2.4 MATRIX PRODUCTS

The composite of two functions: $y=\sin (x)$ and $z=\cos (y)$ is $z=\cos (\sin (x))$.

Consider two transformation systems:

$$
\begin{aligned}
& \vec{y}=A \vec{x}, \text { with } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right] \\
& \vec{z}=B \vec{y}, \text { with } B=\left[\begin{array}{ll}
6 & 7 \\
8 & 9
\end{array}\right]
\end{aligned}
$$

The composite of the two transformation systems is

$$
\vec{z}=B(A \vec{x})
$$

Question: Is $\vec{z}=T(\vec{x})$ linear? If so, what's the matrix?
(a) Find the matrix for the composite:

$$
\begin{aligned}
& \quad \begin{array}{l}
z_{1}=6 y_{1}+7 y_{2} \quad \text { and } \quad \begin{array}{l}
y_{1}=x_{1}+2 x_{2} \\
y_{2}=3 x_{1}+5 x_{2}
\end{array} \\
z_{2}=8 y_{1}+9 y_{2}
\end{array} \\
& z_{1}=6\left(x_{1}+2 x_{2}\right)+7\left(3 x_{1}+5 x_{2}\right) \\
& =(6 \cdot 1+7 \cdot 3) x_{1}+(6 \cdot 2+7 \cdot 5) x_{2} \\
& =27 x_{1}+47 x_{2} \\
& z_{2}=8\left(x_{1}+2 x_{2}\right)+9\left(3 x_{1}+5 x_{2}\right) \\
& =(8 \cdot 1+9 \cdot 3) x_{1}+(8 \cdot 2+9 \cdot 5) x_{2} \\
& =35 x_{1}+61 x_{2}
\end{aligned}
$$

This shows the composite is linear with matrix $\left[\begin{array}{ll}6 \cdot 1+7 \cdot 3 & 6 \cdot 2+7 \cdot 5 \\ 8 \cdot 1+9 \cdot 3 & 8 \cdot 2+9 \cdot 5\end{array}\right]=\left[\begin{array}{ll}27 & 47 \\ 35 & 61\end{array}\right]$
(b) Use Fact to show the transformation $T(\vec{x})=$ $B(A \vec{x})$ is linear:
$T(\vec{v}+\vec{w})=B(A(\vec{v}+\vec{w}))=B(A \vec{v}+A \vec{w})=B(A \vec{v})+$
$B(A \vec{w})=T(\vec{v})+T(\vec{w})$
$T(k \vec{v})=B(A(k \vec{v}))=B(k(A \vec{v}))=k(B(A \vec{v}))=k T(\vec{v})$

Once we know that T is linear, we can find its matrix by computing the vectors: $T\left(\vec{e}_{1}\right)$ and $T\left(\vec{e}_{2}\right)$:
$T\left(\vec{e}_{1}\right)=B\left(A\left(\vec{e}_{1}\right)\right)=B($ first column of $A)=$ $\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}27 \\ 35\end{array}\right]$
$T\left(\vec{e}_{2}\right)=B\left(A\left(\vec{e}_{1}\right)\right)=B($ second column of $A)=$ $\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}47 \\ 61\end{array}\right]$

The matrix of $T(\vec{x})=B(A \vec{x})=B A(\vec{x})$:
$=\left[\begin{array}{cc}\mid & \mid \\ T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) \\ \mid & \mid\end{array}\right]=\left[\begin{array}{ll}27 & 47 \\ 35 & 61\end{array}\right]$

Definition. Matrix multiplication

1. Let B be an $m \times n$ matrix and A a $q \times p$ matrix. The product $B A$ is defined if (and only if) $n=q$.
2. If B is an $m \times n$ matrix and A an $n \times p$ matrix, then the product $B A$ is defined as the matrix of the linear transformation $T(\vec{x})=$ $B(A \vec{x})$. This means that $T(\vec{x})=B(A \vec{x})=$ $(B A) \vec{x}$, for all \vec{x} in R^{p}. The product $B A$ is an $m \times p$ matrix.

