3.4 COORDINATES

EXAMPLE 1

Let V be the plane in R^3 with equation $x_1+2x_2+3x_3=0$, a two-dimensional subspace of R^3 . We can describe a vector in this plane by its spatial (3D)coordinates; for example, vector

$$\vec{x} = \begin{bmatrix} 5\\ -1\\ -1 \end{bmatrix}$$

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

Consider any two vectors in plane V that aren't parallel, e.g.

$$\vec{v_1} = \begin{bmatrix} 1\\ -1\\ -1 \end{bmatrix}$$
 and $\vec{v_2} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$

See Figure 1, where we label the new axes c_1 and c_2 , with the new coordinate grid defined by vectors $\vec{v_1}$ and $\vec{v_2}$.

Note that the $c_1 - c_2$ coordinates of vector $\vec{v_1}$ is $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and the coordinates of vector $\vec{v_2}$ is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, respectively.

For a vector \vec{x} in plane V, we can find the scalars c_1 and c_2 such that

$$\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}.$$

For example,
$$\vec{x} = \begin{bmatrix} 5 \\ -1 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Therefore, the $c_1 - c_2$ coordinates of \vec{x} are

$$\left[\begin{array}{c}c_1\\c_2\end{array}\right] = \left[\begin{array}{c}3\\2\end{array}\right]$$

See Figure 3.

Let's denote the basis $\vec{v_1}$, $\vec{v_2}$ of V by B (Fraktur B). Then, the coordinate vector of \vec{x} with respect to B is denoted by $\begin{bmatrix} \vec{x} \end{bmatrix}_B$:

If
$$\vec{x} = \begin{bmatrix} 5 \\ -1 \\ -1 \end{bmatrix}$$
, then $\begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Definition 3.4.1 Coordinates in a subspace of R^n

Consider a basis B of a subspace V of \mathbb{R}^n , consisting of vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}$. Any vector \vec{x} in V can be written uniquely as

$$\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_m \vec{v_m}$$

The scalars c_1 , c_1 , ..., c_m are called the *B*-coordinates of \vec{x} , and the vector

is called the B-coordinate vector of \vec{x} , denoted by $\left[\begin{array}{c} \vec{x} \end{array} \right]_B$.

Note that

$$\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_B$$

where $S = \begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_m \\ | & | & | & | \end{bmatrix}$, an $n \times m$ matrix.

EXAMPLE 2 Consider the basis B of R^2 consisting of vectors $\vec{v_1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$ a. If $\vec{x} = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$, find $\begin{bmatrix} \vec{x} \end{bmatrix}_B$ b. If $\begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, find \vec{x}

Solution

a. To find the coordinates of vector \vec{x} , we need to write \vec{x} as a linear combination of the basis vectors:

$$\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$$
, or $\begin{bmatrix} 10\\10 \end{bmatrix} = c_1 \begin{bmatrix} 3\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\3 \end{bmatrix}$

Alternatively, we can solve the equation

$$\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_B$$

for $\begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

5

$$\begin{bmatrix} \vec{x} \end{bmatrix}_B = S^{-1}\vec{x} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 10 \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

b. By definition of coordinates, $\begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ means that $\vec{x} = 2\vec{v_1} + (-1)\vec{v_2} = 2\begin{bmatrix} 3 \\ 1 \end{bmatrix} + (-1)\begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$

Alternatively, use the formula

$$\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

6

EXAMPLE 3 Let L be the line in R^2 spanned by vector $\begin{bmatrix} 3\\1 \end{bmatrix}$. Let T be the linear transformation from R^2 to R^2 that projects any vector orthogonally onto line L, as shown in Figure 5.

- 1. In $\vec{x_1} \vec{x_2}$ coordinate system (See Figure 5): Sec 2.2 (pp. 59).
- 2. In $c_1 c_2$ coordinate system (See Figure 6): T transforms vector $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ into $\begin{bmatrix} c_1 \\ 0 \end{bmatrix}$. That is, T is given by the matrix $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, since $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ 0 \end{bmatrix}$

The transforms from $\begin{bmatrix} \vec{x} \end{bmatrix}_B$ into $\begin{bmatrix} T(\vec{x}) \end{bmatrix}_B$ is called the *B*-matrix of *T*:

$$\left[T(\vec{x}) \right]_B = B \left[\vec{x} \right]_B$$

Definition 3.4.2

The *B*-matrix of a linear transformation

Consider a linear transformation T from R^n to R^n and a basis B of R^n . The $n \times n$ matrix B that transforms $\begin{bmatrix} \vec{x} \end{bmatrix}_B$ into $\begin{bmatrix} T(\vec{x}) \end{bmatrix}_B$ is called the B-matrix of T:

$$\left[T(\vec{x}) \right]_B = \mathsf{B} \left[\vec{x} \right]_B$$

for all \vec{x} in \mathbb{R}^n .

Fact 3.4.3 The columns of the *B*-matrix of a linear transformation

Consider a linear transformation T from R^n to R^n and a basis B of R^n consisting of vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$. Then, the *B*-matrix of *T* is

 $B = \left[\left[T(\vec{x_1}) \right]_B \left[T(\vec{x_2}) \right]_B \dots \left[T(\vec{x_n}) \right]_B \right]$ That is, the columns of *B* are the *B*-coordinate vectors of $T(\vec{v_1}), T(\vec{v_2}), \dots, T(\vec{v_n})$.

