3.1 Image and Kernal of a Linear Transformation

Definition. Image

The image of a function consists of all the values the function takes in its codomain. If f is a function from X to Y, then
image(f) $=\{f(x): x \in X\}$

$$
=\{y \in Y: y=f(x), \text { for some } x \in X\}
$$

Example. See Figure 1.

Example. The image of

$$
f(x)=e^{x}
$$

consists of all positive numbers.

Example. $b \in i m(f), c \notin i m(f)$ See Figure 2.
Example. $f(t)=\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right]$ (See Figure 3.)

Example. If the function from X to Y is invertible, then image $(f)=Y$. For each y in Y, there is one (and only one) x in X such that $y=f(x)$, namely, $x=f^{-1}(y)$.

Example. Consider the linear transformation T from R^{3} to R^{3} that projects a vector orthogonally into the $x_{1}-x_{2}$-plane, as illustrate in Figure 4. The image of T is the $x_{1}-x_{2}$-plane in R^{3}.

Example. Describe the image of the linear transformation T from R^{2} to R^{2} given by the matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]
$$

Solution

$T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\begin{aligned}
& =x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3 x_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left(x_{1}+3 x_{2}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

See Figure 5.

Example. Describe the image of the linear transformation T from R^{2} to R^{3} given by the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

Solution
$T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
See Figure 6.

Definition. Consider the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots$, \vec{v}_{n} in R^{m}. The set of all linear combinations of the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is called their span:
$\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right)$
$=\left\{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}: c_{i}\right.$ arbitrary scalars $\}$
Fact The image of a linear transformation

$$
T(\vec{x})=A \vec{x}
$$

is the span of the columns of A. We denote the image of T by $i m(T)$ or $i m(A)$.

Justification

$$
\begin{aligned}
& T(\vec{x})=A \vec{x}=\left[\begin{array}{ccc}
\mid \overrightarrow{v_{1}} & \ldots & \mid \\
\mid & & \mid \overrightarrow{v_{n}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =x_{1} \overrightarrow{v_{1}}+x_{2} \overrightarrow{v_{2}}+\ldots+x_{n} \overrightarrow{v_{n}} .
\end{aligned}
$$

Fact: Properties of the image

(a). The zero vector is contained in $\operatorname{im}(T)$, i.e. $\overrightarrow{0} \in \operatorname{im}(T)$.
(b). The image is closed under addition: If $\vec{v}_{1}, \vec{v}_{2} \in \operatorname{im}(T)$, then $\vec{v}_{1}+\vec{v}_{2} \in \operatorname{im}(T)$.
(c). The image is closed under scalar multiplication: If $\vec{v} \in i m(T)$, then $k \vec{v} \in \operatorname{im}(T)$.

Verification
(a). $\overrightarrow{0} \in R^{m}$ since $A \overrightarrow{0}=\overrightarrow{0}$.
(b). Since $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}} \in i m(T), \exists \overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$ st. $T\left(\overrightarrow{w_{1}}\right)=\overrightarrow{v_{1}}$ and $T\left(\overrightarrow{w_{2}}\right)=\overrightarrow{v_{2}}$. Then, $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}=$ $T\left(\overrightarrow{w_{1}}\right)+T\left(\overrightarrow{w_{2}}\right)=T\left(\overrightarrow{w_{1}}+\overrightarrow{w_{2}}\right)$, so that $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}$ is in the image as well.
(c). $\exists \vec{w}$ st. $T(\vec{w})=\vec{v}$. Then $k \vec{v}=k T(\vec{w})=$ $T(k \vec{w})$, so $k \vec{v}$ is in the image.

Example. Consider an $n \times n$ matrix A. Show that $\operatorname{im}\left(A^{2}\right)$ is contained in $\operatorname{im}(A)$.

Hint: To show \vec{w} is also in $\operatorname{im}(A)$, we need to find some vector \vec{u} st. $\vec{w}=A \vec{u}$.

Solution

Consider a vector \vec{w} in im(A^{2}). There exists a vector \vec{v} st. $\vec{w}=A^{2} \vec{v}=A A \vec{v}=A \vec{u}$ where $\vec{u}=A \vec{v}$.

Definition. Kernel

The kernel of a linear transformation $T(\vec{x})=$ $A \vec{x}$ is the set of all zeros of the transformation (i.e., the solutions of the equation $A \vec{x}=\overrightarrow{0}$. See Figure 9.