Let B be an $m \times n$ matrix and A an $n \times p$ matrix. Let's think about the columns of the matrix $B A$:
(i th columns of $B A$)
$=(B A) \vec{e}_{i}$
$=B\left(A \vec{e}_{i}\right)$
$=B(i$ th column of $A)$.

If we denote the columns of A by $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$, we can write

$$
B A=B \underbrace{\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{p} \\
\mid & \mid & & \mid
\end{array}\right]}_{A}=
$$

The matrix product, column by column

Let B be an $m \times n$ matrix and A an $n \times p$ matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$. Then, the product $B A$ is

$$
B A=B\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
B \vec{v}_{1} & B \vec{v}_{2} & \ldots & B \vec{v}_{p} \\
\mid & \mid & & \mid
\end{array}\right] .
$$

To find $B A$, we can multiply B with the columns of A and combine the resulting vectors.

Fact Matrix multiplication is noncommutative: $A B \neq B A$, in general. However, at times it does happen that $A B=B A$; then, we say that the matrices A and B commute.

The matrix product, entry by entry

Let B be an $m \times n$ matrix and A an $n \times p$ matrix. The $i j$ th entry of $B A$ is the dot product of the i th row of B and the j th column of A.

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{i 1} & b_{i 2} & \ldots & b_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \ldots & b_{m n}
\end{array}\right]\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots & a_{1 p} \\
a_{21} & a_{22} & \ldots & a_{2 j} & \ldots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n j} & \ldots & a_{n p}
\end{array}\right]
$$

is the $m \times p$ matrix whose $i j$ th entry is
$b_{i 1} a_{1 j}+b_{i 2} a_{2 j}+\ldots+b_{i n} a_{n j}=\sum_{k=1}^{n} b_{i k} a_{k j}$.
Example. $\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]=$
$\left[\begin{array}{ll}6 \cdot 1+7 \cdot 3 & 6 \cdot 2+7 \cdot 5 \\ 8 \cdot 1+9 \cdot 3 & 8 \cdot 2+9 \cdot 5\end{array}\right]=\left[\begin{array}{ll}27 & 47 \\ 35 & 61\end{array}\right]$.
We have done these computations before. (where?)

Matrix Algebra

Fact (a) For an invertible $n \times n$ matrix A .

$$
A A^{-1}=I_{n} \text { and } A^{-1} A=I_{n}
$$

Fact (b) For an $m \times n$ matrix A .

$$
A I_{n}=I_{m} A=A
$$

Fact (c) Matrix multiplication is associative

$$
(A B) C=A(B C) .
$$

We can write simply $A B C$ for the product $(A B) C=$ $A(B C)$.

Proof (a) $(A B) C=(A B)\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{q}\end{array}\right]$

$$
=\left[\begin{array}{llll}
(A B) \vec{v}_{1} & (A B) \vec{v}_{2} & \cdots & (A B) \vec{v}_{q}
\end{array}\right]
$$

and

$$
\begin{aligned}
& A(B C)=A\left[\begin{array}{llll}
B \vec{v}_{1} & B \vec{v}_{2} & \cdots & B \vec{v}_{q}
\end{array}\right] \\
& \quad=\left[\begin{array}{llll}
A\left(B \vec{v}_{1}\right) & A\left(B \vec{v}_{2}\right) & \cdots & A\left(B \vec{v}_{q}\right)
\end{array}\right]
\end{aligned}
$$

Since $(A B) \vec{v}_{i}=A\left(B \vec{v}_{i}\right)$, by definition of the matrix product, we find that $(A B) C=A(B C)$.

