3.3 The Dimension of a Subspace of R^{n}

Fact 3.3.2
All bases of a subspace V of R^{n} consist of the same number of vectors.

Hint Basis: linear independent and span V (Def 3.2.3)

Fact 3.3.1
Consider vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{p}}$ and $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \ldots$, \vec{w}_{q} in a subspace V of R^{n}. If the vectors $\overrightarrow{v_{i}}$ are linearly independent, and the vectors \vec{w}_{j} span V, then $\mathrm{p} \leq \mathrm{q}$.

Proof 3.3.2
Consider two bases $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{p}}$ and $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$, $\ldots, \overrightarrow{w_{q}}$ of V. Since the $\overrightarrow{v_{i}}$ are linearly independent, and the vectors \vec{w}_{j} span V, we have $p \leq q$. Like wise, since the \vec{w}_{j} are linearly independent and the $\overrightarrow{v_{i}}$ span V, we have $q \leq p$. Therefore, $p=q$.

Proof 3.3.1

$$
\begin{gathered}
\vec{v}_{1} \\
\vdots \\
\vdots \\
\vec{v}_{p}
\end{gathered}=a_{11} \vec{w}_{1}+\cdots+a_{1 q} \vec{a}_{q} \vec{w}_{1}+\cdots+\begin{gathered}
\vdots \\
a_{p q} \vec{w}_{q}
\end{gathered}
$$

Write each of these equations in matrix form:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{w}_{1} & \ldots & \vec{w}_{q} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{1 q}
\end{array}\right]=\vec{v}_{1}} \\
{\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{w}_{1} & \ldots & \vec{w}_{q} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
a_{p 1} \\
\vdots \\
a_{p q}
\end{array}\right]=\vec{v}_{p}}
\end{gathered}
$$

Combine all these equations into one matrix equation:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{w}_{1} & \ldots & \vec{w}_{q} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \ldots & a_{p 1} \\
\vdots & & \vdots \\
a_{1 q} & \ldots & a_{p q}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \ldots & \vec{v}_{p} \\
\mid & & \mid
\end{array}\right]} \\
M A=N
\end{gathered}
$$

Because

$$
A \vec{x}=\overrightarrow{0}, M A \vec{x}=N \vec{x}=\overrightarrow{0}
$$

The kernel of A is contained in the kernel of N.

Since the kernel of N is $\{\overrightarrow{0}\}$ (since the \vec{v}_{i} are linearly independent), the kernel of A is $\{\overrightarrow{0}\}$ as well.

This implies that $\operatorname{rank}(A)=p \leq q$ (by Fact 3.1.7).

Definition. Dimension

Consider a subspace V of R^{n}. The number of vectors in a basis of V is called the dimension of V, denoted by $\operatorname{dim}(V)$.

What is the dimension R^{n} itself?

Clearly, R^{n} ought to have dimension n. This is indeed the case: the vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ form a basis of R^{n} called its standard basis.

A plane E in R^{3} is two-dimensional.

Fact 3.3.4
Consider a subspace V of R^{n} with $\operatorname{dim}(V)=m$

1. We can find at most m linearly independent vectors in V.
2. We need at least m vectors to span V.
3. If m vectors in V are linearly independent, then they form a basis of V.
4. If m vectors span V, then they form a basis of V.

Proof 3.3.4 (3)
Consider linearly independent vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, $\ldots, \overrightarrow{v_{m}}$ in V. We have to show that the \vec{v}_{i} span V. Pick a \vec{v} in V. Then the vectors $\overrightarrow{v_{1}}$, $\overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}, \vec{v}$ will be linearly dependent, by (1). Therefore, there is a nontrivial relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}+c \vec{v}=\overrightarrow{0}
$$

We can solve the relation for \vec{v} and express it as a linear combination of the \vec{v}_{i}. In other words, the \vec{v}_{i} span V.

Finding a Basis of the Kernel

Example. Find a basis of the kernel of the following matrix, and determine the dimension of the kernel:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
2 & 4 & 1 & 9 & 5
\end{array}\right]
$$

Solution

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
2 & 4 & 1 & 9 & 5
\end{array}\right]-2(I) \\
& \longrightarrow \operatorname{rref}(A)=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 3 & 5
\end{array}\right]
\end{aligned}
$$

This corresponds to the system

$$
\left|\begin{array}{r}
3 x_{4} \\
x_{1}+2 x_{2}=0 \\
x_{3}+3 x_{4}+5 x_{5}=0
\end{array}\right|
$$

with general solution

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 s-3 t \\
s \\
-3 t-5 r \\
t \\
r
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
0 \\
-3 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
0 \\
0 \\
-5 \\
0 \\
1
\end{array}\right]
$$

The tree vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ span $\operatorname{ker}(A)$ and form a basis of the kernel of A (i.e. linearly independent).
$\operatorname{dim}(\operatorname{ker} \mathrm{A})=($ number of nonleading variables $)$
$=($ number of columns of $A)$-(number of leading variables)
$=($ number of columns of $A)-\operatorname{rank}(A)$
$=5-2=3$
Fact 3.3.5
Consider an $m \times n$ matrix A.

$$
\operatorname{dim}(\operatorname{ker} A)=n-\operatorname{rank}(A)
$$

Finding a Basis of the Image

Example. Find a basis of the image of the linear transformation T from R^{5} to R^{4} with matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 \\
1 & 1 & -1 & -1 & 0
\end{array}\right]
$$

and determine the dimenson of the image.