EXAMPLE 4

Consider two perpendicular unit vectors $\vec{v_1}$ and $\vec{v_2}$ in R^3 . Form the basis $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3} = \vec{v_1} \times \vec{v_2}$ of R^3 ; let's denote this basis by B. Find the B-matrix B of the linear transformation $T(\vec{x}) = \vec{v_1} \times \vec{x}$.

(see Exercise 2.1: 44 on pp. 49,

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix})$$

Solution

Use Fact 3.4.3 to construct B column by column:

$$B = \begin{bmatrix} T(\vec{x_1}) \end{bmatrix}_B \begin{bmatrix} T(\vec{x_2}) \end{bmatrix}_B \dots \begin{bmatrix} T(\vec{x_n}) \end{bmatrix}_B \end{bmatrix}$$
$$= \begin{bmatrix} \vec{v_1} \times \vec{v_1} \end{bmatrix}_B \begin{bmatrix} \vec{v_1} \times \vec{v_2} \end{bmatrix}_B \begin{bmatrix} \vec{v_1} \times \vec{v_3} \end{bmatrix}_B \end{bmatrix}$$
$$= \begin{bmatrix} \vec{0} \end{bmatrix}_B \begin{bmatrix} \vec{v_3} \end{bmatrix}_B \begin{bmatrix} -\vec{v_2} \end{bmatrix}_B \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

EXAMPLE 5

Let *T* be the linear transformation from R^2 to R^2 that projects any vector orthogonally onto the line L spanned by $\begin{bmatrix} 3\\1 \end{bmatrix}$. In Example 3, we found that the matrix of *T* with respect to the basis *B* consisting of $\begin{bmatrix} 3\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\3 \end{bmatrix}$ is $B = \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix}$

What is the relation ship between B and the standard matrix A of T (such that $T(\vec{x})=A\vec{x}$)?

Solution

Recall from Definition 3.4.1 that

$$\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_B$$
, where $S = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$

and consider the following diagram: (Figure 7) 10

Note that
$$T(\vec{x}) = AS \begin{bmatrix} \vec{x} \end{bmatrix}_B$$

and also $T(\vec{x}) = SB \begin{bmatrix} \vec{x} \end{bmatrix}_B$,
so that $AS \begin{bmatrix} \vec{x} \end{bmatrix}_B = SB \begin{bmatrix} \vec{x} \end{bmatrix}_B$ for all \vec{x} .

Thus,

AS=SB and A=SB S^{-1}

Now we can find the standard matrix A of T:

$$A = SBS^{-1}$$

$$= \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \left(\frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 0.9 & 0.3 \\ 0.3 & 0.1 \end{bmatrix}$$

Alternatively, we could use Fact 2.2.5 to construct matrix A. The point here was to explore the relationship between matrices A and B.

Fact 3.4.4

Standard matrix versus *B*-matrix of a linear transformation

Consider a linear transformation T from R^n to R^n and a basis B of R^n consisting of vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$. Let B be the B-matrix of T and let A be the standard matrix of T(such that $T(\vec{x})=A\vec{x})$. Then, AS=SB, $B=S^{-1}AS$, and $A=SBS^{-1}$, where

$$S = \begin{bmatrix} | & | & | \\ \vec{v_1} & \vec{v_2} & \dots & \vec{v_m} \\ | & | & | \end{bmatrix}$$

Definition 3.4.5 Similar matrices

Consider two n \times n matrices A and B. We say that A is similar to B if there is an invertible matrix S such that

AS=SB, or
$$B=S^{-1}AS$$

EXAMPLE 6
Is matrix
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
 similar to $B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$?

Solution

We are looking for a matrix $S = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ such that AS=SB, or

$$\begin{bmatrix} x+2z & y+2t \\ 4x+3z & 4y+3t \end{bmatrix} = \begin{bmatrix} 5x & -y \\ 5z & -t \end{bmatrix}$$

These equations simplify to

$$z = 2x, t = -y,$$

so that any invertible matrix of the form

$$S = \left[\begin{array}{cc} x & y \\ 2x & -y \end{array} \right]$$

does the job. Note that det(S) = -3xy. Matrix S is invertible if $det(S) \neq 0$ (i.e., if neither x nor y is zero).

EXAMPLE 7

Show that if matrix A is similar to B, then its power A^t is similar to B^t for all positive integers t. (That is, A^2 is similar to B^2 , A^3 is similar to B^3 , etc.)

Solution

We know that $B=S^{-1}AS$ for some invertible matrix S. Now, B^{t} = $\underbrace{(S^{-1}AS)(S^{-1}AS)...(S^{-1}AS)(S^{-1}AS)}_{t-times}$ = $S^{-1}A^{t}S$,

proving our claims. Note the cancellation of many terms of the form SS^{-1} .

Fact 3.4.6 Similarity is an equivalence relation

- 1. An $n \times n$ matrix A is similar to itself (Reflexivity).
- 2. If A is similar to B, then B is similar to A (Symmetry).
- 3. If A is similar to B and B is similar to C, then A is similar to C (Transitivity).

Proof

A is similar to B: $B = P^{-1}AP$ B is similar to C: $C = Q^{-1}BQ$, then $C = Q^{-1}BQ = Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ)$ that is, A is similar to C by matrix PQ.

Homework Exercise 3.4: 5, 6, 9, 10, 13, 14, 19, 31, 39