Proof (b) Consider two linear transformations

$$
T(\vec{x})=((A B) C) \vec{x}
$$

and

$$
L(\vec{x})=(A(B C)) \vec{x}
$$

are identical because,

$$
T(\vec{x})=((A B) C) \vec{x}=(A B)(C \vec{x})=A(B(C \vec{x}))
$$

and

$$
L(\vec{x})=(A(B C)) \vec{x}=A((B C) \vec{x})=A(B(C \vec{x}))
$$

If A and B are invertible $n \times n$ matrices, is $B A$ invertible?

$$
\vec{y}=B A \vec{x}
$$

multiply both sides by B^{-1}

$$
B^{-1} \vec{y}=B^{-1} B A \vec{x}=I_{n} A \vec{x}=A \vec{x}
$$

next, multiply both sides by A^{-1}

$$
A^{-1} B^{-1} \vec{y}=A^{-1} A \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This computation shows that the linear transformation is invertible since

$$
\vec{x}=A^{-1} B^{-1} \vec{y}
$$

Fact The inverse of a product of matrices
If A and B are invertible $n \times n$ matrices, then $B A$ is invertible as well, and

$$
(B A)^{-1}=A^{-1} B^{-1}
$$

Pay attention to the order of the matrices.
Proof Verify it by yourself.

Fact Let A and B be two $n \times n$ matrices such that

$$
B A=I_{n} .
$$

Then,
a. A and B are both invertible.
b. $A^{-1}=B$ and $B^{-1}=A$, and
c. $A B=I_{n}$.

Proof (a) To demonstrate A is invertible it suffices to show that the linear system $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$.

$$
B A \vec{x}=B \overrightarrow{0}=\overrightarrow{0}
$$

(b) $B=A^{-1}$ since

$$
(B A) A^{-1}=\left(I_{n}\right) A^{-1}=A^{-1}
$$

and

$$
B^{-1}=\left(A^{-1}\right)^{-1}=A
$$

(c) $A B=A A^{-1}=I_{n}$

Example. $B=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ is the inverse of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
it suffices to verify that $B A=I_{2}$:
$\mathrm{BA}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$=\frac{1}{a d-b c}\left[\begin{array}{ll}a d-b c & b d-b d \\ a c-a c & a d-b c\end{array}\right]=I_{2}$.
Example.
Suppose A, B and C are three $n \times n$ matrices and $A B C=I_{n}$. Show that B is invertible, and express B^{-1} in term of A and C.

Solution

Write $A B C=(A B) C=I_{n}$. We have $C(A B)=$ I_{n}. Since matrix multiplication is associative, we can write $(C A) B=I_{n}$. We conclude that B is invertible, and $B^{-1}=C A$.

Distributive property for matrices

Fact If A, B are $n \times n$, and C, D are $n \times p$ matrices, then

$$
\begin{gathered}
A(C+D)=A C+A D \\
\text { and } \\
(A+B) C=A C+B C .
\end{gathered}
$$

Fact If A is an $m \times n$ matrix, B an $n \times p$ matrix, and k a scalar, then

$$
(k A) B=A(k B)=k(A B) .
$$

Partitioned Matrices

It is sometimes useful to break a large matrix down into smaller submatrices by slicing it up with horizontal or vertical lines that go all the way through the matrix.

For example, we can think of the 4×4 matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 8 & 7 & 6 \\
5 & 4 & 3 & 2
\end{array}\right]
$$

as a 2×2 matrix whose "entries" are four 2×2 matrices:

$$
A=\left[\begin{array}{ll|ll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
\hline 9 & 8 & 7 & 6 \\
5 & 4 & 3 & 2
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

with $A_{11}=\left[\begin{array}{ll}1 & 2 \\ 5 & 7\end{array}\right], A_{12}=\left[\begin{array}{ll}3 & 4 \\ 7 & 8\end{array}\right]$, etc.
The submatrices in such a partition need not be of equal size; for example, we could have
$B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]=\left[\begin{array}{ll|l}1 & 2 & 3 \\ 4 & 5 & 6 \\ \hline 7 & 8 & 9\end{array}\right]=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$.
A useful property of partitioned matrices is the following:

