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4.1 Introduction to Linear Systems

EXAMPLE 1

Consider the differential equation(DE)

f ′′(x) + f(x) = 0, orf ′′(x) = −f(x)

We are asked to find all functions f(x) whose

second derivative is the negative of the func-

tion itself. Recalling rules from your introduc-

tory calculus class, you will (hopefully) note

that

sin(x) and cos(x)

are solutions of this DE.

Can you find any other solutions?
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Definition 4.1.1

Linear spaces A linear space V is a set en-

dowed with

(1) a rule for addition (if f and g are in V, then

so is f + g) and

(2) a rule for scalar multiplication (if f is in V

and k in R, then kf is in V)

such that these operations satisfy the follow-

ing eight rules (for all f, g, h in V and all c, k in

R):

1. (f + g) + h = f + (g + h)

2. f + g = g + f

3. There is a neutral element n in V such that

f + n = f , for all f in V . This n is unique

and denoted by 0.
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4. For each f in V there is a g in V such that

f + g = 0. this g is unique and denoted by

(−f)

5. k(f + g) = kf + kg

6. (c + k)f = cf + kf

7. c(kf) = (ck)f

8. 1f = f



EXAMPLE 2

In Rn, the prototype linear space, the neutral

element is the zero vector,
→
0.

EXAMPLE 3

Let F (R,R) be the set of all functions from R

to R (see Example 1), with the operations

(f + g)(x) = f(x) + g(x)

and

(kf)(x) = kf(x)

Then, F(R,R) is a linear space. The neutral

element is the zero function, f(x) = 0 for all

x.

EXAMPLE 4

If addition and scalar multiplication are given

as in Definition 1.3.9, then Rm×n, the set of all

m× n matrices, is a linear space. The neutral

element is the zero matrix whose entries are

all zero.
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EXAMPLE 5

The set of all infinite sequence of real numbers

is a linear space, where addition and scalar mul-

tiplication are defined term by term:

(x0, x1, x2, . . .) + (y0, y1, y2, . . .)

= (x0 + y0, x1 + y1, x2 + y2, . . .)

k(x0, x1, x2, . . .) = (kx0, kx1, kx2, . . .).

The neutral element is the sequence

(0,0,0, . . .)

EXAMPLE 6

The linear equation in three unknowns,

ax + by + cz = d,

where a, b, c, and d are constants, from a linear

space.

The neutral element is the equation 0 = 0

(with a = b = c = d = 0).
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Linear Combination

We say that an element f of a linear space is a

linear combination of the elements f1, f2, . . . , fn

if

f = c1f1 + c2f2 + · · ·+ cnfn

for some scalars c1, c2, · · · , cn.

EXAMPLE 9

Let A =

[
0 1
2 3

]
. Show that A2 =

[
2 3
6 11

]
is

a linear combination of A and I2.

Solution

We have to find scalars c1 and c2 such that

A2 = c1A + c2I2,

or

A2 =

[
2 3
6 11

]
= c1

[
0 1
2 3

]
+ c2

[
1 0
0 1

]
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Definition 4.1.2 Subspaces

A subspace W of a linear space V is called a

subspace of V if

1. W contains the neutral element 0 of V

2. W is closed under addition (if f and g are

in W, then so is f + g).

3. W is closed under scalar multiplication (if

f is in W and k is a scalar, then kf is in

W).

We can summarize parts (2) and (3) by saying

that W is closed under linear combinations.
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EXAMPLE 10
Show that the polynomials of degree≤ 2, of
the form f(x) = a + bx + cx2, are a subspace
W of the space F(R,R) of all functions from R
to R.

EXAMPLE 11
Show that the differentiable functions form a
subspace W of F(R,R)

EXAMPLE 12
Here are three more subspaces of F(R,R):

1. C∞, the smooth functions, that is, func-
tions we can differentiate as many times
as we want. This subspace contains all
polynomials, exponential functions, sin(x),
and cos(x), for example.

2. P , the set of all polynomials.

3. Pn, the set of all polynomials of degree ≤ n
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EXAMPLE 13

Show that the matrices B that commute with

A =

[
0 1
2 3

]
form a subspace of R2×2.

Solution

(a) The zero matrix 0 commutes with A.

(b) If matrices B1 and B2 commute with A,

then so does matrix B1 + B2.

(c) If B commutes with A, then so does kB.

EXAMPLE 14

Consider the set W of all noninvertible 2 × 2

matrices. Is W a subsequence of R2×2 ?

Solution

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
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Definition 4.1.3

Span, linear independence, basis, coordi-

nates

Consider the elements f1, f2, . . . , fn of a linear

space V.

1. We say that f1, f2, . . . , fn span V if every f

in V can be expressed as a linear combina-

tion of f1, f2, . . . , fn.

2. We say that f1, f2, . . . , fn are (linearly) independent

if the equation

c1f1 + c2f2 + · · ·+ cnfn = 0

has only the trivial solution

c1 = c2 = · · · = cn = 0.
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3. We say that elements f1, f2, . . . , fn are a

basis of V if they span V and are indepen-

dent. This means that every f in V can be

written uniquely as a linear combination

f = c1f1 + c2f2 + · · ·+ cnfn.

