3.4 COORDINATES

EXAMPLE 1

Let V be the plane in R^{3} with equation $x_{1}+2 x_{2}+3 x_{3}=0$, a two-dimensional subspace of R^{3}. We can describe a vector in this plane by its spatial (3D)coordinates; for example, vector

$$
\vec{x}=\left[\begin{array}{r}
5 \\
-1 \\
-1
\end{array}\right]
$$

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

Consider any two vectors in plane V that aren't parallel, e.g.

$$
\overrightarrow{v_{1}}=\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right] \text { and } \overrightarrow{v_{2}}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

See Figure 1, where we label the new axes c_{1} and c_{2}, with the new coordinate grid defined by vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.

Note that the $c_{1}-c_{2}$ coordinates of vector $\overrightarrow{v_{1}}$ is $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and the coordinates of vector $\overrightarrow{v_{2}}$ is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, respectively.

For a vector \vec{x} in plane V, we can find the scalars c_{1} and c_{2} such that

$$
\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}} .
$$

For example, $\vec{x}=\left[\begin{array}{r}5 \\ -1 \\ -1\end{array}\right]=3\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]+2\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$

Therefore, the $c_{1}-c_{2}$ coordinates of \vec{x} are

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

See Figure 3.

Let's denote the basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ of V by B
(Fraktur B). Then, the coordinate vector of \vec{x} with respect to B is denoted by $[\vec{x}]_{B}$:

$$
\text { If } \vec{x}=\left[\begin{array}{r}
5 \\
-1 \\
-1
\end{array}\right] \text {, then }[\vec{x}]_{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Definition 3.4.1
Coordinates in a subspace of R^{n} Consider a basis B of a subspace V of R^{n}, consisting of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}$. Any vector \vec{x} in V can be written uniquely as

$$
\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{m} \overrightarrow{v_{m}}
$$

The scalars $c_{1}, c_{1}, \ldots, c_{m}$ are called the B coordinates of \vec{x}, and the vector

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\ldots \\
c_{m}
\end{array}\right]
$$

is called the B -coordinate vector of \vec{x}, denoted by $[\vec{x}]_{B}$.

Note that

$$
\vec{x}=S[\vec{x}]_{B}
$$

where $S=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\ \mid & \mid & & \mid\end{array}\right]$, an $\mathrm{n} \times m$ matrix.

EXAMPLE 2
Consider the basis B of R^{2} consisting of vectors
$\overrightarrow{v_{1}}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{r}1 \\ 3\end{array}\right]$
a. If $\vec{x}=\left[\begin{array}{l}10 \\ 10\end{array}\right]$, find $[\vec{x}]_{B}$
b. If $[\vec{x}]_{B}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$, find \vec{x}

Solution

a. To find the coordinates of vector \vec{x}, we need to write \vec{x} as a linear combination of the basis vectors:

$$
\vec{x}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}, \text { or }\left[\begin{array}{l}
10 \\
10
\end{array}\right]=c_{1}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
-1 \\
3
\end{array}\right]
$$

Alternatively, we can solve the equation

$$
\vec{x}=S[\vec{x}]_{B}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right][\vec{x}]_{B}
$$

for $[\vec{x}]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$

$$
\begin{aligned}
& {[\vec{x}]_{B}=S^{-1} \vec{x}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right]^{-1}\left[\begin{array}{l}
10 \\
10
\end{array}\right]} \\
& =\frac{1}{10}\left[\begin{array}{rr}
3 & 1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
10
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

b. By definition of coordinates, $[\vec{x}]_{B}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ means that
$\vec{x}=2 \overrightarrow{v_{1}}+(-1) \overrightarrow{v_{2}}=2\left[\begin{array}{l}3 \\ 1\end{array}\right]+(-1)\left[\begin{array}{r}-1 \\ 3\end{array}\right]=\left[\begin{array}{r}7 \\ -1\end{array}\right]$

Alternatively, use the formula

$$
\vec{x}=S[\vec{x}]_{B}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
7 \\
-1
\end{array}\right]
$$

EXAMPLE 3

Let L be the line in R^{2} spanned by vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Let T be the linear transformation from R^{2} to R^{2} that projects any vector orthogonally onto line L, as shown in Figure 5.

