3.2 Subspaces of \mathbb{R}^n Bases and Linear Independence

Definition. Subspaces of \mathbb{R}^n

A subset W of \mathbb{R}^n is called a subspace of \mathbb{R}^n if it has the following properties:

(a). W contains the zero vector in Rⁿ.
(b). W is closed under addition.
(c). W is closed under scalar multiplication.

Fact 3.2.2

If T is a linear transformation from \mathbb{R}^n to \mathbb{R}^m , then

◊ ker(T) is a subspace of R^n ◊ im(T) is a subspace of R^m **Example.** Is $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in R^2 : x \ge 0, y \ge 0 \right\}$ a subspace of R^2 ?

See Figure 1, 2.

Example. Is $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in R^2 : xy \ge 0 \right\}$ a subspace of R^2 ?

See Figure 3, 4.

Example. Show that the only subspaces of R^2 are: $\{\vec{0}\}$, any lines through the origin, and R^2 itself.

Similarly, the only subspaces of R^3 are: $\{\vec{0}\}$, any lines through the origin, any planes through $\vec{0}$, and R^3 itself.

Solution

Suppose W is a subspace of R^2 that is neither the set $\{\vec{0}\}$ nor a line through the origin. We have to show $W = R^2$.

Pick a nonzero vector $\vec{v_1}$ in W. (We can find such a vector, since W is not $\{\vec{0}\}$.) The subspace W contains the line L spanned by $\vec{v_1}$, but W does not equal L. Therefore, we can find a vector $\vec{v_2}$ in W that is not on L (See Figure 5). Using a parallelogram, we can express any vector \vec{v} in R^2 as a linear combination of $\vec{v_1}$ and $\vec{v_2}$. Therefore, \vec{v} is contained in W (Since W is closed under linear combinations). This shows that $W = R^2$, as claimed. A plane E in R^3 is usually described either by

$$x_1 + 2x_2 + 3x_3 = 0$$

or by giving E parametrically, as the span of two vectors, for example,

$$\left[\begin{array}{c}1\\1\\-1\end{array}\right] \text{ and } \left[\begin{array}{c}1\\-2\\1\end{array}\right].$$

In other words, ${\boldsymbol E}$ is described either as

ker[1 2 3]

or

$$im \left[egin{array}{ccc} 1 & 1 \ 1 & -2 \ -1 & 1 \end{array}
ight]$$

Similarly, a line L in R^3 may be described either parametrically, as the span of the vector

$$\left[\begin{array}{c}3\\2\\1\end{array}\right]$$

or by two linear equations

$$x_1 - x_2 - x_3 = 0$$

$$x_1 - 2x_2 + x_3 = 0$$

Therfore

$$L = im \begin{bmatrix} 3\\2\\1 \end{bmatrix} = ker \begin{bmatrix} 1 & -1 & -1\\1 & -2 & 1 \end{bmatrix}$$

A subspace of R^n is uaually presented either as the solution set of a homogeneous linear system (as a kernel) or as the span of some vectors (as an image).

Any subspace of R^n can be represented as the image of a matrix.

Bases and Linear Independence

Example. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 3 & 2 & 4 \end{bmatrix}$$

Find vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}$ in \mathbb{R}^3 that span the image of A. What is the <u>smallest number</u> of vectors needed to span the image of A?

Solution

We know from Fact 3.1.3 that the image of A spanned by the columns of A,

$$\vec{v_1} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \vec{v_2} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \vec{v_3} = \begin{bmatrix} 2\\2\\2 \end{bmatrix}, \ \vec{v_4} = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$$

Figure 6 show that we need only $\vec{v_1}$ and $\vec{v_2}$ to span the image of A. Since $\vec{v_3} = \vec{v_2}$ and $\vec{v_4} = \vec{v_1} + \vec{v_2}$, the vectors $\vec{v_3}$ and $\vec{v_4}$ are redundant; that is, they are linear combinations of $\vec{v_1}$ and $\vec{v_2}$:

$$im(A) = span(\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4})$$

= $span(\vec{v_1}, \vec{v_2})$.

The image of A can be spanned by two vectors, but not by one vectors alone.

Definition. Linear independence; basis

Consider a sequence $\vec{v}_1, \ldots, \vec{v}_m$ of vectors in a subspace V of \mathbb{R}^n .

The vectors $\vec{v}_1, \ldots, \vec{v}_m$ are called **linearly independent** if nono of them is a linear combination of the others.

We say that the vectors $\vec{v}_1, \ldots, \vec{v}_m$ form a **basis** of *V* if they span *V* and are linearly independent.

See last example. The vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$ span

$$V = im(A)$$

but they are linearly dependent, because $\vec{v_4} = \vec{v_2} + \vec{v_3}$. Therefore, they do not form a basis of V. The vectors $\vec{v_1}$, $\vec{v_2}$, on the other hand, do span V and are linearly independent.

