# 3.1 Image and Kernal of a Linear Transformation

#### Definition. Image

The image of a function consists of all the values the function takes in its codomain. If f is a function from X to Y, then

image(f) = {
$$f(x)$$
:  $x \in X$ }  
= { $y \in Y$ :  $y = f(x)$ , for some  $x \in X$ }

Example. See Figure 1.

**Example.** The image of

 $f(x) = e^x$ 

consists of all positive numbers.

**Example.**  $b \in im(f), c \notin im(f)$  See Figure 2.

**Example.** 
$$f(t) = \begin{bmatrix} cos(t) \\ sin(t) \end{bmatrix}$$
 (See Figure 3.)

**Example.** If the function from X to Y is invertible, then image(f) = Y. For each y in Y, there is one (and only one) x in X such that y = f(x), namely,  $x = f^{-1}(y)$ .

**Example.** Consider the linear transformation T from  $R^3$  to  $R^3$  that projects a vector orthogonally into the  $x_1 - x_2$ -plane, as illustrate in Figure 4. The image of T is the  $x_1 - x_2$ -plane in  $R^3$ .

**Example.** Describe the image of the linear transformation T from  $R^2$  to  $R^2$  given by the matrix

$$A = \left[ \begin{array}{rrr} 1 & 3 \\ 2 & 6 \end{array} \right]$$

### Solution

$$T\begin{bmatrix} x_1\\x_2\end{bmatrix} = A\begin{bmatrix} x_1\\x_2\end{bmatrix} = \begin{bmatrix} 1 & 3\\ 2 & 6\end{bmatrix} \begin{bmatrix} x_1\\x_2\end{bmatrix}$$

$$= x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 6 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3x_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= (x_1 + 3x_2) \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

See Figure 5.

**Example.** Describe the image of the linear transformation T from  $R^2$  to  $R^3$  given by the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

# Solution

$$T\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 2\\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$

See Figure 6.

**Definition.** Consider the vectors  $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$  in  $\mathbb{R}^m$ . The set of all linear combinations of the vectors  $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$  is called their **span**:

 $span(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n) = \{c_1\vec{v}_1 + c_2\vec{v}_2 + \ldots + c_n\vec{v}_n: c_i \text{ arbitrary scalars}\}$ 

Fact The image of a linear transformation

$$T(\vec{x}) = A\vec{x}$$

is the span of the columns of A. We denote the image of T by im(T) or im(A).

### **Justification**

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} | & & | \\ \vec{v_1} & \dots & \vec{v_n} \\ | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 $= x_1\vec{v_1} + x_2\vec{v_2} + \ldots + x_n\vec{v_n}.$ 

## Fact: Properties of the image

(a). The zero vector is contained in im(T), i.e.  $\vec{0} \in im(T)$ .

(b). The image is closed under addition: If  $\vec{v_1}$ ,  $\vec{v_2} \in im(T)$ , then  $\vec{v_1} + \vec{v_2} \in im(T)$ .

(c). The image is closed under scalar multiplication: If  $\vec{v} \in im(T)$ , then  $k\vec{v} \in im(T)$ .

### Verification

(a). 
$$\vec{0} \in \mathbb{R}^m$$
 since  $A\vec{0} = \vec{0}$ .

(b). Since  $\vec{v_1}$  and  $\vec{v_2} \in im(T)$ ,  $\exists \vec{w_1}$  and  $\vec{w_2}$  st.  $T(\vec{w_1}) = \vec{v_1}$  and  $T(\vec{w_2}) = \vec{v_2}$ . Then,  $\vec{v_1} + \vec{v_2} = T(\vec{w_1}) + T(\vec{w_2}) = T(\vec{w_1} + \vec{w_2})$ , so that  $\vec{v_1} + \vec{v_2}$ is in the image as well.

(c).  $\exists \vec{w} \text{ st. } T(\vec{w}) = \vec{v}$ . Then  $k\vec{v} = kT(\vec{w}) = T(k\vec{w})$ , so  $k\vec{v}$  is in the image.

**Example.** Consider an  $n \times n$  matrix A. Show that  $im(A^2)$  is contained in im(A).

Hint: To show  $\vec{w}$  is also in im(A), we need to find some vector  $\vec{u}$  st.  $\vec{w} = A\vec{u}$ .

