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4.1 Introduction to Linear Systems

EXAMPLE 1
Consider the differential equation(DE)
f'(x) + f(x) = 0,0rf"(z) = — f (=)

We are asked to find all functions f(x) whose
second derivative is the negative of the func-
tion itself. Recalling rules from your introduc-
tory calculus class, you will (hopefully) note
that

sin(x) and cos(x)
are solutions of this DE.

Can you find any other solutions?



Definition 4.1.1

Linear spaces A linear space V is a set en-
dowed with

(1) a rule for addition (if f and g are in V, then
sois f+g¢g) and

(2) a rule for scalar multiplication (if f is in V
and k£ in R, then kf is in V)

such that these operations satisfy the follow-
ing eight rules (for all f,g,h in V and all ¢,k in
R):

L. (f+9)+h=f+(@+h)

2. fH+g=g+f

3. There is a neutral element n in V such that
f+n=f, forall fin V. This n is unique
and denoted by O.



. For each fin V thereis a g in V such that
f+ g =0. this g is unique and denoted by

(—=/)

- k(f+9) =kf+ kg

(et k) f =cf +kf

. c(kf) = (ck)f

1f=f



EXAMPLE 2
In R™, the prototype linear space, the neutral
element is the zero vector, 0.

EXAMPLE 3
Let F'(R,R) be the set of all functions from R
to R (see Example 1), with the operations

(f +9)(=) = fz) + g(z)

and

(kf)(z) = kf(z)

Then, F(R,R) is a linear space. The neutral
element is the zero function, f(xz) = 0 for all
xZ.

EXAMPLE 4

If addition and scalar multiplication are given
as in Definition 1.3.9, then R™*" the set of all
m X n matrices, is a linear space. The neutral
element is the zero matrix whose entries are
all zero.



EXAMPLE 5

The set of all infinite sequence of real numbers
IS a linear space, where addition and scalar mul-
tiplication are defined term by term:

(CBO,ZE]_,ZEQ, .. ) + (y07ylay27 .. )
= (o +yo, 21 + y1,22 + y2,...)

k(xg,x1,20,...) = (kxo, kx1, kx>, ...).
The neutral element is the sequence

(0,0,0,...)

EXAMPLE 6
The linear equation in three unknowns,

ar + by + cz = d,

where a, b, c, and d are constants, from a linear
space.

The neutral element is the equation 0 = O
(witha=b=c=d=0).



Linear Combination

We say that an element f of a linear space is a
linear combination of the elements fq1, fo,..., fn
it

f=cfitecfot - +cenfn

for some scalars cq,co, -, cn.

EXAMPLE 9

101 > 12 3 .
LetA_[2 3 . Show that A _[6 11]IS

a linear combination of A and I».

Solution
We have to find scalars ¢1 and c¢» such that

A2 = c1A + colo,

> [2 371 01 10
A_[6 11]_01[2 3]+02[o 1]
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Definition 4.1.2 Subspaces

A subspace W of a linear space V is called a
subspace of V if

1. W contains the neutral element 0 of V

2. W is closed under addition (if f and g are
in W, then so is f + g).

3. W is closed under scalar multiplication (if
f is in W and k is a scalar, then kf is in
W).

We can summarize parts (2) and (3) by saying
that W is closed under linear combinations.



EXAMPLE 10

Show that the polynomials of degree< 2, of
the form f(z) = a + bz + cz?, are a subspace
W of the space F(R,R) of all functions from R
to R.

EXAMPLE 11
Show that the differentiable functions form a
subspace W of F(R,R)

EXAMPLE 12
Here are three more subspaces of F(R,R):

1. C°°, the smooth functions, that is, func-
tions we can differentiate as many times
as we want. This subspace contains all
polynomials, exponential functions, sin(x),
and cos(x), for example.

2. P, the set of all polynomials.

3. Py, the set of all polynomials of degree < n
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EXAMPLE 13
Show that the matrices B that commute with

A= g é form a subspace of R2%2.
Solution

(a) The zero matrix 0 commutes with A.

(b) If matrices By and B> commute with A,
then so does matrix By + Bo.

(c) If B commutes with A, then so does kB.

EXAMPLE 14
Consider the set W of all noninvertible 2 x 2
matrices. Is W a subsequence of R2%X2 ?

Solution



Definition 4.1.3
Span, linear independence, basis, coordi-
nates

Consider the elements fq, fo,..., fn Of a linear
space V.

1. We say that f1, fo,..., fn span V if every f
in VV can be expressed as a linear combina-

tion of f1, fo,..., fn.

2. We say that f1, fo,..., fn are (linearly) independent
if the equation

cifi+cofo+---+cenfn=0

has only the trivial solution

cir=cp=:--=cp,=0.



3. We say that elements fq, fo,..., fn are a
basts of V if they span V and are indepen-
dent. This means that every f in V can be
written uniquely as a linear combination

J=cifi+tcafo+ -+ cnfn.