Solution

We know the columns of A span the image of A, but they are linearly dependent in this example. To construct a basis of im(A), we could find a relation among the columns of A, express one of the columns as linear combinartion of the others, and then omit this vector as redundant.

We first find the reduced row-echelon form of A:

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
1 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 \\
1 & 1 & -1 & -1 & 0
\end{array}\right] \\
& \begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5}
\end{array} \\
& E=\operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 0 & 1 & 2 & 0 \\
0 & 1 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\vec{w}_{1} & \vec{w}_{2} & \vec{w}_{3} & \vec{w}_{4} & \vec{w}_{5}
\end{array}
\end{aligned}
$$

By inspection, we can express any column of $\operatorname{rref}(A)$ that does not contain a leading 1 as a linear combination of earlier columns that do contain a leading 1.

$$
\vec{w}_{3}=\vec{w}_{1}-2 \vec{w}_{2}, \text { and } \vec{w}_{4}=2 \vec{w}_{1}-3 \vec{w}_{2}
$$

It may surprise you that the same relationships hold among the corresponding columns of the matrix A.

$$
\vec{v}_{3}=\vec{v}_{1}-2 \vec{v}_{2}, \text { and } \vec{v}_{4}=2 \vec{v}_{1}-3 \vec{v}_{2}
$$

Since $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$, and $\overrightarrow{w_{5}}$ are linearly independent, so are the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{5}}$. (Why?)

The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{5}}$ alone span the image of A, since any vector \vec{v} in the image of A can be expressed as

$$
\begin{gathered}
\overrightarrow{v^{2}}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}+c_{4} \overrightarrow{v_{4}}+c_{5} \overrightarrow{v_{5}} \\
=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3}\left(\overrightarrow{v_{1}}-2 \overrightarrow{v_{2}}\right)+c_{4}\left(2 \overrightarrow{v_{1}}-3 \overrightarrow{v_{2}}\right)+c_{5} \overrightarrow{v_{5}}
\end{gathered}
$$

Therefore, the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{5}}$ form a basis of $\operatorname{im}(A)$, and thus $\operatorname{dim}(\operatorname{im} A)=3$.

Definition.

A column of a matrix A is called a pivot column if the corresponding column of $\operatorname{rref}(A)$ contains a leading 1.

Fact 3.3.7 The pivot columns of a matrix A form a basis of $\operatorname{im}(A)$.

Fact 3.3.8 For any matrix A,

$$
\operatorname{rank}(A)=\operatorname{dim}(i m A) .
$$

Fact 3.3.9 Rank-Nullity Theorem If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(i m A)=n .
$$

The dimension of the kernel of matrix A is called the nullity of A :

$$
\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{ker} A)
$$

Using this definition and Fact 3.3.8, we can write:

$$
\operatorname{nullity}(A)+\operatorname{rank}(A)=n .
$$

\Rightarrow The larger the kernel, the smaller the image, and vice versa.

Bases of R^{n}
How can we tell n given vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ in R^{n} form a basis?

The \vec{v}_{i} form a basis of R^{n} if every vector \vec{b} in R^{n} can be written uniquely as a linear combination of the \vec{v}_{i} :
$\vec{b}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\ \mid & \mid & & \mid\end{array}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$
The linear system

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\vec{b}
$$

has a unique solution if (only if) the $n \times n$ matrix

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

is invertible.

Fact 3.3.10 The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ in R^{n} form a basis of R^{n} if (and only if) the matrix $\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n} \\ \mid & \mid & & \mid\end{array}\right]$
is invertible.

Example. Are the following vectors a basis of R^{4} ?

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
2 \\
9 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
4 \\
4 \\
8
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
1 \\
8 \\
1 \\
5
\end{array}\right], \overrightarrow{v_{4}}=\left[\begin{array}{l}
1 \\
9 \\
7 \\
3
\end{array}\right]
$$

Solution

We have to check whether the matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 4 & 8 & 9 \\
9 & 4 & 1 & 7 \\
1 & 8 & 5 & 3
\end{array}\right]
$$

is invertible. Using technology, we find that

$$
\operatorname{reff}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 4 & 8 & 9 \\
9 & 4 & 1 & 7 \\
1 & 8 & 5 & 3
\end{array}\right]=I_{4}
$$

Thus, the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ form a basis of R^{4}

Summary 3.3.11

Consider an $n \times n$ matrix

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Then the following statements are equivalent:

1. A is invertible.
2. The linear system $A \vec{x}=\vec{b}$ has a unique solution \vec{x}, for all \vec{b} for all \vec{b} in R^{n}.
3. $\operatorname{rref}(A)=I_{n}$.
4. $\operatorname{rank}(A)=n$.
5. $i m(A)=R^{n}$.
6. $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.
7. The \vec{v}_{i} are a basis of R^{n}.
8. The \vec{v}_{i} span R^{n}.
9. The \vec{v}_{i} are linearly independent.

Homework $3.36,7,8,17,18,27,31,33$, 39, 58, 59

Exercise 49: Find a basis of the row space of the matrix:

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 51: Consider an arbitrary $m \times n$ matrix A.

1. What is the relationship between the row spaces of A and $E=\operatorname{rref}(A)$?
2. What is the relationship between the dimension of the row space of A and the rank of A ?