Definition. Linear relations

Consider the vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n . An equation of the form

 $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_m \vec{v}_m = \vec{0}$

is called a (linear) relation among the vectors \vec{v}_i . There is always the trievial relation, with $c_1 = c_2 = \cdots = c_m = 0$. Nontrivial relations may or may not exist among the vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n .

Fact 3.2.5

The vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n are linearly dependent if (and only if) there are nontrivial relations among them.

Proof

 \Rightarrow If one of the $\vec{v_i}$ s a linear combination of the others,

 $\vec{v}_i = c_1 \vec{v}_1 + \dots + c_{i-1} \vec{v}_{i-1} + c_{i+1} \vec{v}_{i+1} + \dots + c_m \vec{v}_m$ then we can find a nontrivial relation by subtracting \vec{v}_i from both sides of the equations:

 $c_1 \vec{v}_1 + \dots + c_{i-1} \vec{v}_{i-1} - \vec{v}_i + c_{i+1} \vec{v}_{i+1} + \dots + c_m \vec{v}_m = \vec{0}$

 \Leftarrow Conversely, if there is a nontrivial relation

$$c_1 \vec{v}_1 + \cdots + c_i \vec{v}_i + \ldots + c_m \vec{v}_m = \vec{0}$$

then we can solve for \vec{v}_i and express \vec{v}_i as a linear combination of the other vectors.

Example. Determine whether the following vectors are linearly independent

Solution

TO find the relations among these vectors, we have to solve the vector equation

$$c_{1}\begin{bmatrix}1\\2\\3\\4\\5\end{bmatrix}+c_{2}\begin{bmatrix}6\\7\\8\\9\\10\end{bmatrix}+c_{3}\begin{bmatrix}2\\3\\5\\7\\11\end{bmatrix}+c_{4}\begin{bmatrix}1\\4\\9\\16\\25\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\\0\end{bmatrix}$$

11

or

$$\begin{bmatrix} 1 & 6 & 2 & 1 \\ 2 & 7 & 3 & 4 \\ 3 & 8 & 5 & 9 \\ 4 & 9 & 7 & 16 \\ 5 & 10 & 11 & 25 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

In other words, we have to find the kernal of A. To do so, we compute rref(A). Using technology, we find that

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This shows the kernel of A is $\{\vec{0}\}$, because there is a leading 1 in each column of rref(A). There is only the trivial relation among the four vectors and they are therefore linearly independent.

Fact 3.2.6

The vectors $\vec{v}_1, \ldots, \vec{v}_m$ in R^n are linearly independent if (and only if)

$$ker \begin{bmatrix} | & | & | \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_m \\ | & | & | \end{bmatrix} = \{\vec{0}\}$$

or, equivalently, of

$$rank \begin{bmatrix} | & | & | \\ \vec{v_1} & \vec{v_2} & \dots & \vec{v_m} \\ | & | & | \end{bmatrix} = m$$

This condition implies that $m \leq n$.

Fact 3.2.7

Consider the vectors $\vec{v}_1, \ldots, \vec{v}_m$ in a subspace V of \mathbb{R}^n .

The vectors \vec{v}_i are a basis of V if (and only if) every vector \vec{v} in V can be expressed **uniquely** as a linear combination of the vectors \vec{v}_i .

Proof

 \Rightarrow Suppose vectors \vec{v}_i are a basis of V, and consider a vector \vec{v} in V. Since the basis vectors span V, the vector \vec{v} can be written as a linear combination of the \vec{v}_i . We have to demonstrate that this representation is unique. If there are two representations:

 $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_m \vec{v}_m$ $= d_1 \vec{v}_1 + d_2 \vec{v}_2 + \ldots + d_m \vec{v}_m$

By subtraction, we find

 $\vec{0} = (c_1 - d_1)\vec{v}_1 + (c_2 - d_2)\vec{v}_2 + \ldots + (c_m - d_m)\vec{v}_m$

Since the \vec{v}_i are linearly independent, $c_i - d_i = 0$, or $c_i = d_i$, for all *i*.

 \Leftarrow , suppose that each vector in V can be expressed uniquely as a linear combination of the vectors \vec{v}_i . Clearly, the \vec{v}_i . span V. The zero vector can be expressed uniquely as a linear combination of the \vec{v}_i , namely, as

$$\vec{0} = 0\vec{v}_1 + 0\vec{v}_2 + \ldots + 0\vec{v}_m$$

This means there is only the trivial relation among the $\vec{v_i}$: they are linearly independent. See Figure 7. The vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$ do not form a basis of E, since every vector in E can be expressed in more than one way as a linear combination of the $\vec{v_i}$. For example,

$$\vec{v}_4 = \vec{v}_1 + \vec{v}_2 + 0\vec{v}_3 + 0\vec{v}_4$$

but also

$$\vec{v}_4 = 0\vec{v}_1 + 0\vec{v}_2 + 0\vec{v}_3 + 1\vec{v}_4.$$

Homework **3.2**: 3, 5, 9, 17, 18, 19, 29, 30, 39