T he coefficients c¢q,co,...,cn are called the
coordinates Of f with respect to the basis

flana"'afn-

Fact 4.1.4 Dimension

If a linear space V has a basis with n elements,
then all other bases of V consist of n elements
as well. We say that n is the dimension of V:

dim (V) = n.



EXAMPLE 15
Find a basis of V = R2%X2 and thus determine

dim(V).

Solution
We can write any 2 x 2 matrix [ CCL 2] as:

Cal=elosfelo sl T oo

EXAMPLE 16
Find a basis of P, the space of all polyno-
mials of degree < 2, and thus determine the

dimension of P».

Solution
We can write any polynomial f(x) of degree
< 2 uniquely as:

f(a:)=a,—|—b:c—|—ca:2=a-1—|—b-a:—|—c':1:2
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EXAMPLE 17
Find a basis of the space V of all matrices B

that commute with A = [ g :1)) ] :

Solution

We need to find all matrices B = [ CCL 2] such

wa [0 5][33]=[2 5] 2]

2b o+ 3b
= [2d c—|—3d]

C d
| 2a+ 3¢ 2b+4 3d

c=2b,d=a-+ 3b

So a typical matrix B in V is of the form
| a b | 1 O 01
B_[2b a—|—3b]_a!0 1]+b[2 3]
= al> + bA

The matrices I, and A form a basis of V, so
that dim(V)=2.
11



EXAMPLE 19
Let f1, fo,..., fn be polynomials. EXxplain why
these polynomials do not span the space P of
all polynomials.

Solution

Let N be the maximum of the degrees of these
n polynomials. Then all linear combinations of
f1, fo,..., fn arein Py, the space of the polyno-
mials of degree < N. Any polynomial of higher
degree, such as f(z) = V11, will not be in the

span of f1,fo,..., fn.

This implies that the space P of all polynomials
does not have a finite basis fq, fo,..., fn.
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Definition 4.1.6 Finite-dimensional linear
spaces

A linear spaces V is called finite — dimensional

if it has a (finite) basis f1, fo,..., fn, SO that
we can define its dimension dim(V) = n. (See
Definition 4.1.4.) Otherwise, the space is called

n finite — dimensional.

Exercises 4.1: 3,5, 7, 8, 17, 18, 20, 33, 35
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*EXAMPLE 7

Consider the plane with a point designated as
the origin, O, but without a coordinate system
(the coordinate-free plane).

e A geometric vector v in this plane is an
arrow (a directed line segment) with its tail
at the origin, as shown in Figure 1.

e The sum v + w of vectors v and w is
defined by means of a parallelogram, as il-
lustration in Figure 2.

e If £ is a positive scalar, then vector k v
points in the same direction as v, but k v
is k times as long as 7; see Figure 3.
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e If k is negative, then k v points in the op-
posite direction, and it is | k | times as long
as 5); see Figure 4.

The geometric vectors in the plane with these
operations forms a linear space.

T he neutral element is the zero vector 6 with
tail and head at the origin.

By introducing a coordinate system, we can
identify the plane of geometric vectors with RZ:
this was the great idea of Descartes’ Analytic
Geometry. In Section 4.3, we will study this
idea more systematically.



*EXAMPLE 8

Let C be the set of the complex numbers. We
trust that you have at least a fleeting acquain-
tance with complex numbers. Without attempt-
ing a definition, we recall that a complex num-
ber can be expressed as z = a + bz, where a
and b are real numbers. Addition of complex
numbers is defined in a natural way, by the rule

(a +bi) + (c+di) = (a+c) +i(b+d).

If k is a real scalar, we define

k(a + bi) = ka + i(kb).

There is also a (less natural) rule for the mul-
tiplication of complex numbers, but we are not
concerned with this operation here.

The complex numbers C with the two opera-
tions just given form a linear space; the neutral
element is the complex number O = 0 + Ox.
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*Fact 4.1.5 Linear differential equations

The solutions of the DE

f (@) +af (z) +bf(x) =0

where a and b are constants, form a two-dimensional
subspace of the space C°° of smooth functions.

More generally, the solutions of the DE

f(n)(:c) +a, 1" 2+ + alf/(m) +aof(z)

(where the a; are constants) form an n-dimensional
subspace of C°°. A DE of this is called an nth-
order linear differential equation.

Fact 4.1.5 will be proven in Section 9.3.
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*EXAMPLE 18
Find all solutions of the DE

f (@) + f(z) —6f(z) =0.

(Hint: Find all exponential functions f(z) =
ek that solve the DE)

An exponential function f(z) = e solves the
DE if k=2 or k= —3. Since

k2€kx+kekx_6ekx — (k2+k_6)eka§

= (k4 3)(k — 2)ef* =

According to Fact 4.1.5, the solution space V
IS two-dimensional. Thus, the two exponential
functions e?* and e—3% form a basis of V, and
all solutions are of the form

f(z) = c1%® + coe 37
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