The coefficients c1, c2, . . . , cn are called the

coordinates of f with respect to the basis

f1, f2, . . . , fn.

Fact 4.1.4 Dimension

If a linear space V has a basis with n elements,

then all other bases of V consist of n elements

as well. We say that n is the dimension of V:

dim(V ) = n.



EXAMPLE 15

Find a basis of V = R2×2 and thus determine

dim(V ).

Solution

We can write any 2× 2 matrix

[
a b
c d

]
as:

[
a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+c

[
0 0
1 0

]
+d

[
0 0
0 1

]

EXAMPLE 16

Find a basis of P2, the space of all polyno-

mials of degree ≤ 2, and thus determine the

dimension of P2.

Solution

We can write any polynomial f(x) of degree

≤ 2 uniquely as:

f(x) = a + bx + cx2 = a · 1 + b · x + c · x2
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EXAMPLE 17

Find a basis of the space V of all matrices B

that commute with A =

[
0 1
2 3

]
.

Solution

We need to find all matrices B =

[
a b
c d

]
such

that

[
a b
c d

] [
0 1
2 3

]
=

[
0 1
2 3

] [
a b
c d

]
.

⇒
[

2b a + 3b
2d c + 3d

]
=

[
c d

2a + 3c 2b + 3d

]

c = 2b, d = a + 3b

So a typical matrix B in V is of the form

B =

[
a b

2b a + 3b

]
= a

[
1 0
0 1

]
+ b

[
0 1
2 3

]

= aI2 + bA

The matrices I2 and A form a basis of V , so

that dim(V)=2.
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EXAMPLE 19

Let f1, f2, . . . , fn be polynomials. Explain why

these polynomials do not span the space P of

all polynomials.

Solution

Let N be the maximum of the degrees of these

n polynomials. Then all linear combinations of

f1, f2, . . . , fn are in PN , the space of the polyno-

mials of degree ≤ N . Any polynomial of higher

degree, such as f(x) = xN+1, will not be in the

span of f1, f2, . . . , fn.

This implies that the space P of all polynomials

does not have a finite basis f1, f2, . . . , fn.
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Definition 4.1.6 Finite-dimensional linear

spaces

A linear spaces V is called finite− dimensional

if it has a (finite) basis f1, f2, . . . , fn, so that

we can define its dimension dim(V ) = n. (See

Definition 4.1.4.) Otherwise, the space is called

infinite− dimensional.

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35
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*EXAMPLE 7

Consider the plane with a point designated as

the origin, O, but without a coordinate system

(the coordinate-free plane).

• A geometric vector
→
v in this plane is an

arrow (a directed line segment) with its tail

at the origin, as shown in Figure 1.

• The sum
→
v +

→
w of vectors

→
v and

→
w is

defined by means of a parallelogram, as il-

lustration in Figure 2.

• If k is a positive scalar, then vector k
→
v

points in the same direction as
→
v , but k

→
v

is k times as long as
→
v ; see Figure 3.
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• If k is negative, then k
→
v points in the op-

posite direction, and it is | k | times as long

as
→
v ; see Figure 4.

The geometric vectors in the plane with these

operations forms a linear space.

The neutral element is the zero vector
→
0, with

tail and head at the origin.

By introducing a coordinate system, we can

identify the plane of geometric vectors with R2;

this was the great idea of Descartes’ Analytic

Geometry. In Section 4.3, we will study this

idea more systematically.



*EXAMPLE 8

Let C be the set of the complex numbers. We

trust that you have at least a fleeting acquain-

tance with complex numbers. Without attempt-

ing a definition, we recall that a complex num-

ber can be expressed as z = a + bi, where a

and b are real numbers. Addition of complex

numbers is defined in a natural way, by the rule

(a + bi) + (c + di) = (a + c) + i(b + d).

If k is a real scalar, we define

k(a + bi) = ka + i(kb).

There is also a (less natural) rule for the mul-

tiplication of complex numbers, but we are not

concerned with this operation here.

The complex numbers C with the two opera-

tions just given form a linear space; the neutral

element is the complex number 0 = 0 + 0i.
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*Fact 4.1.5 Linear differential equations

The solutions of the DE

f
′′
(x) + af

′
(x) + bf(x) = 0

where a and b are constants, form a two-dimensional

subspace of the space C∞ of smooth functions.

More generally, the solutions of the DE

f(n)(x) + an−1fn−1(x) + · · ·+ a1f
′
(x) + a0f(x)

(where the ai are constants) form an n-dimensional

subspace of C∞. A DE of this is called an nth-

order linear differential equation.

Fact 4.1.5 will be proven in Section 9.3.
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*EXAMPLE 18

Find all solutions of the DE

f
′′
(x) + f

′
(x)− 6f(x) = 0.

(Hint: Find all exponential functions f(x) =

ekx that solve the DE)

An exponential function f(x) = ekx solves the

DE if k = 2 or k = −3. Since

k2ekx + kekx − 6ekx = (k2 + k − 6)ekx

= (k + 3)(k − 2)ekx = 0

According to Fact 4.1.5, the solution space V

is two-dimensional. Thus, the two exponential

functions e2x and e−3x form a basis of V , and

all solutions are of the form

f(x) = c1e2x + c2e−3x
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