3.2 Subspaces of R^{n} Bases and Linear Independence

Definition. Subspaces of R^{n}
A subset W of R^{n} is called a subspace of R^{n} if it has the following properties:
(a). W contains the zero vector in R^{n}.
(b). W is closed under addition.
(c). W is closed under scalar multiplication.

Fact 3.2.2
If T is a linear transformation from R^{n} to R^{m}, then
$\diamond \operatorname{ker}(T)$ is a subspace of R^{n}
$\diamond i m(T)$ is a subspace of R^{m}

Example. Is $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in R^{2}: x \geq 0, y \geq 0\right\}$ a subspace of R^{2} ?

See Figure 1, 2.
Example. Is $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in R^{2}: x y \geq 0\right\}$ a subspace of R^{2} ?

See Figure 3, 4.

Example. Show that the only subspaces of R^{2} are: $\{\overrightarrow{0}\}$, any lines through the origin, and R^{2} itself.

Similarly, the only subspaces of R^{3} are: $\{\overrightarrow{0}\}$, any lines through the origin, any planes through $\overrightarrow{0}$, and R^{3} itself.

Solution

Suppose W is a subspace of R^{2} that is neither the set $\{\overrightarrow{0}\}$ nor a line through the origin. We have to show $W=R^{2}$.

Pick a nonzero vector $\overrightarrow{v_{1}}$ in W. (We can find such a vector, since W is not $\{\overrightarrow{0}\}$.) The subspace W contains the line L spanned by $\overrightarrow{v_{1}}$, but W does not equal L. Therefore, we can find a vector $\overrightarrow{v_{2}}$ in W that is not on L (See Figure 5). Using a parallelogram, we can express any vector \vec{v} in R^{2} as a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$. Therefore, \vec{v} is contained in W (Since W is closed under linear combinations). This shows that $W=R^{2}$, as claimed.

A plane E in R^{3} is usually described either by

$$
x_{1}+2 x_{2}+3 x_{3}=0
$$

or by giving E parametrically, as the span of two vectors, for example,

$$
\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

In other words, E is described either as

$$
\operatorname{ker}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

or

$$
\operatorname{im}\left[\begin{array}{rr}
1 & 1 \\
1 & -2 \\
-1 & 1
\end{array}\right]
$$

Similarly, a line L in R^{3} may be described either parametrically, as the span of the vector

$$
\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

or by two linear equations

$$
\left|\begin{array}{c}
x_{1}-x_{2}-x_{3}=0 \\
x_{1}-2 x_{2}+x_{3}=0
\end{array}\right|
$$

Therfore

$$
L=\operatorname{im}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{llr}
1 & -1 & -1 \\
1 & -2 & 1
\end{array}\right]
$$

A subspace of R^{n} is uaually presented either as the solution set of a homogeneous linear system (as a kernel) or as the span of some vectors (as an image).

Any subspace of R^{n} can be represented as the image of a matrix.

Bases and Linear Independence

Example. Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 3 \\
1 & 3 & 2 & 4
\end{array}\right]
$$

Find vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{m}}$ in R^{3} that span the image of A. What is the smallest number of vectors needed to span the image of A ?

Solution

We know from Fact 3.1.3 that the image of A spanned by the columns of A,

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right], \overrightarrow{v_{4}}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

Figure 6 show that we need only $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ to span the image of A. Since $\overrightarrow{v_{3}}=\overrightarrow{v_{2}}$ and $\overrightarrow{v_{4}}=$ $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}$, the vectors $\overrightarrow{v_{3}}$ and $\overrightarrow{v_{4}}$ are redundant; that is, they are linear combinations of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$:

$$
\begin{aligned}
\operatorname{im}(A) & =\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}\right) \\
& =\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right) .
\end{aligned}
$$

The image of A can be spanned by two vectors, but not by one vectors alone.

Definition. Linear independence; basis
Consider a sequence $\vec{v}_{1}, \ldots, \vec{v}_{m}$ of vectors in a subspace V of R^{n}.

The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are called linearly independent if nono of them is a linear combination of the others.

We say that the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ form a basis of V if they span V and are linearly independent.

See last example. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ span

$$
V=i m(A)
$$

but they are linearly dependent, because $\overrightarrow{v_{4}}=\overrightarrow{v_{2}}+\overrightarrow{v_{3}}$. Therefore, they do not form a basis of V. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, on the other hand, do span V and are linearly independent.

Definition. Linear relations

Consider the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n}. An equation of the form

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

is called a (linear) relation among the vectors \vec{v}_{i}. There is always the trievial relation, with $c_{1}=c_{2}=\cdots=c_{m}=0$. Nontrivial relations may or may not exist among the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n}.

