with A, then so does $k B$.

EXAMPLE 14
Consider the set W of all noninvertible 2×2 matrices. Is W a subsequence of $R^{2 \times 2}$?

Solution

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Definition 4.1.3
Span, linear independence, basis, coordinates

Consider the elements $f_{1}, f_{2}, \ldots, f_{n}$ of a linear space V.

1. We say that $f_{1}, f_{2}, \ldots, f_{n}$ span \vee if every f in V can be expressed as a linear combination of $f_{1}, f_{2}, \ldots, f_{n}$.
2. We say that $f_{1}, f_{2}, \ldots, f_{n}$ are (linearly) independent if the equation

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0
$$

has only the trivial solution

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

3. We say that elements $f_{1}, f_{2}, \ldots, f_{n}$ are a basis of V if they span V and are independent. This means that every f in V can be written uniquely as a linear combination

$$
f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of f with respect to the basis $f_{1}, f_{2}, \ldots, f_{n}$.

Fact 4.1.4 Dimension

If a linear space V has a basis with n elements, then all other bases of V consist of n elements as well. We say that n is the dimension of V :

$$
\operatorname{dim}(V)=n
$$

EXAMPLE 15

Find a basis of $V=R^{2 \times 2}$ and thus determine $\operatorname{dim}(V)$.

Solution
We can write any 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ as:
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+d\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

EXAMPLE 16

Find a basis of P_{2}, the space of all polynomials of degree ≤ 2, and thus determine the dimension of P_{2}.

Solution

We can write any polynomial $f(x)$ of degree ≤ 2 uniquely as:

$$
f(x)=a+b x+c x^{2}=a \cdot 1+b \cdot x+c \cdot x^{2}
$$

EXAMPLE 17
Find a basis of the space V of all matrices B that commute with $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$.

Solution
We need to find all matrices $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such
that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

$$
\begin{gathered}
\Rightarrow\left[\begin{array}{cc}
2 b & a+3 b \\
2 d & c+3 d
\end{array}\right]=\left[\begin{array}{cc}
c & d \\
2 a+3 c & 2 b+3 d
\end{array}\right] \\
c=2 b, d=a+3 b
\end{gathered}
$$

So a typical matrix B in V is of the form

$$
\begin{gathered}
B=\left[\begin{array}{rr}
a & b \\
2 b & a+3 b
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right] \\
=a I_{2}+b A
\end{gathered}
$$

The matrices I_{2} and A form a basis of V, so that $\operatorname{dim}(V)=2$.

EXAMPLE 19
Let $f_{1}, f_{2}, \ldots, f_{n}$ be polynomials. Explain why these polynomials do not span the space P of all polynomials.

Solution

Let N be the maximum of the degrees of these n polynomials. Then all linear combinations of $f_{1}, f_{2}, \ldots, f_{n}$ are in P_{N}, the space of the polynomials of degree $\leq N$. Any polynomial of higher degree, such as $f(x)=x^{N+1}$, will not be in the span of $f_{1}, f_{2}, \ldots, f_{n}$.

This implies that the space P of all polynomials does not have a finite basis $f_{1}, f_{2}, \ldots, f_{n}$.

Definition 4.1.6 Finite-dimensional linear spaces

A linear spaces V is called finite - dimensional if it has a (finite) basis $f_{1}, f_{2}, \ldots, f_{n}$, so that we can define its dimension $\operatorname{dim}(V)=n$. (See Definition 4.1.4.) Otherwise, the space is called infinite - dimensional.

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35

*EXAMPLE 7

Consider the plane with a point designated as the origin, O, but without a coordinate system (the coordinate-free plane).

- A geometric vector \vec{v} in this plane is an arrow (a directed line segment) with its tail at the origin, as shown in Figure 1.
- The sum $\vec{v}+\vec{w}$ of vectors \vec{v} and \vec{w} is defined by means of a parallelogram, as illustration in Figure 2.
- If k is a positive scalar, then vector $k \vec{v}$ points in the same direction as \vec{v}, but $k \vec{v}$ is k times as long as \vec{v}; see Figure 3 .
- If k is negative, then $k \vec{v}$ points in the opposite direction, and it is $|k|$ times as long as \vec{v}; see Figure 4 .

The geometric vectors in the plane with these operations forms a linear space.

The neutral element is the zero vector $\overrightarrow{0}$, with tail and head at the origin.

By introducing a coordinate system, we can identify the plane of geometric vectors with R^{2}; this was the great idea of Descartes' Analytic Geometry. In Section 4.3, we will study this idea more systematically.

*EXAMPLE 8

Let C be the set of the complex numbers. We trust that you have at least a fleeting acquaintance with complex numbers. Without attempting a definition, we recall that a complex number can be expressed as $z=a+b i$, where a and b are real numbers. Addition of complex numbers is defined in a natural way, by the rule

$$
(a+b i)+(c+d i)=(a+c)+i(b+d) .
$$

If k is a real scalar, we define

$$
k(a+b i)=k a+i(k b) .
$$

There is also a (less natural) rule for the multiplication of complex numbers, but we are not concerned with this operation here.

The complex numbers C with the two operations just given form a linear space; the neutral element is the complex number $0=0+0 i$.

*Fact 4.1.5 Linear differential equations

The solutions of the DE

$$
f^{\prime \prime}(x)+a f^{\prime}(x)+b f(x)=0
$$

where a and b are constants, form a two-dimensional subspace of the space C^{∞} of smooth functions.

More generally, the solutions of the DE
$f^{(n)}(x)+a_{n-1} f^{n-1}(x)+\cdots+a_{1} f^{\prime}(x)+a_{0} f(x)$
(where the a_{i} are constants) form an n -dimensional subspace of C^{∞}. A DE of this is called an n thorder linear differential equation.

Fact 4.1.5 will be proven in Section 9.3.

*EXAMPLE 18

Find all solutions of the DE

$$
f^{\prime \prime}(x)+f^{\prime}(x)-6 f(x)=0
$$

(Hint: Find all exponential functions $f(x)=$ $e^{k x}$ that solve the DE)

An exponential function $f(x)=e^{k x}$ solves the DE if $k=2$ or $k=-3$. Since

$$
\begin{gathered}
k^{2} e^{k x}+k e^{k x}-6 e^{k x}=\left(k^{2}+k-6\right) e^{k x} \\
=(k+3)(k-2) e^{k x}=0
\end{gathered}
$$

According to Fact 4.1.5, the solution space V is two-dimensional. Thus, the two exponential functions $e^{2 x}$ and $e^{-3 x}$ form a basis of V, and all solutions are of the form

$$
f(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