Multiplying partitioned matrices Partitioned matrices can be multiplied as though the submatrices were scalars:
$A B=$
$\left[\begin{array}{cccc}A_{11} & A_{12} & \ldots & A_{1 n} \\ A_{21} & A_{22} & \ldots & A_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{i 1} & A_{i 2} & \ldots & A_{i n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m 1} & A_{m 2} & \ldots & A_{m n}\end{array}\right]\left[\begin{array}{cccccc}B_{11} & B_{12} & \ldots & B_{1 j} & \ldots & B_{1 p} \\ B_{21} & B_{22} & \ldots & B_{2 j} & \ldots & B_{2 p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ B_{n 1} & B_{n 2} & \ldots & B_{n j} & \ldots & B_{n p}\end{array}\right]$
is the partitioned matrix whose ijth "entry" is the matrix

$$
A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\ldots+A_{i n} B_{n j}=\sum_{k=1}^{n} A_{i k} B_{k j},
$$

provided that all the products $A_{i k} B_{k j}$ are defined.

Example.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
& =\left[\left.\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\left[\begin{array}{ll}
7 & 8
\end{array}\right] \right\rvert\,\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
6
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1
\end{array}\right][9]\right.
\end{aligned}=\left[\begin{array}{cc|c}
-3 & -3 & -3 \\
8 & 10 & 12
\end{array}\right] .
$$

Compute this product without using a partition, and see whether you find the same result.

Example.

$A=\left[\begin{array}{rr}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$,
where A_{11} is an $n \times n$ matrix, A_{22} is an $m \times m$ matrix, and A_{12} is an $n \times m$ matrix.
a. For which choices of A_{11}, A_{12}, and A_{22} is A invertible ?
b. If A is invertible, what is A^{-1} (in terms of A_{11}, A_{12}, A_{22})?

Solution

We are looking for an $(n+m) \times(n+m)$ matrix B such that

$$
B A=I_{n+m}=\left[\begin{array}{rr}
I_{n} & 0 \\
0 & I_{m}
\end{array}\right] .
$$

Let us partition B in the same way as A :

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right],
$$

where B_{11} is $n \times n, B_{22}$ is $m \times m$, etc. The fact that B is the inverse of A means that

$$
\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{rr}
A_{11} & A_{12} \\
0 & B_{22}
\end{array}\right]=\left[\begin{array}{rr}
I_{n} & 0 \\
0 & I_{m}
\end{array}\right],
$$

or using

$$
\left|\begin{array}{rlr}
B_{11} A_{11} & = & I_{n} \\
B_{11} A_{12}+B_{12} A_{22} & = & 0 \\
B_{21} A_{11} & = & 0 \\
B_{21} A_{12}+B_{22} A_{22} & = & I_{m}
\end{array}\right|
$$

We have to solve this system for the submatrices $B_{i j}$.

1. By Equation 1, A_{11} must be invertible, and $B_{11}=A_{11}^{-1}$.
2. By Equation 3, $B_{21}=0$ (Multiply by A_{11}^{-1} form the right)
3. Equation 4 now simplifies to $B_{22} A_{22}=$ I_{m}. Therefore, A_{22} must be invertible, and $B_{22}=A_{22}^{-1}$.
4. Lastly, Solve for B_{12} by Equation 2

$$
A_{11}^{-1} A_{12}+B_{12} A_{22}=0
$$

$$
\begin{aligned}
& \Rightarrow B_{12} A_{22}=-A_{11}^{-1} A_{12} \\
& \Rightarrow B_{12}=-A_{11}^{-1} A_{12} A_{22}^{-1}
\end{aligned}
$$

So
a. A is invertible if (and only if) both A_{11} and A_{22} are invertible (no condition is imposed on A_{12}).
b. If A is invertible, then its inverse is

$$
A^{-1}=\left[\begin{array}{cc}
A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\
0 & A_{22}^{-1}
\end{array}\right] .
$$

Verify this result for the following example:

Example. 5

$$
\left[\begin{array}{ll|lll}
1 & 1 & 1 & 2 & 3 \\
1 & 2 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc|ccc}
2 & -1 & 2 & 1 & 0 \\
-1 & 1 & -3 & -3 & -3 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Homework.

Exercise 2.4: 5, 13, 17, 23, 27, 35