We denote the kernel of T by $\operatorname{ker}(T)$ or $\operatorname{ker}(A)$.

For a linear transformation T from R^{n} to R^{m},

- $\operatorname{im}(T)$ is a subset of the codomain R^{m} of T, and
- $\operatorname{ker}(T)$ is a subset of the domain R^{n} of T.

Example. Consider the orthogonal project onto the $x_{1}-x_{2}$-plane, a linear transformation T from R^{3} to R^{3}. See Figure 10.

The kernel of T consists of all vectors whose orthogonal projection is $\overrightarrow{0}$. These are the vectors on the x_{3}-axis (the scalar multiples of \vec{e}_{3}).

Example. Find the kernel of the linear transformation T from R^{3} to R^{2} given by

$$
T(\vec{x})=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]
$$

Solution
We have to solve the linear system

$$
\begin{gathered}
T(\vec{x})=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right] \vec{x}=\overrightarrow{0} \\
\operatorname{rref}\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 2 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrc|r}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \\
\left\lvert\, \begin{array}{l}
x_{1} \\
\\
\\
x_{2}+ \\
\hline
\end{array} x_{3}=0\right. \\
\\
{\left[\begin{array}{r}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]}
\end{gathered}
$$

The kernel is the line spanned by $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$.

Example. Find the kernel of the linear transformation T from R^{5} to R^{4} given by the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 5 & 4 & 3 & 2 \\
1 & 6 & 6 & 6 & 6 \\
1 & 7 & 8 & 10 & 12 \\
1 & 6 & 6 & 7 & 8
\end{array}\right]
$$

Solution We have to solve the linear system $\mathrm{T}(\vec{x})=\mathrm{A} \overrightarrow{0}=\overrightarrow{0}$

$$
\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 0 & -6 & 0 & 6 \\
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The kernel of T consists of the solutions of the system

$$
\left\lvert\, \begin{array}{llll}
x_{1} & -6 x_{3} & +6 x_{5}=0 \\
& x_{2}+2 x_{3} & -2 x_{5}=0 \\
& & x_{4} & +2 x_{5}=0
\end{array}\right.
$$

The solution are the vectors

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
6 s-6 t \\
-2 s+2 t \\
s \\
-2 t \\
t
\end{array}\right]
$$

where s and t are arbitrary constants.
$\operatorname{ker}(T)=\left[\begin{array}{r}6 s-6 t \\ -2 s+2 t \\ s \\ -2 t \\ t\end{array}\right]: \mathrm{s}, \mathrm{t}$ arbitrary scalars
We can write

$$
\left[\begin{array}{r}
6 s-6 t \\
-2 s+2 t \\
s \\
-2 t \\
t
\end{array}\right]=\mathrm{s}\left[\begin{array}{r}
6 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
-6 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

This shows that

$$
\operatorname{ker}(T)=\operatorname{span}\left(\left[\begin{array}{r}
6 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-6 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]\right)
$$

Fact 3.1.6: Properties of the kernel
(a) The zero vector $\overrightarrow{0}$ in R_{n} in in $\operatorname{ker}(T)$.
(b) The kernel is closed under addition.
(c) The kernel is closed under scalar multiplication.

The verification is left as Exercise 49.
Fact 3.1.7

1. Consider an $m * n$ matrix A then

$$
\operatorname{ker}(\mathrm{A})=\{\overrightarrow{0}\}
$$

if (and only if) $\operatorname{rank}(\mathrm{A})=n$. (This implies that $n \leq m$.)

Check exercise 2.4 (35)
2. For a square matrix A,

$$
\operatorname{ker}(\mathrm{A})=\{\overrightarrow{0}\}
$$

if (and only if) A is invertible.

Summary

Let A be an $n * n$ matrix. The following statements are equivalent (i.e.,they are either all true or all false):

1. A is invertible.
2. The linear system $\mathrm{A} \vec{x}=\vec{b}$ has a unique solution \vec{x}, for all \vec{b} in R^{n}. (def 2.3.1)
3. $\operatorname{rref}(\mathrm{A})=I_{n}$. (fact 2.3.3)
4. $\operatorname{rank}(A)=n .(\operatorname{def} 1.3 .2)$
5. $\mathrm{im}(\mathrm{A})=R^{n}$. (ex 3.1.3b)
6. $\operatorname{ker}(A)=\{\overrightarrow{0}\}$. (fact 3.1.7)

Homework 3.1: 5, 6, 7, 14, 15, 16, 31, 33, 42, 43