Fact 3.2.5
The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n} are linearly dependent if (and only if) there are nontrivial relations among them.

Proof
\Rightarrow If one of the $\vec{v}_{i} \mathrm{~s}$ a linear combination of the others,
$\vec{v}_{i}=c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}+c_{i+1} \vec{v}_{i+1}+\ldots+c_{m} \vec{v}_{m}$ then we can find a nontrivial relation by subtracting \vec{v}_{i} from both sides of the equations:
$c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}-\vec{v}_{i}+c_{i+1} \vec{v}_{i+1}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}$
\Leftarrow Conversely, if there is a nontrivial relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{i} \vec{v}_{i}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

then we can solve for \vec{v}_{i} and express \vec{v}_{i} as a linear combination of the other vectors.

Example. Determine whether the following vectors are linearly independent

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{r}
6 \\
7 \\
8 \\
9 \\
10
\end{array}\right],\left[\begin{array}{r}
2 \\
3 \\
5 \\
7 \\
11
\end{array}\right],\left[\begin{array}{r}
1 \\
4 \\
9 \\
16 \\
25
\end{array}\right] .
$$

Solution

TO find the relations among these vectors, we have to solve the vector equation
$c_{1}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]+c_{2}\left[\begin{array}{r}6 \\ 7 \\ 8 \\ 9 \\ 10\end{array}\right]+c_{3}\left[\begin{array}{r}2 \\ 3 \\ 5 \\ 7 \\ 11\end{array}\right]+c_{4}\left[\begin{array}{r}1 \\ 4 \\ 9 \\ 16 \\ 25\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
or

$$
\left[\begin{array}{rrrr}
1 & 6 & 2 & 1 \\
2 & 7 & 3 & 4 \\
3 & 8 & 5 & 9 \\
4 & 9 & 7 & 16 \\
5 & 10 & 11 & 25
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

In other words, we have to find the kernal of A. To do so, we compute $\operatorname{rref}(A)$. Using technology, we find that

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This shows the kernel of A is $\{\overrightarrow{0}\}$, because there is a leading 1 in each column of $\operatorname{rref}(A)$. There is only the trivial relation among the four vectors and they are therefore linearly independent.

Fact 3.2.6
The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in R^{n} are linearly independent if (and only if)

$$
\operatorname{ker}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]=\{\overrightarrow{0}\}
$$

or, equivalently, of

$$
\operatorname{rank}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]=m
$$

This condition implies that $m \leq n$.

Fact 3.2.7
Consider the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in a subspace V of R^{n}.
The vectors \vec{v}_{i} are a basis of V if (and only if) every vector \vec{v} in V can be expressed uniquely as a linear combination of the vectors \vec{v}_{i}.

Proof

\Rightarrow Suppose vectors \vec{v}_{i} are a basis of V, and consider a vector \vec{v} in V. Since the basis vectors span V, the vector \vec{v} can be written as a linear combination of the \vec{v}_{i}. We have to demonstrate that this representation is unique. If there are two representations:

$$
\begin{aligned}
& \vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{m} \vec{v}_{m} \\
& =d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\ldots+d_{m} \vec{v}_{m}
\end{aligned}
$$

By subtraction, we find

$$
\overrightarrow{0}=\left(c_{1}-d_{1}\right) \vec{v}_{1}+\left(c_{2}-d_{2}\right) \vec{v}_{2}+\ldots+\left(c_{m}-d_{m}\right) \vec{v}_{m}
$$

Since the \vec{v}_{i} are linearly independent, $c_{i}-d_{i}=0$, or $c_{i}=d_{i}$, for all i.
\Leftarrow, suppose that each vector in V can be expressed uniquely as a linear combination of the vectors \vec{v}_{i}. Clearly, the \vec{v}_{i}. span V. The zero vector can be expressed uniquely as a linear combination of the \vec{v}_{i}, namely, as

$$
\overrightarrow{0}=0 \vec{v}_{1}+0 \vec{v}_{2}+\ldots+0 \vec{v}_{m}
$$

This means there is only the trivial relation among the \vec{v}_{i} : they are linearly independent.

See Figure 7. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$ do not form a basis of E, since every vector in E can be expressed in more than one way as a linear combination of the \vec{v}_{i}. For example,

$$
\vec{v}_{4}=\vec{v}_{1}+\vec{v}_{2}+0 \vec{v}_{3}+0 \vec{v}_{4}
$$

but also

$$
\vec{v}_{4}=0 \vec{v}_{1}+0 \vec{v}_{2}+0 \vec{v}_{3}+1 \vec{v}_{4} .
$$

Homework 3.2: 3, 5, 9, 17, 18, 19, 29, 30, 39

