
3.2 Subspaces of Rn Bases and Linear In-

dependence

Definition. Subspaces of Rn

A subset W of Rn is called a subspace of Rn if

it has the following properties:

(a). W contains the zero vector in Rn.

(b). W is closed under addition.

(c). W is closed under scalar multiplication.

Fact 3.2.2

If T is a linear transformation from Rn to Rm,

then

¦ ker(T ) is a subspace of Rn

¦ im(T ) is a subspace of Rm
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Example. Is W =

{[
x
y

]
∈ R2 : x ≥ 0, y ≥ 0

}

a subspace of R2?

See Figure 1, 2.

Example. Is W =

{[
x
y

]
∈ R2 : xy ≥ 0

}
a sub-

space of R2?

See Figure 3, 4.

Example. Show that the only subspaces of

R2 are: {~0}, any lines through the origin, and

R2 itself.

Similarly, the only subspaces of R3 are: {~0},
any lines through the origin, any planes through
~0, and R3 itself.
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Solution

Suppose W is a subspace of R2 that is neither

the set {~0} nor a line through the origin. We

have to show W = R2.

Pick a nonzero vector ~v1 in W . (We can find

such a vector, since W is not {~0}.) The sub-

space W contains the line L spanned by ~v1, but

W does not equal L. Therefore, we can find

a vector ~v2 in W that is not on L (See Figure

5). Using a parallelogram, we can express any

vector ~v in R2 as a linear combination of ~v1

and ~v2. Therefore, ~v is contained in W (Since

W is closed under linear combinations). This

shows that W = R2 , as claimed.
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A plane E in R3 is usually described either by

x1 + 2x2 + 3x3 = 0

or by giving E parametrically, as the span of

two vectors, for example,




1
1
−1


 and




1
−2
1


.

In other words, E is described either as

ker[ 1 2 3 ]

or

im




1 1
1 −2

−1 1



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Similarly, a line L in R3 may be described either

parametrically, as the span of the vector



3
2
1




or by two linear equations
∣∣∣∣∣

x1 − x2 − x3 = 0
x1 − 2x2 + x3 = 0

∣∣∣∣∣
Therfore

L = im




3
2
1


 = ker

[
1 −1 −1
1 −2 1

]

A subspace of Rn is uaually presented either

as the solution set of a homogeneous linear

system (as a kernel) or as the span of some

vectors (as an image).

Any subspace of Rn can be represented as the

image of a matrix.
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Bases and Linear Independence

Example. Consider the matrix

A =




1 1 2 2
1 2 2 3
1 3 2 4




Find vectors ~v1, ~v2, · · · , ~vm in R3 that span the

image of A. What is the smallest number of

vectors needed to span the image of A?

Solution

We know from Fact 3.1.3 that the image of A

spanned by the columns of A,

~v1 =




1
1
1


, ~v2 =




1
2
3


, ~v3 =




2
2
2


, ~v4 =




2
3
4




6



Figure 6 show that we need only ~v1 and ~v2 to

span the image of A. Since ~v3 = ~v2 and ~v4 =

~v1 + ~v2, the vectors ~v3 and ~v4 are redundant;

that is, they are linear combinations of ~v1 and

~v2:

im(A) = span( ~v1, ~v2, ~v3, ~v4)

= span( ~v1, ~v2) .

The image of A can be spanned by two vectors,

but not by one vectors alone.
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Definition. Linear independence; basis

Consider a sequence ~v1, . . . , ~vm of vectors in a

subspace V of Rn.

The vectors ~v1, . . . , ~vm are called linearly inde-

pendent if nono of them is a linear combina-

tion of the others.

We say that the vectors ~v1, . . . , ~vm form a basis

of V if they span V and are linearly indepen-

dent.

See last example. The vectors ~v1, ~v2, ~v3, ~v4

span

V = im(A)

but they are linearly dependent, because ~v4= ~v2+ ~v3.

