
3.1 Image and Kernal of a Linear Trans-

formation

Definition. Image

The image of a function consists of all the

values the function takes in its codomain. If f

is a function from X to Y , then

image(f) = {f(x): x ∈ X}
= {y ∈ Y : y = f(x), for some x ∈ X}

Example. See Figure 1.

Example. The image of

f(x) = ex

consists of all positive numbers.

Example. b ∈ im(f), c 6∈ im(f) See Figure 2.

Example. f(t) =

[
cos(t)
sin(t)

]
(See Figure 3.)
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Example. If the function from X to Y is in-

vertible, then image(f) = Y . For each y in Y ,

there is one (and only one) x in X such that

y = f(x), namely, x = f−1(y).

Example. Consider the linear transformation

T from R3 to R3 that projects a vector or-

thogonally into the x1 − x2-plane, as illustrate

in Figure 4. The image of T is the x1−x2-plane

in R3.

Example. Describe the image of the linear

transformation T from R2 to R2 given by the

matrix

A =

[
1 3
2 6

]

Solution

T

[
x1
x2

]
= A

[
x1
x2

]
=

[
1 3
2 6

] [
x1
x2

]
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= x1

[
1
2

]
+ x2

[
3
6

]
= x1

[
1
2

]
+ 3x2

[
1
2

]

= (x1 + 3x2)

[
1
2

]

See Figure 5.

Example. Describe the image of the linear

transformation T from R2 to R3 given by the

matrix

A =




1 1
1 2
1 3




Solution

T

[
x1
x2

]
=




1 1
1 2
1 3




[
x1
x2

]
= x1




1
1
1


 + x2




1
2
3




See Figure 6.



Definition. Consider the vectors ~v1, ~v2, . . . ,

~vn in Rm. The set of all linear combinations of

the vectors ~v1, ~v2, . . . , ~vn is called their span:

span(~v1, ~v2, . . . , ~vn)

={c1~v1 + c2~v2 + . . .+ cn~vn: ci arbitrary scalars}

Fact The image of a linear transformation

T (~x) = A~x

is the span of the columns of A. We denote

the image of T by im(T ) or im(A).

Justification

T (~x) = A~x =



| |
~v1 . . . ~vn

| |







x1
x2
...

xn




= x1 ~v1 + x2 ~v2 + . . . + xn ~vn.
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Fact: Properties of the image

(a). The zero vector is contained in im(T ),
i.e. ~0 ∈ im(T ).

(b). The image is closed under addition:
If ~v1, ~v2 ∈ im(T ), then ~v1 + ~v2 ∈ im(T ).

(c). The image is closed under scalar multipli-
cation: If ~v ∈ im(T ), then k~v ∈ im(T ).

Verification

(a). ~0 ∈ Rm since A~0 = ~0.

(b). Since ~v1 and ~v2 ∈ im(T ), ∃ ~w1 and ~w2 st.
T ( ~w1) = ~v1 and T ( ~w2) = ~v2. Then, ~v1 + ~v2 =
T ( ~w1) + T ( ~w2) = T ( ~w1 + ~w2), so that ~v1 + ~v2

is in the image as well.

(c). ∃ ~w st. T (~w) = ~v. Then k~v = kT (~w) =
T (k ~w), so k~v is in the image.
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Example. Consider an n× n matrix A. Show

that im(A2) is contained in im(A).

Hint: To show ~w is also in im(A), we need to

find some vector ~u st. ~w = A~u.

Solution

Consider a vector ~w in im(A2). There exists

a vector ~v st. ~w = A2~v = AA~v = A~u where

~u = A~v.
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Definition. Kernel

The kernel of a linear transformation T (~x) =

A~x is the set of all zeros of the transformation

(i.e., the solutions of the equation A~x = ~0. See

Figure 9.

We denote the kernel of T by ker(T ) or ker(A).

For a linear transformation T from Rn to Rm,

• im(T ) is a subset of the codomain Rm of

T , and

• ker(T ) is a subset of the domain Rn of T .
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Example. Consider the orthogonal project onto

the x1 − x2−plane, a linear transformation T

from R3 to R3. See Figure 10.

The kernel of T consists of all vectors whose

orthogonal projection is ~0. These are the vec-

tors on the x3−axis (the scalar multiples of ~e3).
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Example. Find the kernel of the linear trans-
formation T from R3 to R2 given by

T (~x) =

[
1 1 1
1 2 3

]

Solution

We have to solve the linear system

T (~x) =

[
1 1 1
1 2 3

]
~x = ~0

rref

[
1 1 1 0
1 2 3 0

]
=

[
1 0 −1 0
0 1 2 0

]

x1 − x3 = 0
x2 + 2x3 = 0




x1
x2
x3


 =




t
−2t

t


 = t




1
−2
1




The kernel is the line spanned by




1
−2
1


.
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Example. Find the kernel of the linear trans-

formation T from R5 to R4 given by the matrix

A =




1 5 4 3 2
1 6 6 6 6
1 7 8 10 12
1 6 6 7 8




Solution We have to solve the linear system

T(~x) = A~0 = ~0

rref(A) =




1 0 −6 0 6
0 1 2 0 −2
0 0 0 1 2
0 0 0 0 0


 .

The kernel of T consists of the solutions of the

system

∣∣∣∣∣∣∣

x1 −6x3 +6x5 = 0
x2 +2x3 −2x5 = 0

x4 +2x5 = 0

∣∣∣∣∣∣∣
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The solution are the vectors

~x =




x1
x2
x3
x4
x5




=




6s− 6t
−2s + 2t

s
−2t

t




where s and t are arbitrary constants .

ker(T)=




6s− 6t
−2s + 2t

s
−2t

t




: s , t arbitrary scalars

We can write




6s− 6t
−2s + 2t

s
−2t

t




= s




6
−2
1
0
0




+ t




−6
2
0

−2
1






This shows that

ker(T) = span







6
−2
1
0
0




,




−6
2
0

−2
1









Fact 3.1.6: Properties of the kernel

(a) The zero vector ~0 in Rn in in ker(T ).
(b) The kernel is closed under addition.
(c) The kernel is closed under scalar multipli-
cation.

The verification is left as Exercise 49.

Fact 3.1.7
1. Consider an m*n matrix A then

ker(A) = {~0}

if (and only if ) rank(A) = n.(This implies that
n ≤ m.)

Check exercise 2.4 (35)

2. For a square matrix A,

ker(A) = {~0}

if (and only if ) A is invertible.
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Summary
Let A be an n*n matrix . The following state-
ments are equivalent (i.e.,they are either all
true or all false):

1. A is invertible.

2. The linear system A~x = ~b has a unique
solution ~x , for all ~b in Rn. (def 2.3.1)

3. rref(A) = In. (fact 2.3.3)

4. rank(A) = n. (def 1.3.2)

5. im(A) = Rn. (ex 3.1.3b)

6. ker(A) = {~0}. (fact 3.1.7)

Homework 3.1: 5, 6, 7, 14, 15, 16, 31, 33,
42, 43
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