1. In $\vec{x}_{1}-\vec{x}_{2}$ coordinate system (See Figure 5): Sec 2.2 (pp. 59).
2. In $c_{1}-c_{2}$ coordinate system (See Figure 6): T transforms vector $\left[\begin{array}{c}c_{1} \\ c_{2}\end{array}\right]$ into $\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$.
That is, T is given by the matrix $B=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, since $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$

The transforms from $[\vec{x}]_{B}$ into $[T(\vec{x})]_{B}$ is called the B-matrix of T :

$$
[T(\vec{x})]_{B}=B[\vec{x}]_{B}
$$

Definition 3.4.2
The B-matrix of a linear transformation
Consider a linear transformation T from R^{n} to R^{n} and a basis B of R^{n}. The $n \times n$ matrix B that transforms $[\vec{x}]_{B}$ into $[T(\vec{x})]_{B}$ is called the B-matrix of T :

$$
[T(\vec{x})]_{B}=\mathrm{B}[\vec{x}]_{B}
$$

for all \vec{x} in R^{n}.

Fact 3.4.3 The columns of the B-matrix of a linear transformation
Consider a linear transformation T from R^{n} to R^{n} and a basis B of R^{n} consisting of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$. Then, the B-matrix of T is

$$
B=\left[\left[T\left(\overrightarrow{x_{1}}\right)\right]_{B}\left[T\left(\overrightarrow{x_{2}}\right)\right]_{B} \cdots\left[T\left(\overrightarrow{x_{n}}\right)\right]_{B}\right]
$$

That is, the columns of B are the B-coordinate vectors of $\mathrm{T}\left(\overrightarrow{v_{1}}\right), \mathrm{T}\left(\overrightarrow{v_{2}}\right), \ldots, \mathrm{T}\left(\overrightarrow{v_{n}}\right)$.

EXAMPLE 4
Consider two perpendicular unit vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ in R^{3}. Form the basis $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}=\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}$ of R^{3}; let's denote this basis by B. Find the B matrix B of the linear transformation $\mathrm{T}(\vec{x})=\overrightarrow{v_{1}}$ $\times \vec{x}$.
(see Exercise 2.1: 44 on pp. 49, $\left.\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \times\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left[\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right]\right)$

Solution
Use Fact 3.4.3 to construct B column by column:

$$
\begin{aligned}
& B=\left[\left[T\left(\overrightarrow{x_{1}}\right)\right]_{B}\left[T\left(\overrightarrow{x_{2}}\right)\right]_{B} \ldots\left[T\left(\overrightarrow{x_{n}}\right)\right]_{B}\right] \\
& =\left[\left[\overrightarrow{v_{1}} \times \overrightarrow{v_{1}}\right]_{B}\left[\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right]_{B}\left[\overrightarrow{v_{1}} \times \overrightarrow{v_{3}}\right]_{B}\right] \\
& =\left[[\overrightarrow{0}]_{B}\left[\overrightarrow{v_{3}}\right]_{B}\left[-\overrightarrow{v_{2}}\right]_{B}\right] \\
& =\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

EXAMPLE 5

Let T be the linear transformation from R^{2} to R^{2} that projects any vector orthogonally onto the line L spanned by $\left[\begin{array}{l}3 \\ 1\end{array}\right]$. In Example 3, we found that the matrix of T with respect to the basis B consisting of $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ is

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

What is the relation ship between B and the standard matrix A of T (such that $\mathrm{T}(\vec{x})=\mathrm{A} \vec{x}$) ?