Therefore, they do not form a basis of V . The

vectors ~v1, ~v2, on the other hand, do span V

and are linearly independent.
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Definition. Linear relations

Consider the vectors ~v1, . . . , ~vm in Rn. An equa-

tion of the form

c1~v1 + c2~v2 + . . . + cm~vm = ~0

is called a (linear) relation among the vec-

tors ~vi. There is always the trievial relation,

with c1 = c2 = · · · = cm = 0. Nontrivial rela-

tions may or may not exist among the vectors

~v1, . . . , ~vm in Rn.
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Fact 3.2.5

The vectors ~v1, . . . , ~vm in Rn are linearly de-

pendent if (and only if) there are nontrivial

relations among them.

Proof

⇒ If one of the ~vi s a linear combination of the

others,

~vi = c1~v1+· · ·+ci−1~vi−1+ci+1~vi+1+. . .+cm~vm

then we can find a nontrivial relation by sub-

tracting ~vi from both sides of the equations:

c1~v1+· · ·+ci−1~vi−1−~vi+ci+1~vi+1+. . .+cm~vm = ~0

⇐ Conversely, if there is a nontrivial relation

c1~v1 + · · ·+ ci~vi + . . . + cm~vm = ~0

then we can solve for ~vi and express ~vi as a

linear combination of the other vectors.
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Example. Determine whether the following

vectors are linearly independent




1
2
3
4
5



,




6
7
8
9

10



,




2
3
5
7

11



,




1
4
9

16
25



.

Solution

TO find the relations among these vectors, we

have to solve the vector equation

c1




1
2
3
4
5


 + c2




6
7
8
9

10


 + c3




2
3
5
7

11


 + c4




1
4
9

16
25


 =




0
0
0
0
0



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or



1 6 2 1
2 7 3 4
3 8 5 9
4 9 7 16
5 10 11 25







c1

c2

c3

c4


 =




0
0
0
0
0




In other words, we have to find the kernal of

A. To do so, we compute rref(A). Using

technology, we find that




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




This shows the kernel of A is {~0}, because

there is a leading 1 in each column of rref(A).

There is only the trivial relation among the

four vectors and they are therefore linearly in-

dependent.
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Fact 3.2.6

The vectors ~v1, . . . , ~vm in Rn are linearly inde-

pendent if (and only if)

ker



| | |

~v1 ~v2 . . . ~vm

| | |


 = {~0}

or, equivalently, of

rank



| | |

~v1 ~v2 . . . ~vm

| | |


 = m

This condition implies that m ≤ n.
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Fact 3.2.7

Consider the vectors ~v1, . . . , ~vm in a subspace

V of Rn.

The vectors ~vi are a basis of V if (and only if)

every vector ~v in V can be expressed uniquely

as a linear combination of the vectors ~vi.

Proof

⇒ Suppose vectors ~vi are a basis of V , and

consider a vector ~v in V . Since the basis vec-

tors span V , the vector ~v can be written as

a linear combination of the ~vi. We have to

demonstrate that this representation is unique.

If there are two representations:

~v = c1~v1 + c2~v2 + . . . + cm~vm

= d1~v1 + d2~v2 + . . . + dm~vm

By subtraction, we find

~0 = (c1−d1)~v1+(c2−d2)~v2+ . . .+(cm−dm)~vm
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Since the ~vi are linearly independent, ci−di = 0,

or ci = di, for all i.

⇐, suppose that each vector in V can be ex-

pressed uniquely as a linear combination of the

vectors ~vi. Clearly, the ~vi. span V . The zero

vector can be expressed uniquely as a linear

combination of the ~vi, namely, as

~0 = 0~v1 + 0~v2 + . . . + 0~vm

This means there is only the trivial relation

among the ~vi: they are linearly independent.



See Figure 7. The vectors ~v1, ~v2, ~v3, ~v4 do not

form a basis of E, since every vector in E can

be expressed in more than one way as a linear

combination of the ~vi. For example,

~v4 = ~v1 + ~v2 + 0~v3 + 0~v4

but also

~v4 = 0~v1 + 0~v2 + 0~v3 + 1~v4.

Homework 3.2: 3, 5, 9, 17, 18, 19, 29, 30,

39
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