## Solution

Consider a vector  $\vec{w}$  in  $im(A^2)$ . There exists a vector  $\vec{v}$  st.  $\vec{w} = A^2\vec{v} = AA\vec{v} = A\vec{u}$  where  $\vec{u} = A\vec{v}$ .

# Definition. Kernel

The kernel of a linear transformation  $T(\vec{x}) = A\vec{x}$  is the set of all zeros of the transformation (i.e., the solutions of the equation  $A\vec{x} = \vec{0}$ . See Figure 9.

We denote the kernel of T by ker(T) or ker(A).

For a linear transformation T from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ ,

- im(T) is a subset of the codomain  $\mathbb{R}^m$  of T, and
- ker(T) is a subset of the domain  $\mathbb{R}^n$  of T.

**Example.** Consider the orthogonal project onto the  $x_1 - x_2$ -plane, a linear transformation T from  $R^3$  to  $R^3$ . See Figure 10.

The kernel of T consists of all vectors whose orthogonal projection is  $\vec{0}$ . These are the vectors on the  $x_3$ -axis (the scalar multiples of  $\vec{e}_3$ ).

**Example.** Find the kernel of the linear transformation T from  $R^3$  to  $R^2$  given by

$$T(\vec{x}) = \left[ \begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 3 \end{array} \right]$$

# Solution

We have to solve the linear system

$$T(\vec{x}) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \vec{x} = \vec{0}$$

$$rref \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

$$\begin{vmatrix} x_1 & - & x_3 = 0 \\ x_2 & + & 2x_3 = 0 \end{vmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -2t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
The kernel is the line spanned by 
$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
.

8

**Example.** Find the kernel of the linear transformation T from  $R^5$  to  $R^4$  given by the matrix

$$A = \begin{bmatrix} 1 & 5 & 4 & 3 & 2 \\ 1 & 6 & 6 & 6 & 6 \\ 1 & 7 & 8 & 10 & 12 \\ 1 & 6 & 6 & 7 & 8 \end{bmatrix}$$

**Solution** We have to solve the linear system  $T(\vec{x}) = A\vec{0} = \vec{0}$ 

$$\operatorname{rref}(\mathsf{A}) = \begin{bmatrix} 1 & 0 & -6 & 0 & 6 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The kernel of T consists of the solutions of the system

The solution are the vectors

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6s - 6t \\ -2s + 2t \\ s \\ -2t \\ t \end{bmatrix}$$

where s and t are arbitrary constants .

$$\ker(\mathsf{T}) = \begin{bmatrix} 6s - 6t \\ -2s + 2t \\ s \\ -2t \\ t \end{bmatrix} : \mathsf{s} \text{, t arbitrary scalars}$$

We can write

$$\begin{bmatrix} 6s - 6t \\ -2s + 2t \\ s \\ -2t \\ t \end{bmatrix} = s \begin{bmatrix} 6 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -6 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$



$$\ker(\mathsf{T}) = \operatorname{span} \left( \begin{bmatrix} 6 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right)$$

# Fact 3.1.6: Properties of the kernel

(a) The zero vector  $\vec{0}$  in  $R_n$  in in ker(T). (b) The kernel is closed under addition. (c) The kernel is closed under scalar multiplication.

The verification is left as Exercise 49.

### Fact 3.1.7

1. Consider an m\*n matrix A then

$$\ker(\mathsf{A}) = \{\vec{\mathsf{0}}\}$$

if (and only if ) rank(A) = n.(This implies that  $n \le m$ .)

Check exercise 2.4 (35)

2. For a square matrix A,

$$\ker(\mathsf{A}) = \{\vec{\mathsf{0}}\}$$

if (and only if ) A is invertible.

#### Summary

Let A be an n\*n matrix . The following statements are equivalent (i.e.,they are either all true or all false):

- 1. A is invertible.
- 2. The linear system  $A\vec{x} = \vec{b}$  has a unique solution  $\vec{x}$ , for all  $\vec{b}$  in  $R^n$ . (def 2.3.1)
- 3.  $rref(A) = I_n$ . (fact 2.3.3)
- 4. rank(A) = n. (def 1.3.2)
- 5.  $im(A) = R^n$ . (ex 3.1.3b)
- 6. ker(A) =  $\{\vec{0}\}$ . (fact 3.1.7)

Homework **3.1**: 5, 6, 7, 14, 15, 16, 31, 33, 42, 43