Solution

Recall from Definition 3.4.1 that

$$
\vec{x}=S[\vec{x}]_{B^{\prime}}, \text { where } \mathrm{S}=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right]
$$

and consider the following diagram: (Figure 7)

Note that $\mathrm{T}(\vec{x})=\mathrm{AS}[\vec{x}]_{B}$
and also $\mathrm{T}(\vec{x})=\mathrm{SB}[\vec{x}]_{B}$,
so that $\mathrm{AS}[\vec{x}]_{B}=\mathrm{SB}[\vec{x}]_{B}$ for all \vec{x}.
Thus,

$$
\mathrm{AS}=\mathrm{SB} \text { and } \mathrm{A}=\mathrm{SB} S^{-1}
$$

Now we can find the standard matrix A of T :
$\mathrm{A}=\mathrm{SB} S^{-1}$
$=\left[\begin{array}{rr}3 & -1 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left(\frac{1}{10}\left[\begin{array}{rr}3 & 1 \\ -1 & 3\end{array}\right]\right)$
$=\left[\begin{array}{ll}0.9 & 0.3 \\ 0.3 & 0.1\end{array}\right]$
Alternatively, we could use Fact 2.2.5 to construct matrix A. The point here was to explore the relationship between matrices A and B .

Fact 3.4.4
Standard matrix versus B-matrix of a linear transformation
Consider a linear transformation T from R^{n} to R^{n} and a basis B of R^{n} consisting of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$. Let B be the B-matrix of T and let A be the standard matrix of T (such that $\mathrm{T}(\vec{x})=\mathrm{A} \vec{x})$. Then, $A S=S B, B=S^{-1} A S$, and $A=S B S^{-1}$, where

$$
S=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Definition 3.4.5 Similar matrices

Consider two $\mathrm{n} \times \mathrm{n}$ matrices A and B . We say that A is similar to B if there is an invertible matrix S such that

$$
\mathrm{AS}=\mathrm{SB}, \text { or } \mathrm{B}=S^{-1} \mathrm{AS}
$$

EXAMPLE 6
Is matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ similar to $B=\left[\begin{array}{rr}5 & 0 \\ 0 & -1\end{array}\right]$?
Solution
We are looking for a matrix $\mathrm{S}=\left[\begin{array}{cc}x & y \\ z & t\end{array}\right]$ such that $A S=S B$, or

$$
\left[\begin{array}{rr}
x+2 z & y+2 t \\
4 x+3 z & 4 y+3 t
\end{array}\right]=\left[\begin{array}{cc}
5 x & -y \\
5 z & -t
\end{array}\right] .
$$

These equations simplify to

$$
z=2 x, t=-y
$$

so that any invertible matrix of the form

$$
S=\left[\begin{array}{rr}
x & y \\
2 x & -y
\end{array}\right]
$$

does the job. Note that $\operatorname{det}(\mathrm{S})=-3 x y$. Matrix S is invertible if $\operatorname{det}(S) \neq 0$ (i.e., if neither x nor y is zero).

EXAMPLE 7
Show that if matrix A is similar to B, then its power A^{t} is similar to B^{t} for all positive integers t. (That is, A^{2} is similar to B^{2}, A^{3} is similar to B^{3}, etc.)

Solution

We know that $\mathrm{B}=S^{-1} \mathrm{AS}$ for some invertible matrix S. Now, B^{t}
$=\frac{\left(S^{-1} A S\right)\left(S^{-1} A S\right) \ldots\left(S^{-1} A S\right)\left(S^{-1} A S\right)}{t-\text { times }}$
$=S^{-1} A^{t} S$,
proving our claims. Note the cancellation of many terms of the form $S S^{-1}$.

Fact 3.4.6
Similarity is an equivalence relation

1. An $n \times n$ matrix A is similar to itself (Reflexivity).
2. If A is similar to B, then B is similar to A (Symmetry).
3. If A is similar to B and B is similar to C, then A is similar to C (Transitivity).

Proof

A is similar to B : $B=P^{-1} A P$
B is similar to $C: C=Q^{-1} B Q$, then
$C=Q^{-1} B Q=Q^{-1} P^{-1} A P Q=(P Q)^{-1} A(P Q)$ that is, A is similar to C by matrix $P Q$.

Homework Exercise 3.4: 5, 6, 9, 10, 13, 14, 19, 31, 39

